Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 761
Filtrar
1.
Plant Cell Rep ; 43(8): 205, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-39088074

RESUMEN

KEY MESSAGE: Transcriptomics and phenotypic data analysis identified 24 transcription factors (TFs) that play key roles in regulating the competitive accumulation of lignin and flavonoids. Tilia tuan Szyszyl. (T. tuan) is a timber tree species with important ecological and commercial value. However, its highly lignified pericarp results in a low seed germination rate and a long dormancy period. In addition, it is unknown whether there is an interaction between the biosynthesis of flavonoids and lignin as products of the phenylpropanoid pathway during seed development. To explore the molecular regulatory mechanism of lignin and flavonoid biosynthesis, T. tuan seeds were harvested at five stages (30, 60, 90, 120, and 150 days after pollination) for lignin and flavonoid analyses. The results showed that lignin accumulated rapidly in the early and middle stages (S1, S3, and S4), and rapid accumulation of flavonoids during the early and late stages (S1 and S5). High-throughput RNA sequencing analysis of developing seeds identified 50,553 transcripts, including 223 phenylpropanoid biosynthetic pathway genes involved in lignin accumulation grouped into 3 clusters, and 106 flavonoid biosynthetic pathway genes (FBPGs) grouped into 2 clusters. Subsequent WGCNA and time-ordered gene co-expression network (TO-GCN) analysis revealed that 24 TFs (e.g., TtARF2 and TtWRKY15) were involved in flavonoids and lignin biosynthesis regulation. The transcriptome data were validated by qRT-PCR to analyze the expression profiles of key enzyme-coding genes. This study revealed that there existed a competitive relationship between flavonoid and lignin biosynthesis pathway during the development of T. tuan seeds, that provide a foundation for the further exploration of molecular mechanisms underlying lignin and flavonoid accumulation in T. tuan seeds.


Asunto(s)
Flavonoides , Regulación de la Expresión Génica de las Plantas , Lignina , Semillas , Lignina/metabolismo , Lignina/biosíntesis , Flavonoides/metabolismo , Flavonoides/biosíntesis , Semillas/genética , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Transcriptoma/genética , Redes Reguladoras de Genes , Genes de Plantas , Vías Biosintéticas/genética
2.
Physiol Plant ; 176(4): e14444, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39005134

RESUMEN

Bamboo, renowned as the fastest-growing plant globally, matures within an astonishingly short period of 40-50 days from shoots, reaching heights of 10-20 meters. Moreover, it can be harvested for various uses within 3-5 years. Bamboo exhibits exceptional mechanical properties, characterized by high hardness and flexibility, largely attributed to its lignin content. Phenylalanine ammonia-lyase (PAL) catalyzes the crucial initial step in lignin biosynthesis, but its precise role in bamboo lignification processes remains elusive. Thus, elucidating the functions of PAL genes in bamboo lignification processes is imperative for understanding its rapid growth and mechanical strength. Here, we systematically identified and classified PAL genes in Moso bamboo, ensuring nomenclature consistency across prior studies. Subsequently, we evaluated PAL gene expression profiles using publicly available transcriptome data. The downregulation of PePALs expression in Moso bamboo through in planta gene editing resulted in a decrease in PAL activity and a subsequent reduction in lignin content. In contrast, overexpression of PePAL led to enhanced PAL activity and an increase in lignin content. These findings highlight the critical role of PAL in the lignin biosynthesis process of Moso bamboo, which will help to unravel the mechanism underpinning bamboo's rapid growth and mechanical strength, with a specific emphasis on elucidating the functions of PAL genes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lignina , Fenilanina Amoníaco-Liasa , Fenilanina Amoníaco-Liasa/genética , Fenilanina Amoníaco-Liasa/metabolismo , Lignina/biosíntesis , Lignina/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sasa/genética , Sasa/metabolismo , Sasa/enzimología
3.
BMC Genomics ; 25(1): 699, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020298

RESUMEN

BACKGROUND: Cassava is one of three major potato crops and the sixth most important food crop globally. Improving yield remains a primary aim in cassava breeding. Notably, plant height significantly impacts the yield and quality of crops; however, the mechanisms underlying cassava plant height development are yet to be elucidated. RESULTS: In this study, we investigated the mechanisms responsible for cassava plant height development using phenotypic, anatomical, and transcriptomic analyses. Phenotypic and anatomical analysis revealed that compared to the high-stem cassava cultivar, the dwarf-stem cassava cultivar exhibited a significant reduction in plant height and a notable increase in internode tissue xylem area. Meanwhile, physiological analysis demonstrated that the lignin content of dwarf cassava was significantly higher than that of high cassava. Notably, transcriptome analysis of internode tissues identified several differentially expressed genes involved in cell wall synthesis and expansion, plant hormone signal transduction, phenylpropanoid biosynthesis, and flavonoid biosynthesis between the two cassava cultivars. CONCLUSIONS: Our findings suggest that internode tissue cell division, secondary wall lignification, and hormone-related gene expression play important roles in cassava plant height development. Ultimately, this study provides new insights into the mechanisms of plant height morphogenesis in cassava and identifies candidate regulatory genes associated with plant height that can serve as valuable genetic resources for future crop dwarfing breeding.


Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Manihot , Manihot/genética , Manihot/crecimiento & desarrollo , Manihot/metabolismo , Fenotipo , Transcriptoma , Lignina/metabolismo , Lignina/biosíntesis
4.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-39000352

RESUMEN

A novel MADS-box transcription factor from Pinus radiata D. Don was characterized. PrMADS11 encodes a protein of 165 amino acids for a MADS-box transcription factor belonging to group II, related to the MIKC protein structure. PrMADS11 was differentially expressed in the stems of pine trees in response to 45° inclination at early times (1 h). Arabidopsis thaliana was stably transformed with a 35S::PrMADS11 construct in an effort to identify the putative targets of PrMADS11. A massive transcriptome analysis revealed 947 differentially expressed genes: 498 genes were up-regulated, and 449 genes were down-regulated due to the over-expression of PrMADS11. The gene ontology analysis highlighted a cell wall remodeling function among the differentially expressed genes, suggesting the active participation of cell wall modification required during the response to vertical stem loss. In addition, the phenylpropanoid pathway was also indicated as a PrMADS11 target, displaying a marked increment in the expression of the genes driven to the biosynthesis of monolignols. The EMSA assays confirmed that PrMADS11 interacts with CArG-box sequences. This TF modulates the gene expression of several molecular pathways, including other TFs, as well as the genes involved in cell wall remodeling. The increment in the lignin content and the genes involved in cell wall dynamics could be an indication of the key role of PrMADS11 in the response to trunk inclination.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Pinus , Proteínas de Plantas , Pinus/genética , Pinus/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Tallos de la Planta/metabolismo , Tallos de la Planta/genética , Pared Celular/metabolismo , Pared Celular/genética , Perfilación de la Expresión Génica , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Lignina/metabolismo , Lignina/biosíntesis , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Plantas Modificadas Genéticamente/genética
5.
Int J Mol Sci ; 25(13)2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-39000588

RESUMEN

Sand pear is the main cultivated pear species in China, and brown peel is a unique feature of sand pear. The formation of brown peel is related to the activity of the cork layer, of which lignin is an important component. The formation of brown peel is intimately associated with the biosynthesis and accumulation of lignin; however, the regulatory mechanism of lignin biosynthesis in pear peel remains unclear. In this study, we used a newly bred sand pear cultivar 'Xinyu' as the material to investigate the biosynthesis and accumulation of lignin at nine developmental stages using metabolomic and transcriptomic methods. Our results showed that the 30 days after flowering (DAF) to 50DAF were the key periods of lignin accumulation according to data analysis from the assays of lignin measurement, scanning electron microscope (SEM) observation, metabolomics, and transcriptomics. Through weighted gene co-expression network analysis (WGCNA), positively correlated modules with lignin were identified. A total of nine difference lignin components were identified and 148 differentially expressed genes (DEGs), including 10 structural genes (PAL1, C4H, two 4CL genes, HCT, CSE, two COMT genes, and two CCR genes) and MYB, NAC, ERF, and TCP transcription factor genes were involved in lignin metabolism. An analysis of RT-qPCR confirmed that these DEGs were involved in the biosynthesis and regulation of lignin. These findings further help us understand the mechanisms of lignin biosynthesis and provide a theoretical basis for peel color control and quality improvement in pear breeding and cultivation.


Asunto(s)
Frutas , Regulación de la Expresión Génica de las Plantas , Lignina , Metaboloma , Pyrus , Transcriptoma , Lignina/biosíntesis , Lignina/metabolismo , Pyrus/genética , Pyrus/metabolismo , Pyrus/crecimiento & desarrollo , Frutas/metabolismo , Frutas/genética , Frutas/crecimiento & desarrollo , Redes y Vías Metabólicas , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
6.
Int J Mol Sci ; 25(14)2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39063240

RESUMEN

Angelica dahurica var. formosana (ADF), which belongs to the Umbelliferae family, is one of the original plants of herbal raw material Angelicae Dahuricae Radix. ADF roots represent an enormous biomass resource convertible for disease treatment and bioproducts. But, early bolting of ADF resulted in lignification and a decrease in the coumarin content in the root, and roots lignification restricts its coumarin for commercial utility. Although there have been attempts to regulate the synthesis ratio of lignin and coumarin through biotechnology to increase the coumarin content in ADF and further enhance its commercial value, optimizing the biosynthesis of lignin and coumarin remains challenging. Based on gene expression analysis and phylogenetic tree profiling, AdNAC20 as the target for genetic engineering of lignin and coumarin biosynthesis in ADF was selected in this study. Early-bolting ADF had significantly greater degrees of root lignification and lower coumarin contents than that of the normal plants. In this study, overexpression of AdNAC20 gene plants were created using transgenic technology, while independent homozygous transgenic lines with precise site mutation of AdNAC20 were created using CRISPR/Cas9 technology. The overexpressing transgenic ADF plants showed a 9.28% decrease in total coumarin content and a significant 12.28% increase in lignin content, while knockout mutant plants showed a 16.3% increase in total coumarin content and a 33.48% decrease in lignin content. Furthermore, 29,671 differentially expressed genes (DEGs) were obtained by comparative transcriptomics of OE-NAC20, KO-NAC20, and WT of ADF. A schematic diagram of the gene network interacting with AdNAC20 during the early-bolting process of ADF was constructed by DEG analysis. AdNAC20 was predicted to directly regulate the transcription of several genes with SNBE-like motifs in their promoter, such as MYB46, C3H, and CCoAOMT. In this study, AdNAC20 was shown to play a dual pathway function that positively enhanced lignin formation but negatively controlled coumarin formation. And the heterologous expression of the AdNAC20 gene at Arabidopsis thaliana proved that the AdNAC20 gene also plays an important role in the process of bolting and flowering.


Asunto(s)
Angelica , Cumarinas , Regulación de la Expresión Génica de las Plantas , Lignina , Raíces de Plantas , Lignina/biosíntesis , Cumarinas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Angelica/genética , Angelica/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/genética , Filogenia
7.
Plant Physiol Biochem ; 214: 108918, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38986238

RESUMEN

Lodging largely affects yield, quality and mechanical harvesting of maize. Stalk strength is one of the major factors that affect maize lodging. Although plant cell wall components including lignin and cellulose were known to be associated with stalk strength and lodging resistance, spatial accumulation of specific lignin monomers and cellulose in different tissues and their association with stalk strength in maize was not clearly understood. In this study, we found that both G and S lignin monomers accumulate highest in root, stem rind and leaf vein. Consistently, most lignin biosynthetic genes were expressed higher in root and stem than in other tissues. However, cellulose appears to be lowest in root. There are only mild changes of G lignin and cellulose in different internodes. Instead, we noticed a dramatic decrease of S-lignin accumulation and lignin biosynthetic gene expression in 2nd to 4th internodes wherein stem breakage usually occurs, thereby revealing a few candidate lignin biosynthetic genes associated with stalk strength. Moreover, stalk strength is positively correlated with G, S lignin, and cellulose, but negatively correlated with S/G ratio based on data of maize lines with high or low stalk strength. Loss-of-function of a caffeic acid o-methyltransferase (COMT), which is involved in S lignin biosynthesis, in the maize bm3 mutant, leads to lower stalk strength. Our data collectively suggest that stalk strength is determined by tissue-specific accumulation of lignin monomers and cellulose, and manipulation of the cell wall components by genetic engineering is vital to improve maize stalk strength and lodging resistance.


Asunto(s)
Celulosa , Lignina , Zea mays , Zea mays/metabolismo , Zea mays/genética , Lignina/metabolismo , Lignina/biosíntesis , Celulosa/metabolismo , Celulosa/biosíntesis , Regulación de la Expresión Génica de las Plantas , Tallos de la Planta/metabolismo , Tallos de la Planta/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Pared Celular/metabolismo , Metiltransferasas/metabolismo , Metiltransferasas/genética
8.
Int J Mol Sci ; 25(13)2024 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-39000574

RESUMEN

Schima superba, commonly known as the Chinese guger tree, is highly adaptable and tolerant of poor soil conditions. It is one of the primary species forming the evergreen broad-leaved forests in southern China. Dirigent proteins (DIRs) play crucial roles in the synthesis of plant lignin and lignans, secondary metabolism, and response to adversity stress. However, research on the DIR gene family in S. superba is currently limited. This study identified 24 SsDIR genes, categorizing them into three subfamilies. These genes are unevenly distributed across 13 chromosomes, with 83% being intronless. Collinearity analysis indicated that tandem duplication played a more significant role in the expansion of the gene family compared to segmental duplication. Additionally, we analyzed the expression patterns of SsDIRs in different tissues of S. superba. The SsDIR genes exhibited distinct expression patterns across various tissues, with most being specifically expressed in the roots. Further screening identified SsDIR genes that may regulate drought stress, with many showing differential expression under drought stress conditions. In the promoter regions of SsDIRs, various cis-regulatory elements involved in developmental regulation, hormone response, and stress response were identified, which may be closely related to their diverse regulatory functions. This study will contribute to the further functional identification of SsDIR genes, providing insights into the biosynthetic pathways of lignin and lignans and the mechanisms of plant stress resistance.


Asunto(s)
Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Proteínas de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Filogenia , Genoma de Planta , Lignina/biosíntesis , Lignina/genética , Lignina/metabolismo , Perfilación de la Expresión Génica , Cromosomas de las Plantas/genética , Sequías , Duplicación de Gen , Regiones Promotoras Genéticas
9.
Int J Biol Macromol ; 274(Pt 1): 133391, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917921

RESUMEN

Leaf petiole or stem strength is an important agronomic trait affecting the growth of underground organs as a channel for material exchange and plays a vital role in the quality and yield of crops and vegetables. There are two different types of petioles in lotus, floating leaf petioles and vertical leaf petioles; however, the internal difference mechanism between these petioles is unclear. In this study, we investigated the differences between the initial vertical leaf petioles and the initial floating leaf petioles based on RNA sequencing (RNA-seq), and >2858 differentially expressed genes were annotated. These genes were chiefly enriched in phenylpropanoid biosynthesis, which is the source of the lignin and cellulose in petioles and stems. Lignin biology-related gene NnHCT1 was identified, and subsequent biological function validation demonstrated that the transient overexpression of NnHCT1 significantly increased the lignin and cellulose contents in lotus petioles and tobacco leaves. In contrast, silencing NnHCT1 through virus-induced gene silencing significantly reduced petiole lignin synthesis. Additionally, differentially up-regulated MYB family transcription factors were identified using RNA-seq. Yeast-one-hybrid and dual-luciferase reporter assays demonstrated that MYB4 could bind to the NnHCT1 promoter and up-regulate NnHCT1 expression. These findings demonstrate the significant potential of NnHCT1 to enhance lignin synthesis, thereby improving stem or petiole resistance to stunting and explaining the need for the study of differential petiole relationships in plants.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lignina , Nelumbo , Hojas de la Planta , Proteínas de Plantas , Lignina/biosíntesis , Lignina/genética , Nelumbo/genética , Nelumbo/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Celulosa/biosíntesis , Genes de Plantas
10.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928203

RESUMEN

The morphological architecture of inflorescence influences seed production. The regulatory mechanisms underlying alfalfa (Medicago sativa) inflorescence elongation remain unclear. Therefore, in this study, we conducted a comparative analysis of the transcriptome, proteome, and metabolome of two extreme materials at three developmental stages to explore the mechanisms underlying inflorescence elongation in alfalfa. We observed the developmental processes of long and short inflorescences and found that the elongation capacity of alfalfa with long inflorescence was stronger than that of alfalfa with short inflorescences. Furthermore, integrative analysis of the transcriptome and proteome indicated that the phenylpropanoid biosynthesis pathway was closely correlated with the structural formation of the inflorescence. Additionally, we identified key genes and proteins associated with lignin biosynthesis based on the differential expressed genes and proteins (DEGs and DEPs) involved in phenylpropanoid biosynthesis. Moreover, targeted hormone metabolome analysis revealed that IAA, GA, and CK play an important role in the peduncle elongation of alfalfa inflorescences. Based on omics analysis, we detected key genes and proteins related to plant hormone biosynthesis and signal transduction. From the WGCNA and WPCNA results, we furthermore screened 28 candidate genes and six key proteins that were correlated with lignin biosynthesis, plant hormone biosynthesis, and signaling pathways. In addition, 19 crucial transcription factors were discovered using correlation analysis that might play a role in regulating candidate genes. This study provides insight into the molecular mechanism of inflorescence elongation in alfalfa and establishes a theoretical foundation for improving alfalfa seed production.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Inflorescencia , Lignina , Medicago sativa , Proteínas de Plantas , Transcriptoma , Medicago sativa/genética , Medicago sativa/crecimiento & desarrollo , Medicago sativa/metabolismo , Inflorescencia/crecimiento & desarrollo , Inflorescencia/genética , Inflorescencia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Lignina/biosíntesis , Lignina/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/genética , Proteoma/metabolismo , Perfilación de la Expresión Génica , Proteómica/métodos , Metaboloma , Multiómica
11.
Int J Mol Sci ; 25(12)2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38928419

RESUMEN

Lignin is a crucial substance in the formation of the secondary cell wall in plants. It is widely distributed in various plant tissues and plays a significant role in various biological processes. However, the number of copies, characteristics, and expression patterns of genes involved in lignin biosynthesis in maize are not fully understood. In this study, bioinformatic analysis and gene expression analysis were used to discover the lignin synthetic genes, and two representative maize inbred lines were used for stem strength phenotypic analysis and gene identification. Finally, 10 gene families harboring 117 related genes involved in the lignin synthesis pathway were retrieved in the maize genome. These genes have a high number of copies and are typically clustered on chromosomes. By examining the lignin content of stems and the expression patterns of stem-specific genes in two representative maize inbred lines, we identified three potential stem lodging resistance genes and their interactions with transcription factors. This study provides a foundation for further research on the regulation of lignin biosynthesis and maize lodging resistance genes.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Lignina , Zea mays , Zea mays/genética , Zea mays/metabolismo , Lignina/biosíntesis , Lignina/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Genes de Plantas , Perfilación de la Expresión Génica/métodos , Pared Celular/metabolismo , Pared Celular/genética , Estudio de Asociación del Genoma Completo , Fenotipo
12.
Plant Physiol Biochem ; 212: 108794, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38850730

RESUMEN

With the increasing occurrence of global warming, drought is becoming a major constraint for plant growth and crop yield. Plant cell walls experience continuous changes during the growth, development, and in responding to stressful conditions. The plant WRKYs play pivotal roles in regulating the secondary cell wall (SCW) biosynthesis and helping plant defend against abiotic stresses. qRT-PCR evidence showed that OsWRKY12 was affected by drought and ABA treatments. Over-expression of OsWRKY12 decreased the drought tolerance of the rice transgenics at the germination stage and the seedling stage. The transcription levels of drought-stress-associated genes as well as those genes participating in the ABA biosynthesis and signaling were significantly different compared to the wild type (WT). Our results also showed that less lignin and cellulose were deposited in the OsWRKY12-overexpressors, and heterogenous expression of OsWRKY12 in atwrky12 could lower the increased lignin and cellulose contents, as well as the improved PEG-stress tolerance, to a similar level as the WT. qRT-PCR results indicated that the transcription levels of all the genes related to lignin and cellulose biosynthesis were significantly decreased in the rice transgenics than the WT. Further evidence from yeast one-hybrid assay and the dual-luciferase reporter system suggested that OsWRKY12 could bind to promoters of OsABI5 (the critical component of the ABA signaling pathway) and OsSWN3/OsSWN7 (the key positive regulators in the rice SCW thickening), and hence repressing their expression. In conclusion, OsWRKY12 mediates the crosstalk between SCW biosynthesis and plant stress tolerance by binding to the promoters of different downstream genes.


Asunto(s)
Pared Celular , Sequías , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Estrés Fisiológico , Factores de Transcripción , Oryza/genética , Oryza/metabolismo , Pared Celular/metabolismo , Pared Celular/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Lignina/biosíntesis , Lignina/metabolismo , Plantas Modificadas Genéticamente , Celulosa/biosíntesis , Celulosa/metabolismo , Ácido Abscísico/metabolismo
13.
Plant Sci ; 346: 112159, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38901779

RESUMEN

Wood production is largely determined by the activity of cambial cell proliferation, and the secondary cell wall (SCW) thickening of xylem cells determines the wood property. In this study, we identified an INDETERMINATE DOMAIN (IDD) type C2H2 zinc finger transcription factor PagIDD15A as a regulator of wood formation in Populus alba × Populus glandulosa. Downregulation of PagIDD15A expression by RNA interference (RNAi) inhibited xylem development and xylem cell secondary wall thickening. RNA-seq analysis showed that PagPAL1, PagCCR2 and PagCCoAOMT1 were downregulated in the differentiating xylem of the PagIDD15A-RNAi transgenic plants, showing that PagIDD15A may regulate SCW biosynthesis through inhibiting lignin biosynthesis. The downregulation of PagVND6-B2, PagMYB10 and PagMYC4 and upregulation of PagWRKY12 in the differentiating xylem of RNAi transgenic plants suggest that PagIDD15A may also regulate these transcription factor (TF) genes to affect SCW thickening. RT-qPCR analysis in the phloem-cambium of RNAi transgenic demonstrates that PagIDD15A may regulate the expression of the genes associated with cell proliferation, including, PagSHR (SHORTROOT), PagSCR (SCARECROW), PagCYCD3;1 (CYCLIN D3;1) and PagSMR4 (SIAMESE-RELATED4), to affect the cambial activity. This study provides the knowledge of the IDD-type C2H2 zinc finger protein in regulating wood formation.


Asunto(s)
Pared Celular , Regulación de la Expresión Génica de las Plantas , Lignina , Proteínas de Plantas , Plantas Modificadas Genéticamente , Populus , Populus/genética , Populus/metabolismo , Populus/crecimiento & desarrollo , Pared Celular/metabolismo , Lignina/metabolismo , Lignina/biosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Xilema/metabolismo , Xilema/genética , Madera/metabolismo , Madera/genética , Madera/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Dedos de Zinc CYS2-HIS2 , Dedos de Zinc
14.
Plant Physiol Biochem ; 213: 108870, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38914038

RESUMEN

Populus, a significant fast-growing tree species with global afforestation and energy potential, holds considerable economic value. The abundant production of secondary xylem by trees, which serves as a vital resource for industrial purposes and human sustenance, necessitates the orchestration of various regulatory mechanisms, encompassing transcriptional regulators and microRNAs (miRNAs). Nevertheless, the investigation of microRNA-mediated regulation of poplar secondary growth remains limited. In this study, we successfully isolated a novel microRNA (Pag-miR257) from 84 K poplar and subsequently integrated it into the 35 S overexpression vector. The overexpression of Pag-miR257 resulted in notable increases in plant height, stem diameter, and fresh weight. Additionally, the overexpression of Pag-miR257 demonstrated a significant enhancement in net photosynthetic rate. The findings from the examination of cell wall autofluorescence indicated a substantial increase in both xylem area and the number of vessels in poplar plants overexpressing Pag-miR257. Furthermore, the cell wall of the Pag-miR257 overexpressing plants exhibited thickening as observed through transmission electron microscopy. Moreover, the Fourier Transforms Infrared (FTIR) analysis and phloroglucinol-HCl staining revealed an elevation in lignin content in Pag-miR257 overexpressing poplar plants. The findings of this study suggest that microRNA257 may play a role in the control of secondary growth in poplar stems, thereby potentially enhancing the development of wood engineering techniques for improved material and energy production.


Asunto(s)
MicroARNs , Populus , Populus/genética , Populus/crecimiento & desarrollo , Populus/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Xilema/metabolismo , Xilema/genética , Regulación de la Expresión Génica de las Plantas , Lignina/metabolismo , Lignina/biosíntesis , Plantas Modificadas Genéticamente , ARN de Planta/genética , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Tallos de la Planta/crecimiento & desarrollo , Fotosíntesis/genética , Pared Celular/metabolismo , Pared Celular/genética
15.
Sci China Life Sci ; 67(6): 1266-1279, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38763999

RESUMEN

Durian (Durio zibethinus) is a tropical fruit that has a unique flavor and aroma. It occupies a significant phylogenetic position within the Malvaceae family. Extant core-eudicot plants are reported to share seven ancestral karyotypes that have undergone reshuffling, resulting in an abundant genomic diversity. However, the ancestral karyotypes of the Malvaceae family, as well as the evolution trajectory leading to the 28 chromosomes in durian, remain poorly understood. Here, we report the high-quality assembly of the durian genome with comprehensive comparative genomic analyses. By analyzing the collinear blocks between cacao and durian, we inferred 11 Malvaceae ancestral karyotypes. These blocks were present in a single-copy form in cacao and mainly in triplicates in durian, possibly resulting from a recent whole genome triplication (WGT) event that led to hexaploidization of the durian genome around 20 (17-24) million years ago. A large proportion of the duplicated genes in durian, such as those involved in the lignin biosynthesis module for phenylpropane biosynthesis, are derived directly from whole genome duplication, which makes it an important force in reshaping its genomic architecture. Transcriptome studies have revealed that genes involved in feruloyl-CoA formations were highly preferentially expressed in fruit peels, indicating that the thorns produced on durian fruit may comprise guaiacyl and syringyl lignins. Among all the analyzed transcription factors (TFs), members of the heat shock factor family (HSF) were the most significantly upregulated under heat stress. All subfamilies of genes encoding heat shock proteins (HSPs) in the durian genome appear to have undergone expansion. The potential interactions between HSF Dzi05.397 and HSPs were examined and experimentally verified. Our study provides a high-quality durian genome and reveals the reshuffling mechanism of ancestral Malvaceae chromosomes to produce the durian genome. We also provide insights into the mechanism underlying lignin biosynthesis and heat stress tolerance.


Asunto(s)
Cromosomas de las Plantas , Evolución Molecular , Genoma de Planta , Cariotipo , Lignina , Filogenia , Lignina/biosíntesis , Lignina/genética , Cromosomas de las Plantas/genética , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética , Cacao/genética , Cacao/metabolismo
16.
Physiol Plant ; 176(3): e14350, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38818576

RESUMEN

Drought stress exerts a significant impact on the growth, development, and yield of fruit trees. Cerasus humilis is an endemic drought-resistant fruit tree in northern China. To elucidate the underlying mechanism of drought resistance in C. humilis, comprehensive physiological measurements and transcriptome analysis were conducted on the leaves of C. humilis subjected to 15- or 22-days of drought stress. We identified multiple GO terms and KEGG pathways associated with the drought stress response by performing GO and KEGG analysis on DEGs. Furthermore, through the prediction of transcription factors (TFs) and analysis of their expression levels, we observed differential expression patterns among most members of stress-responsive TF families as the duration of drought stress increased. WGCNA analysis was performed on the transcriptome to identify gene cluster modules that exhibited a strong correlation with the durations of drought. Subsequently, these modules underwent GO and KEGG enrichment analyses. The study revealed that the TF-mediated lignin biosynthesis pathway, along with the plant hormone signal transduction pathway, played a prominent role in responding to drought stress of C. humilis. Gene profiling analysis, qRT-PCR, and determination of phytohormone and lignin contents further supported this hypothesis. The hierarchical gene regulatory network was finally constructed based on DEGs from the aforementioned key enriched pathways to predict the gene regulatory mechanisms in response to stress for C. humilis. The findings from this study provide valuable insights into how C. humilis copes with drought stress while analyzing crucial gene pathways associated with its resistance from a TF perspective. This research is significant for the genetic breeding of economic forests.


Asunto(s)
Sequías , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Estrés Fisiológico/genética , Transcriptoma/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Redes Reguladoras de Genes , Lignina/metabolismo , Lignina/genética , Lignina/biosíntesis , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transducción de Señal/genética , Resistencia a la Sequía
17.
Plant Physiol Biochem ; 212: 108727, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38761548

RESUMEN

Phosphatidylserine (PS) is an important lipid signaling required for plant growth regulation and salt stress adaptation. However, how PS positively regulate plant salt tolerance is still largely unknown. In this study, IbPSS1-overexpressed sweetpotato plants that exhibited overproduction of PS was employed to explore the mechanisms underlying the PS stimulation of plant salt tolerance. The results revealed that the IbPSS1-overexpressed sweetpotato accumulated less Na+ in the stem and leaf tissues compared with the wild type plants. Proteomic profile of roots showed that lignin synthesis-related proteins over-accumulated in IbPSS1-overexpressed sweetpotato. Correspondingly, the lignin content was enhanced but the influx of Na + into the stele was significantly blocked in IbPSS1-overexpressed sweetpotato. The results further revealed that ethylene synthesis and signaling related genes were upregulated in IbPSS1-overexpressed sweetpotato. Ethylene imaging experiment revealed the enhancement of ethylene mainly localized in the root stele. Inhibition of ethylene synthesis completely reversed the PS-overproduction induced lignin synthesis and Na+ influx pattern in stele tissues. Taken together, our findings demonstrate a mechanism by which PS regulates ethylene signaling and lignin synthesis in the root stele, thus helping sweetpotato plants to block the loading of Na+ into the xylem and to minimize the accumulation of Na+ in the shoots.


Asunto(s)
Etilenos , Ipomoea batatas , Lignina , Proteínas de Plantas , Raíces de Plantas , Tolerancia a la Sal , Transducción de Señal , Etilenos/metabolismo , Etilenos/biosíntesis , Lignina/metabolismo , Lignina/biosíntesis , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Tolerancia a la Sal/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Plantas Modificadas Genéticamente , Fosfatidilserinas/metabolismo , Sodio/metabolismo
18.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732136

RESUMEN

In the context of sustainable agriculture and biomaterial development, understanding and enhancing plant secondary cell wall formation are crucial for improving crop fiber quality and biomass conversion efficiency. This is especially critical for economically important crops like upland cotton (Gossypium hirsutum L.), for which fiber quality and its processing properties are essential. Through comprehensive genome-wide screening and analysis of expression patterns, we identified a particularly high expression of an R2R3 MYB transcription factor, GhMYB52 Like, in the development of the secondary cell wall in cotton fiber cells. Utilizing gene-editing technology to generate a loss-of-function mutant to clarify the role of GhMYB52 Like, we revealed that GhMYB52 Like does not directly contribute to cellulose synthesis in cotton fibers but instead represses a subset of lignin biosynthesis genes, establishing it as a lignin biosynthesis inhibitor. Concurrently, a substantial decrease in the lint index, a critical measure of cotton yield, was noted in parallel with an elevation in lignin levels. This study not only deepens our understanding of the molecular mechanisms underlying cotton fiber development but also offers new perspectives for the molecular improvement of other economically important crops and the enhancement of biomass energy utilization.


Asunto(s)
Fibra de Algodón , Regulación de la Expresión Génica de las Plantas , Gossypium , Lignina , Proteínas de Plantas , Lignina/biosíntesis , Gossypium/genética , Gossypium/metabolismo , Gossypium/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Pared Celular/metabolismo , Pared Celular/genética , Celulosa/biosíntesis , Celulosa/metabolismo , Vías Biosintéticas
19.
Int J Mol Sci ; 25(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38674126

RESUMEN

Toona ciliata, also known as Chinese mahogany, is a high-quality and fast-growing wood species with a high economic value. The wood properties of T. ciliata of different provenances vary significantly. In this study, we conducted comprehensive transcriptome and metabolome analyses of red and non-red T. ciliata wood cores of different provenances to compare their wood properties and explore the differential metabolites and genes that govern the variation in their wood properties. Through combined analyses, three differential genes and two metabolites were identified that are possibly related to lignin synthesis. The lignin content in wood cores from T. ciliata of different provenances shows significant variation following systematic measurement and comparisons. The gene Tci09G002190, one of the three differential genes, was identified as a member of the CAD (Cinnamyl alcohol dehydrogenase) gene family of T. ciliata, which is associated with lignin synthesis. Our data provide insights into the determinants of the wood properties in T. ciliata, providing a solid foundation for research into the subsequent mechanisms of the formation of T. ciliata wood.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Lignina , Metaboloma , Transcriptoma , Madera , Madera/metabolismo , Madera/genética , Lignina/biosíntesis , Lignina/metabolismo , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo
20.
Int J Mol Sci ; 25(8)2024 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-38674133

RESUMEN

The unique zigzag-patterned tea plant is a rare germplasm resource. However, the molecular mechanism behind the formation of zigzag stems remains unclear. To address this, a BC1 genetic population of tea plants with zigzag stems was studied using histological observation and bulked segregant RNA-seq. The analysis revealed 1494 differentially expressed genes (DEGs) between the upright and zigzag stem groups. These DEGs may regulate the transduction and biosynthesis of plant hormones, and the effects on the phenylpropane biosynthesis pathways may cause the accumulation of lignin. Tissue sections further supported this finding, showing differences in cell wall thickness between upright and curved stems, potentially due to lignin accumulation. Additionally, 262 single-nucleotide polymorphisms (SNPs) across 38 genes were identified as key SNPs, and 5 genes related to zigzag stems were identified through homologous gene function annotation. Mutations in these genes may impact auxin distribution and content, resulting in the asymmetric development of vascular bundles in curved stems. In summary, we identified the key genes associated with the tortuous phenotype by using BSR-seq on a BC1 population to minimize genetic background noise.


Asunto(s)
Camellia sinensis , Regulación de la Expresión Génica de las Plantas , Polimorfismo de Nucleótido Simple , RNA-Seq , Camellia sinensis/genética , Camellia sinensis/metabolismo , Tallos de la Planta/genética , Tallos de la Planta/metabolismo , Mutación , Fenotipo , Lignina/metabolismo , Lignina/biosíntesis , Transcriptoma/genética , Perfilación de la Expresión Génica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA