Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Genet Mol Res ; 15(4)2016 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-27813571

RESUMEN

Marine animals exhibit a variety of biological rhythms, such as solar and lunar-related cycles; however, our current molecular understanding of biological rhythms in marine animals is quite limited. Identifying and understanding the expression patterns of clock genes from available transcriptomes will help elucidate biological rhythms in marine species. Here, we perform a comprehensive survey of phototransduction and circadian genes using the mantle transcriptome of the scallop Patinopecten yessoensis and compare the results with those from three other bivalves. The comparison reveals the presence of transcripts for most of the core members of the phototransduction and circadian networks seen in terrestrial model species in the four marine bivalves. Matches were found for all 37 queried genes, and the expressed transcripts from the deep sequencing data matched 8 key insect and mammalian circadian genes. This demonstrates the high level of conservation of the timekeeping mechanism from terrestrial species to marine bivalves. The results provide a valuable gene resource for studies of "marine rhythms" and also further our understanding of the diversification and evolution of rhythms in marine species.


Asunto(s)
Bivalvos/genética , Proteínas CLOCK/genética , Ritmo Circadiano/genética , Transcriptoma/genética , Animales , Organismos Acuáticos/genética , Organismos Acuáticos/crecimiento & desarrollo , Evolución Biológica , Bivalvos/crecimiento & desarrollo , Proteínas CLOCK/biosíntesis , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Fototransducción/genética , Anotación de Secuencia Molecular
2.
Plant Signal Behav ; 9(11): e976150, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25482785

RESUMEN

Plants rely on a sophisticated light sensing and signaling system that allows them to respond to environmental changes. Photosensory protein systems -phytochromes, cryptochromes, phototropins, and ultraviolet (UV)-B photoreceptors- have evolved to let plants monitor light conditions and regulate different levels of gene expression and developmental processes. However, even though photoreceptor proteins are best characterized and deeply studied, it is also known that chloroplasts are able to sense light conditions and communicate the variations to the nucleus that adjust its transcriptome to the changing environment. The redox state of components of the photosynthetic electron transport chain works as a sensor of photosynthetic activity and can affect nuclear gene expression by a retrograde signaling pathway. Recently, our groups showed that a retrograde signaling pathway can modulate the alternative splicing process, revealing a novel layer of gene expression control by chloroplast retrograde signaling.


Asunto(s)
Núcleo Celular/genética , Cloroplastos/genética , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Núcleo Celular/efectos de la radiación , Cloroplastos/efectos de la radiación , Fototransducción/genética , Fototransducción/efectos de la radiación , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo
3.
Proc Natl Acad Sci U S A ; 110(29): 12120-5, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23818596

RESUMEN

Light signaling pathways and the circadian clock interact to help organisms synchronize physiological and developmental processes with periodic environmental cycles. The plant photoreceptors responsible for clock resetting have been characterized, but signaling components that link the photoreceptors to the clock remain to be identified. Here we describe a family of night light-inducible and clock-regulated genes (LNK) that play a key role linking light regulation of gene expression to the control of daily and seasonal rhythms in Arabidopsis thaliana. A genomewide transcriptome analysis revealed that most light-induced genes respond more strongly to light during the subjective day, which is consistent with the diurnal nature of most physiological processes in plants. However, a handful of genes, including the homologous genes LNK1 and LNK2, are more strongly induced by light in the middle of the night, when the clock is most responsive to this signal. Further analysis revealed that the morning phased LNK1 and LNK2 genes control circadian rhythms, photomorphogenic responses, and photoperiodic dependent flowering, most likely by regulating a subset of clock and flowering time genes in the afternoon. LNK1 and LNK2 themselves are directly repressed by members of the TIMING OF CAB1 EXPRESSION/PSEUDO RESPONSE REGULATOR family of core-clock genes in the afternoon and early night. Thus, LNK1 and LNK2 integrate early light signals with temporal information provided by core oscillator components to control the expression of afternoon genes, allowing plants to keep track of seasonal changes in day length.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/fisiología , Relojes Circadianos/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Fototransducción/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Inmunoprecipitación de Cromatina , Relojes Circadianos/genética , Cartilla de ADN/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Fototransducción/genética , Análisis por Micromatrices , Fotoperiodo , Filogenia , Reacción en Cadena en Tiempo Real de la Polimerasa , Estaciones del Año , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA