Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros










Intervalo de año de publicación
1.
Syst Biol ; 65(2): 194-211, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26377442

RESUMEN

How the genotype translates into the phenotype through development is critical to fully understand the evolution of phenotypes. We propose a novel approach to directly assess how changes in gene expression patterns are associated with changes in morphology using the limb as a case example. Our method combines molecular biology techniques, such as whole-mount in situ hybridization, with image and shape analysis, extending the use of Geometric Morphometrics to the analysis of nonanatomical shapes, such as gene expression domains. Elliptical Fourier and Procrustes-based semilandmark analyses were used to analyze the variation and covariation patterns of the limb bud shape with the expression patterns of two relevant genes for limb morphogenesis, Hoxa11 and Hoxa13. We devised a multiple thresholding method to semiautomatically segment gene domains at several expression levels in large samples of limb buds from C57Bl6 mouse embryos between 10 and 12 postfertilization days. Besides providing an accurate phenotyping tool to quantify the spatiotemporal dynamics of gene expression patterns within developing structures, our morphometric analyses revealed high, non-random, and gene-specific variation undergoing canalization during limb development. Our results demonstrate that Hoxa11 and Hoxa13, despite being paralogs with analogous functions in limb patterning, show clearly distinct dynamic patterns, both in shape and size, and are associated differently with the limb bud shape. The correspondence between our results and already well-established molecular processes underlying limb development confirms that this morphometric approach is a powerful tool to extract features of development regulating morphogenesis. Such multilevel analyses are promising in systems where not so much molecular information is available and will advance our understanding of the genotype-phenotype map. In systematics, this knowledge will increase our ability to infer how evolution modified a common developmental pattern to generate a wide diversity of morphologies, as in the vertebrate limb.


Asunto(s)
Clasificación/métodos , Regulación del Desarrollo de la Expresión Génica , Esbozos de los Miembros/embriología , Fenotipo , Animales , Perfilación de la Expresión Génica , Proteínas de Homeodominio/genética , Esbozos de los Miembros/anatomía & histología , Ratones
2.
Nature ; 511(7507): 46-51, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24990743

RESUMEN

The large spectrum of limb morphologies reflects the wide evolutionary diversification of the basic pentadactyl pattern in tetrapods. In even-toed ungulates (artiodactyls, including cattle), limbs are adapted for running as a consequence of progressive reduction of their distal skeleton to symmetrical and elongated middle digits with hoofed phalanges. Here we analyse bovine embryos to establish that polarized gene expression is progressively lost during limb development in comparison to the mouse. Notably, the transcriptional upregulation of the Ptch1 gene, which encodes a Sonic hedgehog (SHH) receptor, is disrupted specifically in the bovine limb bud mesenchyme. This is due to evolutionary alteration of a Ptch1 cis-regulatory module, which no longer responds to graded SHH signalling during bovine handplate development. Our study provides a molecular explanation for the loss of digit asymmetry in bovine limb buds and suggests that modifications affecting the Ptch1 cis-regulatory landscape have contributed to evolutionary diversification of artiodactyl limbs.


Asunto(s)
Evolución Biológica , Extremidades/anatomía & histología , Extremidades/embriología , Proteínas Hedgehog/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Tipificación del Cuerpo , Bovinos , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Esbozos de los Miembros/anatomía & histología , Esbozos de los Miembros/embriología , Masculino , Mesodermo/metabolismo , Ratones , Ratones Transgénicos , Receptores Patched , Receptor Patched-1 , Receptores de Superficie Celular/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética
3.
J Biosci ; 39(2): 211-23, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24736155

RESUMEN

The standard model of evolutionary change of form, deriving from Darwin's theory via the Modern Synthesis, assumes a gradualistic reshaping of anatomical structures, with major changes only occurring by many cycles of natural selection for marginal adaptive advantage. This model, with its assertion that a single mechanism underlies both micro- and macroevolutionary change, contains an implicit notion of development which is only applicable in some cases. Here we compare the embryological processes that shape the vertebrate limb bud, the mammalian tooth and the avian beak. The implied notion of development in the standard evolutionary picture is met only in the case of the vertebrate limb, a single-primordium organ with morphostatic shaping, in which cells rearrange in response to signalling centres which are essentially unchanged by cell movement. In the case of the tooth, a single-primordium organ with morphodynamic shaping in which the strengths and relationships between signalling centres is influenced by the cell and tissue movements they induce, and the beak, in which the final form is influenced by the collision and rearrangement of multiple tissue primordia, abrupt appearance of qualitatively different forms (i.e. morphological novelties) can occur with small changes in system parameters induced by a genetic change, or by an environmental factor whose effects can be subsequently canalized genetically. Bringing developmental mechanisms and, specifically, the material properties of tissues as excitable media into the evolutionary picture, demonstrates that gradualistic change for incremental adaptive advantage is only one of the possible modes of morphological evolution.


Asunto(s)
Pico/embriología , Evolución Biológica , Esbozos de los Miembros/embriología , Diente/embriología , Animales , Pico/anatomía & histología , Biología Evolutiva , Extremidades/anatomía & histología , Extremidades/embriología , Humanos , Esbozos de los Miembros/anatomía & histología , Morfogénesis , Diente/anatomía & histología
4.
Sci Rep ; 2: 991, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23251777

RESUMEN

Turing models have been proposed to explain the emergence of digits during limb development. However, so far the molecular components that would give rise to Turing patterns are elusive. We have recently shown that a particular type of receptor-ligand interaction can give rise to Schnakenberg-type Turing patterns, which reproduce patterning during lung and kidney branching morphogenesis. Recent knockout experiments have identified Smad4 as a key protein in digit patterning. We show here that the BMP-receptor interaction meets the conditions for a Schnakenberg-type Turing pattern, and that the resulting model reproduces available wildtype and mutant data on the expression patterns of BMP, its receptor, and Fgfs in the apical ectodermal ridge (AER) when solved on a realistic 2D domain that we extracted from limb bud images of E11.5 mouse embryos. We propose that receptor-ligand-based mechanisms serve as a molecular basis for the emergence of Turing patterns in many developing tissues.


Asunto(s)
Tipificación del Cuerpo , Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Esbozos de los Miembros/crecimiento & desarrollo , Algoritmos , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Ectodermo/fisiología , Embrión de Mamíferos/anatomía & histología , Desarrollo Embrionario , Factores de Crecimiento de Fibroblastos/metabolismo , Esbozos de los Miembros/anatomía & histología , Ratones , Modelos Biológicos , Morfogénesis , Factor de Transcripción SOX9/metabolismo , Proteína Smad4/deficiencia , Proteína Smad4/genética , Proteína Smad4/metabolismo
5.
Dev Growth Differ ; 54(6): 619-32, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22708793

RESUMEN

The fibula, a zeugopod bone in the hindlimb, exhibits various morphologies in tetrapod species. The fibula in some species has a similar length with the other zeugopod element, the tibia, while other species have obvious differences in the sizes of the two elements. In the avian hindlimb, for example, the fibula is extremely short, thin, and truncated. Basic morphology of the fibula is established during development, and cartilage primordium of the bone emerges in a certain region defined by a distinct combination of expression of Hox genes (Hox code). In order to elucidate how the different morphologies are produced from a region that is defined as the fixed Hox code, we examined spatial and temporal patterns of Hoxd11/Hoxd12 expression in the developing limb bud, which defines the region from which the fibula emerges, in comparison with the sites of precartilaginous mesenchymal condensations representing regions for cartilage formation among chick, mouse, and gecko embryos. We found that in the chick hindlimb, expression of Hoxd11/Hoxd12 decreased and disappeared from the presumptive zeugopod region before cartilage formation. This heterochronically early decline of expression of Hox genes is strongly correlated with the peculiar trait of the fibula in the avian hindlimb, since in the other species examined, expression of those genes continued after the onset of cartilage formation. This is morphological phenotype-related because the early disappearance was not seen in the chick forelimb. Our results suggest that temporal change of the Hox code governs diversification in morphology of homologous structures among related species.


Asunto(s)
Pollos/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Miembro Posterior/embriología , Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Animales , Cartílago/embriología , Cartílago/metabolismo , Embrión de Pollo , Pollos/genética , Pollos/metabolismo , Desarrollo Embrionario , Peroné/anatomía & histología , Peroné/embriología , Peroné/metabolismo , Miembro Posterior/anatomía & histología , Miembro Posterior/metabolismo , Proteínas de Homeodominio/genética , Esbozos de los Miembros/anatomía & histología , Esbozos de los Miembros/embriología , Esbozos de los Miembros/metabolismo , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Reptiles/anatomía & histología , Reptiles/embriología , Reptiles/genética , Especificidad de la Especie , Factores de Transcripción/genética
6.
PLoS One ; 6(12): e28358, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22174793

RESUMEN

Detailed information about stage-specific changes in gene expression is crucial for understanding the gene regulatory networks underlying development and the various signal transduction pathways contributing to morphogenesis. Here we describe the global gene expression dynamics during early murine limb development, when cartilage, tendons, muscle, joints, vasculature and nerves are specified and the musculoskeletal system of limbs is established. We used whole-genome microarrays to identify genes with differential expression at 5 stages of limb development (E9.5 to 13.5), during fore- and hind-limb patterning. We found that the onset of limb formation is characterized by an up-regulation of transcription factors, which is followed by a massive activation of genes during E10.5 and E11.5 which levels off at later time points. Among the 3520 genes identified as significantly up-regulated in the limb, we find ~30% to be novel, dramatically expanding the repertoire of candidate genes likely to function in the limb. Hierarchical and stage-specific clustering identified expression profiles that are likely to correlate with functional programs during limb development and further characterization of these transcripts will provide new insights into specific tissue patterning processes. Here, we provide for the first time a comprehensive analysis of developmentally regulated genes during murine limb development, and provide some novel insights into the expression dynamics governing limb morphogenesis.


Asunto(s)
Extremidades/embriología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Organogénesis/genética , Animales , Esbozos de los Miembros/anatomía & histología , Esbozos de los Miembros/embriología , Ratones , Especificidad de Órganos/genética , Regiones Promotoras Genéticas/genética , Factores de Tiempo , Transcriptoma/genética , Regulación hacia Arriba/genética
7.
FEBS Lett ; 585(19): 2992-7, 2011 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-21872590

RESUMEN

MiR-140 is a microRNA specially involved in chondrogenesis and osteoarthritis pathogenesis. However, its transcriptional regulation and target genes in cartilage development are not fully understood. Here we detected that miR-140 was uniquely expressed in chondrocyte and suppressed by Wnt/ß-catenin signalling. The miR-140 primary transcript was an intron-retained RNA co-expressed with Wwp2-C isoform, which was directly induced by Sox9 through binding to the intron 10 of Wwp2 gene. Knockdown of miR-140 in limb bud micromass cultures resulted in arrest of chondrogenic proliferation. Sp1, the activator of the cell cycle regulator p15(INK4b), was identified as a target of miR-140 in maintaining the chondrocyte proliferation. Collectively, our findings expand our understanding of the transcriptional regulation and the chondrogenic role of miR-140 in chondrogenesis.


Asunto(s)
Proliferación Celular , Condrocitos/fisiología , MicroARNs/metabolismo , Factor de Transcripción SOX9/metabolismo , Factor de Transcripción Sp1/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular , Condrocitos/citología , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Regulación del Desarrollo de la Expresión Génica , Humanos , Esbozos de los Miembros/anatomía & histología , Esbozos de los Miembros/embriología , Ratones , Ratones Noqueados , MicroARNs/genética , Factor de Transcripción SOX9/genética , Factor de Transcripción Sp1/genética , Ubiquitina-Proteína Ligasas/genética
8.
Development ; 138(15): 3261-72, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21750036

RESUMEN

Specification of digit number and identity is central to digit pattern in vertebrate limbs. The classical talpid(3) chicken mutant has many unpatterned digits together with defects in other regions, depending on hedgehog (Hh) signalling, and exhibits embryonic lethality. The talpid(3) chicken has a mutation in KIAA0586, which encodes a centrosomal protein required for the formation of primary cilia, which are sites of vertebrate Hh signalling. The highly conserved exons 11 and 12 of KIAA0586 are essential to rescue cilia in talpid(3) chicken mutants. We constitutively deleted these two exons to make a talpid3(-/-) mouse. Mutant mouse embryos lack primary cilia and, like talpid(3) chicken embryos, have face and neural tube defects but also defects in left/right asymmetry. Conditional deletion in mouse limb mesenchyme results in polydactyly and in brachydactyly and a failure of subperisoteal bone formation, defects that are attributable to abnormal sonic hedgehog and Indian hedgehog signalling, respectively. Like talpid(3) chicken limbs, the mutant mouse limbs are syndactylous with uneven digit spacing as reflected in altered Raldh2 expression, which is normally associated with interdigital mesenchyme. Both mouse and chicken mutant limb buds are broad and short. talpid3(-/-) mouse cells migrate more slowly than wild-type mouse cells, a change in cell behaviour that possibly contributes to altered limb bud morphogenesis. This genetic mouse model will facilitate further conditional approaches, epistatic experiments and open up investigation into the function of the novel talpid3 gene using the many resources available for mice.


Asunto(s)
Pollos/genética , Esbozos de los Miembros/anatomía & histología , Esbozos de los Miembros/embriología , Morfogénesis/genética , Proteínas/genética , Proteínas/metabolismo , Animales , Embrión de Pollo , Cilios/metabolismo , Embrión de Mamíferos/anomalías , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Esbozos de los Miembros/anomalías , Esbozos de los Miembros/fisiología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Osteogénesis/fisiología , Transducción de Señal/fisiología
9.
Development ; 138(6): 1227-34, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21307091

RESUMEN

We have created a 2D morphometric analysis of the developing mouse hindlimb bud. This analysis has provided two useful resources for the study of limb development. First, a temporally accurate numerical description of shape changes during normal mouse limb development. Second, a web-based morphometric staging system, which has the advantage of being easy to use, and with a reproducibility of about ±2 hours. It allows users to upload a dorsal-view photo of a limb bud, draw a spline curve and thereby stage the bud within a couple of minutes. We describe how the system is constructed, its robustness to user variation and illustrate one application: the accurate tracking of spatiotemporal dynamics of gene expression patterns.


Asunto(s)
Desarrollo Embrionario/fisiología , Esbozos de los Miembros/anatomía & histología , Esbozos de los Miembros/embriología , Animales , Pesos y Medidas Corporales/métodos , Pesos y Medidas Corporales/normas , Desarrollo Embrionario/genética , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Gráficos de Crecimiento , Esbozos de los Miembros/metabolismo , Ratones , Modelos Biológicos , Tamaño de los Órganos/genética , Tamaño de los Órganos/fisiología , Reproducibilidad de los Resultados , Proyectos de Investigación/normas , Factor de Transcripción SOX9/genética , Factor de Transcripción SOX9/metabolismo , Factores de Tiempo
10.
Mol Cell Biol ; 30(22): 5348-63, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20855530

RESUMEN

The precise expression of the N-myc proto-oncogene is essential for normal mammalian development, whereas altered N-myc gene regulation is known to be a determinant factor in tumor formation. Using transgenic mouse embryos, we show that N-myc sequences from kb -8.7 to kb +7.2 are sufficient to reproduce the N-myc embryonic expression profile in developing branchial arches and limb buds. These sequences encompass several regulatory elements dispersed throughout the N-myc locus, including an upstream limb bud enhancer, a downstream somite enhancer, a branchial arch enhancer in the second intron, and a negative regulatory element in the first intron. N-myc expression in the limb buds is under the dominant control of the limb bud enhancer. The expression in the branchial arches necessitates the interplay of three regulatory domains. The branchial arch enhancer cooperates with the somite enhancer region to prevent an inhibitory activity contained in the first intron. The characterization of the branchial arch enhancer has revealed a specific role of the transcription factor GATA3 in the regulation of N-myc expression. Together, these data demonstrate that correct N-myc developmental expression is achieved via cooperation of multiple positive and negative regulatory elements.


Asunto(s)
Región Branquial/embriología , Región Branquial/metabolismo , Factor de Transcripción GATA3/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes myc , Proteínas Proto-Oncogénicas c-myc/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos , Animales , Secuencia de Bases , Región Branquial/anatomía & histología , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Factor de Transcripción GATA3/genética , Humanos , Hibridación in Situ , Intrones , Esbozos de los Miembros/anatomía & histología , Esbozos de los Miembros/embriología , Esbozos de los Miembros/metabolismo , Ratones , Ratones Transgénicos , Datos de Secuencia Molecular , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-myc/genética , Alineación de Secuencia
11.
Nature ; 466(7303): 234-7, 2010 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-20574421

RESUMEN

The early development of teleost paired fins is strikingly similar to that of tetrapod limb buds and is controlled by similar mechanisms. One early morphological divergence between pectoral fins and limbs is in the fate of the apical ectodermal ridge (AER), the distal epidermis that rims the bud. Whereas the AER of tetrapods regresses after specification of the skeletal progenitors, the AER of teleost fishes forms a fold that elongates. Formation of the fin fold is accompanied by the synthesis of two rows of rigid, unmineralized fibrils called actinotrichia, which keep the fold straight and guide the migration of mesenchymal cells within the fold. The actinotrichia are made of elastoidin, the components of which, apart from collagen, are unknown. Here we show that two zebrafish proteins, which we name actinodin 1 and 2 (And1 and And2), are essential structural components of elastoidin. The presence of actinodin sequences in several teleost fishes and in the elephant shark (Callorhinchus milii, which occupies a basal phylogenetic position), but not in tetrapods, suggests that these genes have been lost during tetrapod species evolution. Double gene knockdown of and1 and and2 in zebrafish embryos results in the absence of actinotrichia and impaired fin folds. Gene expression profiles in embryos lacking and1 and and2 function are consistent with pectoral fin truncation and may offer a potential explanation for the polydactyly observed in early tetrapod fossils. We propose that the loss of both actinodins and actinotrichia during evolution may have led to the loss of lepidotrichia and may have contributed to the fin-to-limb transition.


Asunto(s)
Estructuras Animales/anatomía & histología , Estructuras Animales/fisiología , Evolución Biológica , Extremidades/fisiología , Proteínas de Peces/deficiencia , Pez Cebra/anatomía & histología , Pez Cebra/metabolismo , Estructuras Animales/embriología , Animales , Colágeno/química , Colágeno/metabolismo , Ectodermo/embriología , Ectodermo/metabolismo , Embrión no Mamífero/anatomía & histología , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Evolución Molecular , Extremidades/anatomía & histología , Extremidades/embriología , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Esbozos de los Miembros/anatomía & histología , Esbozos de los Miembros/embriología , Esbozos de los Miembros/metabolismo , Modelos Biológicos , Filogenia , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/deficiencia , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
12.
J Exp Zool B Mol Dev Evol ; 314(7): 539-51, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20549759

RESUMEN

The vertebrate hand plate is flattened and paddle shaped; that is, it is wide along the anteroposterior (AP) axis (thumb to little finger) and thin along the dorsoventral axis (back of hand to palm). To learn how the hand plate develops its three-dimensional architecture, we observed morphological changes in the distal limb bud of the chick embryo at stages 23-27 and the gecko embryo 11-13 days after oviposition. Cell population of the posterior distal limb bud expanded more than that of the anterior one in the chick embryo. Taken together with the observation that these two cell populations did not show significant differences in their expansion along the proximodistal axis, we propose that the cell population in the posterior limb bud contributes more to the morphogenetic increase along the AP axis, which widens the limb bud for the formation of the hand plate. Our observation that more mitoses were oriented anteroposteriorly than dorsoventrally in the chick embryo at around stage 25 suggests that the oriented cell division contributes to the morphogenetic increase along the AP axis.


Asunto(s)
Extremidades/crecimiento & desarrollo , Esbozos de los Miembros/crecimiento & desarrollo , Morfogénesis , Animales , Embrión de Pollo , Extremidades/anatomía & histología , Femenino , Esbozos de los Miembros/anatomía & histología
13.
Curr Opin Genet Dev ; 19(5): 497-503, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19729297

RESUMEN

Growth and patterning of the vertebrate limb relies on signals produced by three discrete signalling centres: the Apical Ectodermal Ridge (AER), the Zone of Polarising Activity (ZPA) and the dorsal ectoderm. The molecular identities of these signals and their associated downstream pathways have begun to be uncovered. In this review, we focus on recent work that has highlighted the importance of cross-talk between these signalling centres and how mesenchymal progenitors integrate multiple signalling inputs. We also discuss recent evidence suggesting how modulations of key signalling pathways have been used to generate the morphological diversity seen between different vertebrate limb appendages.


Asunto(s)
Esbozos de los Miembros/embriología , Transducción de Señal/genética , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Factores de Crecimiento de Fibroblastos/genética , Factores de Crecimiento de Fibroblastos/fisiología , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes/fisiología , Proteínas Hedgehog/genética , Proteínas Hedgehog/fisiología , Humanos , Esbozos de los Miembros/anatomía & histología , Mesodermo/citología , Mesodermo/embriología , Modelos Biológicos , Transducción de Señal/fisiología
14.
Dev Cell ; 16(1): 9-11, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19154714

RESUMEN

Understanding the mechanisms that regulate gene expression during development is a major challenge in science. In this issue of Developmental Cell, Amano and colleagues report that expression of Sonic hedgehog (Shh) protein in the posterior mesenchyme of the mouse limb bud correlates with a long-range chromatin interaction with enhancer MFCS1 and looping of the Shh locus from its chromosome territory (CT).


Asunto(s)
Cromatina/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog , Esbozos de los Miembros/fisiología , Animales , Elementos de Facilitación Genéticos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Esbozos de los Miembros/anatomía & histología , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Morfogénesis
15.
Dev Dyn ; 238(1): 100-9, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19097047

RESUMEN

A table of developmental stages of the target species is useful for studying the development of any animal. Although tables of developmental stages have been established for several squamates, none has been published for gekkonid lizards. We have established a table of developmental stages for the Madagascar ground gecko Paroedura pictus. The table includes 27 embryonic stages from oviposition to hatching based on chronology and external morphology. The interval from oviposition to hatching is 60 days. Eleven to sixteen somites were observed at oviposition, and 5 to 6 somites were formed each day. Limb bud swellings were recognized by the third day after oviposition. After 2 weeks of incubation, the presumptive autopod was detected by carpal/tarsal cartilage formation. Cartilages in all digits were seen by 3 weeks after oviposition. Skin pigment was visible after 4 weeks incubation, and the skin color pattern was apparent 40 days after oviposition.


Asunto(s)
Esbozos de los Miembros , Lagartos , Morfogénesis , Animales , Hibridación in Situ , Esbozos de los Miembros/anatomía & histología , Esbozos de los Miembros/embriología , Esbozos de los Miembros/crecimiento & desarrollo , Lagartos/anatomía & histología , Lagartos/embriología , Lagartos/crecimiento & desarrollo
16.
Dev Cell ; 16(1): 47-57, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19097946

RESUMEN

The expression of Sonic hedgehog (Shh) in mouse limb buds is regulated by a long-range enhancer 1 Mb upstream of the Shh promoter. We used 3D-FISH and chromosome conformation capture assays to track changes at the Shh locus and found that long-range promoter-enhancer interactions are specific to limb bud tissues competent to express Shh. However, the Shh locus loops out from its chromosome territory only in the posterior limb bud (zone of polarizing activity or ZPA), where Shh expression is active. Notably, while Shh mRNA is detected throughout the ZPA, enhancer-promoter interactions and looping out were only observed in small fractions of ZPA cells. In situ detection of nascent Shh transcripts and unstable EGFP reporters revealed that active Shh transcription is likewise only seen in a small fraction of ZPA cells. These results suggest that chromosome conformation dynamics at the Shh locus allow transient pulses of Shh transcription.


Asunto(s)
Cromosomas , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog , Esbozos de los Miembros/fisiología , Transcripción Genética , Animales , Cromosomas/metabolismo , Cromosomas/ultraestructura , Elementos de Facilitación Genéticos , Genes Reporteros , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Hibridación Fluorescente in Situ , Esbozos de los Miembros/anatomía & histología , Ratones , Ratones Endogámicos C57BL , Morfogénesis , Precursores del ARN/metabolismo
17.
J Genet Genomics ; 35(9): 517-24, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18804070

RESUMEN

Vertebrate digits are essential structures for movement, feeding and communication. Specialized regions of the developing limb bud including the zone of polarizing activity (ZPA), the apical ectodermal ridge (AER), and the non-ridge ectoderm regulate the patterning of digits. Although a series of signaling molecules have been characterized as patterning signals from the organizing centers, the delicate cellular and molecular mechanisms that interpret how these patterning signals control the detailed digit anatomy remain unclear. Recent studies from model organisms and human hand malformations provide new insights into the mechanisms regulating this process. Here, we review the current understanding of the genetic networks governing digit morphogenesis.


Asunto(s)
Tipificación del Cuerpo/fisiología , Extremidades/embriología , Dedos/embriología , Animales , Extremidades/anatomía & histología , Dedos/anatomía & histología , Redes Reguladoras de Genes , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Humanos , Esbozos de los Miembros/anatomía & histología , Esbozos de los Miembros/embriología , Transducción de Señal
18.
Dev Cell ; 14(4): 624-32, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18410737

RESUMEN

Sonic hedgehog (Shh), which regulates proliferation in many contexts, functions as a limb morphogen to specify a distinct pattern of digits. How Shh's effects on cell number relate to its role in specifying digit identity is unclear. Deleting the mouse Shh gene at different times using a conditional Cre line, we find that Shh functions to control limb development in two phases: a very transient, early patterning phase regulating digit identity, and an extended growth-promoting phase during which the digit precursor mesenchyme expands and becomes recruited into condensing digit primordia. Our analysis reveals an unexpected alternating anterior-posterior sequence of normal mammalian digit formation. The progressive loss of digits upon successively earlier Shh removal mirrors this alternating sequence and highlights Shh's role in cell expansion to produce the normal digit complement.


Asunto(s)
Embrión de Mamíferos , Extremidades , Proteínas Hedgehog/metabolismo , Esbozos de los Miembros/fisiología , Morfogénesis , Animales , Tipificación del Cuerpo , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/fisiología , Extremidades/anatomía & histología , Extremidades/embriología , Extremidades/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Proteínas Hedgehog/genética , Esbozos de los Miembros/anatomía & histología , Esbozos de los Miembros/efectos de los fármacos , Ratones , Ratones Transgénicos , Fenotipo , Tamoxifeno/efectos adversos
19.
J Anat ; 211(6): 798-809, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18045352

RESUMEN

Chick embryos are useful models for probing developmental mechanisms including those involved in organogenesis. In addition to classic embryological manipulations, it is possible to test the function of molecules and genes while the embryo remains within the egg. Here we define conditions for imaging chick embryo anatomy and for visualising living quail embryos. We focus on the developing limb and describe how different tissues can be imaged using micro-magnetic resonance imaging and this information then synthesised, using a three-dimensional visualisation package, into detailed anatomy. We illustrate the potential for micro-magnetic resonance imaging to analyse phenotypic changes following chick limb manipulation. The work with the living quail embryos lays the foundations for using micro-magnetic resonance imaging as an experimental tool to follow the consequences of such manipulations over time.


Asunto(s)
Aves/embriología , Imagenología Tridimensional , Imagen por Resonancia Magnética , Anatomía Transversal , Animales , Embrión de Pollo , Medios de Contraste , Gadolinio , Esbozos de los Miembros/anatomía & histología , Músculos/embriología , Codorniz , Alas de Animales/embriología
20.
PLoS One ; 2(8): e754, 2007 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-17710153

RESUMEN

The evolutionary transition of fins to limbs involved development of a new suite of distal skeletal structures, the digits. During tetrapod limb development, genes at the 5' end of the HoxD cluster are expressed in two spatiotemporally distinct phases. In the first phase, Hoxd9-13 are activated sequentially and form nested domains along the anteroposterior axis of the limb. This initial phase patterns the limb from its proximal limit to the middle of the forearm. Later in development, a second wave of transcription results in 5' HoxD gene expression along the distal end of the limb bud, which regulates formation of digits. Studies of zebrafish fins showed that the second phase of Hox expression does not occur, leading to the idea that the origin of digits was driven by addition of the distal Hox expression domain in the earliest tetrapods. Here we test this hypothesis by investigating Hoxd gene expression during paired fin development in the shark Scyliorhinus canicula, a member of the most basal lineage of jawed vertebrates. We report that at early stages, 5'Hoxd genes are expressed in anteroposteriorly nested patterns, consistent with the initial wave of Hoxd transcription in teleost and tetrapod paired appendages. Unexpectedly, a second phase of expression occurs at later stages of shark fin development, in which Hoxd12 and Hoxd13 are re-expressed along the distal margin of the fin buds. This second phase is similar to that observed in tetrapod limbs. The results indicate that a second, distal phase of Hoxd gene expression is not uniquely associated with tetrapod digit development, but is more likely a plesiomorphic condition present the common ancestor of chondrichthyans and osteichthyans. We propose that a temporal extension, rather than de novo activation, of Hoxd expression in the distal part of the fin may have led to the evolution of digits.


Asunto(s)
Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Esbozos de los Miembros , Tiburones , Animales , Evolución Biológica , Extremidades , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Esbozos de los Miembros/anatomía & histología , Esbozos de los Miembros/fisiología , Familia de Multigenes , Filogenia , Tiburones/anatomía & histología , Tiburones/embriología , Tiburones/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...