Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 610
1.
PLoS Pathog ; 20(5): e1012228, 2024 May.
Article En | MEDLINE | ID: mdl-38739679

The arthropod exoskeleton provides protection and support and is vital for survival and adaption. The integrity and mechanical properties of the exoskeleton are often impaired after pathogenic infection; however, the detailed mechanism by which infection affects the exoskeleton remains largely unknown. Here, we report that the damage to the shrimp exoskeleton is caused by modulation of host lipid profiles after infection with white spot syndrome virus (WSSV). WSSV infection disrupts the mechanical performance of the exoskeleton by inducing the expression of a chitinase (Chi2) in the sub-cuticle epidermis and decreasing the cuticle chitin content. The induction of Chi2 expression is mediated by a nuclear receptor that can be activated by certain enriched long-chain saturated fatty acids after infection. The damage to the exoskeleton, an aftereffect of the induction of host lipogenesis by WSSV, significantly impairs the motor ability of shrimp. Blocking the WSSV-caused lipogenesis restored the mechanical performance of the cuticle and improved the motor ability of infected shrimp. Therefore, this study reveals a mechanism by which WSSV infection modulates shrimp internal metabolism resulting in phenotypic impairment, and provides new insights into the interactions between the arthropod host and virus.


Animal Shells , Lipid Metabolism , Penaeidae , White spot syndrome virus 1 , Animals , Penaeidae/virology , Penaeidae/metabolism , Animal Shells/metabolism , Animal Shells/virology , White spot syndrome virus 1/physiology , Lipid Metabolism/physiology , Host-Pathogen Interactions , Lipogenesis/physiology
2.
Metabolism ; 155: 155916, 2024 Jun.
Article En | MEDLINE | ID: mdl-38615945

Exercise is an effective non-pharmacological strategy for the treatment of nonalcoholic steatohepatitis (NASH), but the underlying mechanism needs further investigation. Kruppel-like factor 10 (Klf10) is a transcriptional factor that is expressed in multiple tissues including liver, whose role in NASH is not well defined. In our study, exercise induces hepatic Klf10 expression through the cAMP/PKA/CREB pathway. Hepatocyte-specific knockout of Klf10 (Klf10LKO) increases lipid accumulation, cell death, inflammation and fibrosis in NASH diet-fed mice and reduces the protective effects of treadmill exercise against NASH, while hepatocyte-specific overexpression of Klf10 (Klf10LTG) works in concert with exercise to reduce NASH in mice. Mechanistically, Klf10 promotes the expression of fumarate hydratase 1 (Fh1), thereby reducing fumarate accumulation in hepatocytes. This decreases the trimethyl (me3) levels of histone 3 lysine 4 (H3K4me3) on lipogenic genes promoters to attenuate lipogenesis, thus ameliorating free fatty acids (FFAs)-induced hepatocytes steatosis, apoptosis, insulin resistance and blunting dysfunctional hepatocytes-mediated activation of macrophages and hepatic stellate cells. Therefore, by regulating the Fh1/fumarate/H3K4me3 pathway, Klf10 acts as a downstream effector of exercise to combat NASH.


Early Growth Response Transcription Factors , Kruppel-Like Transcription Factors , Liver , Non-alcoholic Fatty Liver Disease , Physical Conditioning, Animal , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/therapy , Non-alcoholic Fatty Liver Disease/genetics , Kruppel-Like Transcription Factors/genetics , Kruppel-Like Transcription Factors/metabolism , Mice , Physical Conditioning, Animal/physiology , Early Growth Response Transcription Factors/metabolism , Early Growth Response Transcription Factors/genetics , Liver/metabolism , Hepatocytes/metabolism , Mice, Knockout , Mice, Inbred C57BL , Male , Lipogenesis/genetics , Lipogenesis/physiology
3.
Chem Commun (Camb) ; 60(23): 3138-3141, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38329230

Lipogenesis is a vital but often dysregulated metabolic pathway. Here we use optical photothermal infrared imaging to quantify lipogenesis rates of isotopically labelled oleic acid and glucose concomitantly in live cells. In hepatocytes, but not adipocytes, we find that oleic acid feeding at 60 µM increases the number and size of lipid droplets (LDs) while simultaneously inhibiting storage of de novo synthesized lipids in LDs. Our results demonstrate alternate regulation of lipogenesis between cell types.


Lipid Droplets , Oleic Acid , Lipid Droplets/metabolism , Lipogenesis/physiology , Hepatocytes , Adipocytes , Lipid Metabolism
4.
J Clin Invest ; 134(4)2024 Feb 15.
Article En | MEDLINE | ID: mdl-38357930

Ten percent of the population worldwide suffers from chronic kidney disease (CKD), but the mechanisms driving CKD pathology are incompletely understood. While dysregulated lipid metabolism is one hallmark of CKD, the pathogenesis of cellular lipid accumulation remains unclear. In this issue of the JCI, Mukhi et al. Identify acyl-CoA synthetase short-chain family 2 (ACSS2) as a disease risk gene and demonstrate a role for ACSS2 in de novo lipogenesis (DNL). Notably, genetic or pharmacological inhibition of DNL protected against kidney disease progression in mice. These findings warrant evaluation of DNL inhibition with respect to efficacy and safety in people with CKD.


Non-alcoholic Fatty Liver Disease , Renal Insufficiency, Chronic , Humans , Animals , Mice , Lipogenesis/physiology , Renal Insufficiency, Chronic/metabolism , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism
5.
Nat Commun ; 15(1): 490, 2024 Jan 17.
Article En | MEDLINE | ID: mdl-38233416

Palmitic acid (PAM) can be provided in the diet or synthesized via de novo lipogenesis (DNL), primarily, from glucose. Preclinical work on the origin of brain PAM during development is scarce and contrasts results in adults. In this work, we use naturally occurring carbon isotope ratios (13C/12C; δ13C) to uncover the origin of brain PAM at postnatal days 0, 10, 21 and 35, and RNA sequencing to identify the pathways involved in maintaining brain PAM, at day 35, in mice fed diets with low, medium, and high PAM from birth. Here we show that DNL from dietary sugars maintains the majority of brain PAM during development and is augmented in mice fed low PAM. Importantly, the upregulation of hepatic DNL genes, in response to low PAM at day 35, demonstrates the presence of a compensatory mechanism to maintain total brain PAM pools compared to the liver; suggesting the importance of brain PAM regulation.


Dietary Sugars , Lipogenesis , Animals , Mice , Lipogenesis/physiology , Palmitates/metabolism , Liver/metabolism , Brain
6.
J Hepatol ; 80(2): 362-377, 2024 Feb.
Article En | MEDLINE | ID: mdl-37977245

The hepatic accumulation of excess triglycerides is a seminal event in the initiation and progression of non-alcoholic fatty liver disease (NAFLD). Hepatic steatosis occurs when the hepatic accrual of fatty acids from the plasma and de novo lipogenesis (DNL) is no longer balanced by rates of fatty acid oxidation and secretion of very low-density lipoprotein-triglycerides. Accumulating data indicate that increased rates of DNL are central to the development of hepatic steatosis in NAFLD. Whereas the main drivers in NAFLD are transcriptional, owing to both hyperinsulinemia and hyperglycaemia, the effectors of DNL are a series of well-characterised enzymes. Several have proven amenable to pharmacologic inhibition or oligonucleotide-mediated knockdown, with lead compounds showing liver fat-lowering efficacy in phase II clinical trials. In humans with NAFLD, percent reductions in liver fat have closely mirrored percent inhibition of DNL, thereby affirming the critical contributions of DNL to NAFLD pathogenesis. The safety profiles of these compounds have so far been encouraging. It is anticipated that inhibitors of DNL, when administered alone or in combination with other therapeutic agents, will become important agents in the management of human NAFLD.


Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Lipogenesis/physiology , Liver/pathology , Lipid Metabolism , Triglycerides/metabolism
7.
Nat Metab ; 5(10): 1706-1725, 2023 10.
Article En | MEDLINE | ID: mdl-37735236

Under normal conditions, insulin promotes hepatic de novo lipogenesis (DNL). However, during insulin resistance (IR), when insulin signalling is blunted and accompanied by hyperinsulinaemia, the promotion of hepatic DNL continues unabated and hepatic steatosis increases. Here, we show that WD40 repeat-containing protein 6 (WDR6) promotes hepatic DNL during IR. Mechanistically, WDR6 interacts with the beta-type catalytic subunit of serine/threonine-protein phosphatase 1 (PPP1CB) to facilitate PPP1CB dephosphorylation at Thr316, which subsequently enhances fatty acid synthases transcription through DNA-dependent protein kinase and upstream stimulatory factor 1. Using molecular dynamics simulation analysis, we find a small natural compound, XLIX, that inhibits the interaction of WDR6 with PPP1CB, thus reducing DNL in IR states. Together, these results reveal WDR6 as a promising target for the treatment of hepatic steatosis.


Fatty Liver , Insulin Resistance , Animals , Mice , Lipogenesis/physiology , Up-Regulation , Insulin/metabolism
8.
Adv Nutr ; 14(6): 1359-1373, 2023 11.
Article En | MEDLINE | ID: mdl-37591342

Accumulation of hepatic triacylglycerol (TG) is highly associated with impaired whole-body insulin-glucose homeostasis and dyslipidemia. The summarized findings from human intervention studies investigating the effect of reduced dietary carbohydrate and increased fat intake (and in studies also increased protein) while maintaining energy intake at eucaloric requirements reveal a beneficial effect of carbohydrate reduction on hepatic TG content in obese individuals with steatosis and indices of insulin resistance. Evidence suggests that the reduction of hepatic TG content after reduced intake of carbohydrates and increased fat/protein intake in humans, results from regulation of fatty acid (FA) metabolism within the liver, with an increase in hepatic FA oxidation and ketogenesis, together with a concomitant downregulation of FA synthesis from de novo lipogenesis. The adaptations in hepatic metabolism may result from reduced intrahepatic monosaccharide and insulin availability, reduced glycolysis and increased FA availability when carbohydrate intake is reduced.


Dietary Fats , Non-alcoholic Fatty Liver Disease , Humans , Triglycerides , Dietary Fats/metabolism , Fatty Acids , Liver/metabolism , Lipogenesis/physiology , Insulin , Dietary Carbohydrates
9.
Int J Biol Macromol ; 242(Pt 2): 124859, 2023 Jul 01.
Article En | MEDLINE | ID: mdl-37187418

Patients with Alzheimer's disease (AD) display both peripheral tissue and brain insulin resistance, the later could be a potential risk factor for cognitive dysfunction. While certain degree of inflammation is required for inducing insulin resistance, underlying mechanism(s) remains unclear. Evidence from diverse research domains suggest that elevated intracellular fatty acids of de novo pathway can induce insulin resistance even without triggering inflammation; however, the effect of saturated fatty acids (SFAs) could be detrimental due the development of proinflammatory cues. In this context, evidence suggest that while lipid/fatty acid accumulation is a characteristic feature of brain pathology in AD, dysregulated de novo lipogenesis could be a potential source for lipid/fatty acid accumulation. Therefore, therapies aimed at regulating de novo lipogenesis could be effective in improving insulin sensitivity and cognitive function in patients with AD.


Alzheimer Disease , Insulin Resistance , Humans , Insulin Resistance/physiology , Lipogenesis/physiology , Liver , Alzheimer Disease/metabolism , Fatty Acids/metabolism , Inflammation/pathology
10.
Metabolism ; 145: 155591, 2023 08.
Article En | MEDLINE | ID: mdl-37230214

Non-alcoholic fatty liver disease (NAFLD) is a liver manifestation of metabolic syndrome, and is estimated to affect one billion individuals worldwide. An increased intake of a high-fat diet (HFD) and sugar-sweetened beverages are risk-factors for NAFLD development, but how their combined intake promotes progression to a more severe form of liver injury is unknown. Here we show that fructose metabolism via ketohexokinase (KHK) C isoform leads to unresolved endoplasmic reticulum (ER) stress when coupled with a HFD intake. Conversely, a liver-specific knockdown of KHK in mice consuming fructose on a HFD is adequate to improve the NAFLD activity score and exert a profound effect on the hepatic transcriptome. Overexpression of KHK-C in cultured hepatocytes is sufficient to induce ER stress in fructose free media. Upregulation of KHK-C is also observed in mice with genetically induced obesity or metabolic dysfunction, whereas KHK knockdown in these mice improves metabolic function. Additionally, in over 100 inbred strains of male or female mice hepatic KHK expression correlates positively with adiposity, insulin resistance, and liver triglycerides. Similarly, in 241 human subjects and their controls, hepatic Khk expression is upregulated in early, but not late stages of NAFLD. In summary, we describe a novel role of KHK-C in triggering ER stress, which offers a mechanistic understanding of how the combined intake of fructose and a HFD propagates the development of metabolic complications.


Non-alcoholic Fatty Liver Disease , Animals , Female , Humans , Male , Mice , Diet, High-Fat/adverse effects , Fructokinases/genetics , Fructokinases/metabolism , Fructose/pharmacology , Lipogenesis/physiology , Liver/metabolism , Models, Genetic , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism , Obesity/metabolism
11.
Nat Metab ; 5(5): 735-759, 2023 05.
Article En | MEDLINE | ID: mdl-37142787

Lipids are essential metabolites, which function as energy sources, structural components and signalling mediators. Most cells are able to convert carbohydrates into fatty acids, which are often converted into neutral lipids for storage in the form of lipid droplets. Accumulating evidence suggests that lipogenesis plays a crucial role not only in metabolic tissues for systemic energy homoeostasis but also in immune and nervous systems for their proliferation, differentiation and even pathophysiological roles. Thus, excessive or insufficient lipogenesis is closely associated with aberrations in lipid homoeostasis, potentially leading to pathological consequences, such as dyslipidaemia, diabetes, fatty liver, autoimmune diseases, neurodegenerative diseases and cancers. For systemic energy homoeostasis, multiple enzymes involved in lipogenesis are tightly controlled by transcriptional and post-translational modifications. In this Review, we discuss recent findings regarding the regulatory mechanisms, physiological roles and pathological importance of lipogenesis in multiple tissues such as adipose tissue and the liver, as well as the immune and nervous systems. Furthermore, we briefly introduce the therapeutic implications of lipogenesis modulation.


Fatty Liver , Lipogenesis , Humans , Lipogenesis/physiology , Adipose Tissue/metabolism , Fatty Acids/metabolism , Fatty Liver/metabolism
12.
Liver Int ; 43(7): 1473-1485, 2023 07.
Article En | MEDLINE | ID: mdl-37088973

BACKGROUND AND AIMS: Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. Aberrant lipid metabolism and accumulation of extracellular matrix proteins are hallmarks of the disease, but the underlying mechanisms are largely unknown. This study aims to elucidate the key role of sine oculis homeobox homologue 1 (SIX1) in the development of NAFLD. METHODS: Alb-Cre mice were administered the AAV9 vector for SIX1 liver-specific overexpression or knockdown. Metabolic disorders, hepatic steatosis, and inflammation were monitored in mice fed with HFHC or MCD diet. High throughput CUT&Tag analysis was employed to investigate the mechanism of SIX1 in diet-induced steatohepatitis. RESULTS: Here, we found increased SIX1 expression in the livers of NAFLD patients and animal models. Liver-specific overexpression of SIX1 using adeno-associated virus serotype 9 (AAV9) provoked more severe inflammation, metabolic disorders, and hepatic steatosis in the HFHC or MCD-induced mice model. Mechanistically, we demonstrated that SIX1 directly activated the expression of liver X receptor α (LXRα) and liver X receptor ß (LXRß), thus inducing de novo lipogenesis (DNL). In addition, our results also illustrated a critical role of SIX1 in regulating the TGF-ß pathway by increasing the levels of type I and II TGF-ß receptor (TGFßRI/TGFßRII) in hepatic stellate cells (HSCs). Finally, we found that liver-specific SIX1 deficiency could ameliorate diet-induced NAFLD pathogenesis. CONCLUSION: Our findings suggest a detrimental function of SIX1 in the progression of NAFLD. The direct regulation of LXRα/ß and TGF-ß signalling by SIX1 provides a new regulatory mechanism in hepatic steatosis and fibrosis.


Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/pathology , Lipogenesis/physiology , Liver/pathology , Fibrosis , Inflammation/pathology , Transforming Growth Factor beta/metabolism , Mice, Inbred C57BL , Diet, High-Fat
13.
Metabolism ; 144: 155563, 2023 07.
Article En | MEDLINE | ID: mdl-37088121

BACKGROUND AND AIM: Enhanced hepatic de novo lipogenesis (DNL) has been proposed as an underlying mechanism for the development of NAFLD and insulin resistance. Max-like protein factor X (MLX) acts as a heterodimer binding partner for glucose sensing transcription factors and inhibition of MLX or downstream targets has been shown to alleviate intrahepatic triglyceride (IHTG) accumulation in mice. However, its effect on insulin sensitivity remains unclear. As human data is lacking, the aim of the present work was to investigate the role of MLX in regulating lipid and glucose metabolism in primary human hepatocytes (PHH) and in healthy participants with and without MLX polymorphisms. METHODS: PHH were transfected with non-targeting or MLX siRNA to assess the effect of MLX knockdown on lipid and glucose metabolism, insulin signalling and the hepatocellular transcriptome. A targeted association analysis on imputed genotype data for MLX on healthy individuals was undertaken to assess associations between specific MLX SNPs (rs665268, rs632758 and rs1474040), plasma biochemistry, IHTG content, DNL and gluconeogenesis. RESULTS: MLX knockdown in PHH altered lipid metabolism (decreased DNL (p < 0.05), increased fatty acid oxidation and ketogenesis (p < 0.05), and reduced lipid accumulation (p < 0.001)). Additionally, MLX knockdown increased glycolysis, lactate secretion and glucose production (p < 0.001) and insulin-stimulated pAKT levels (p < 0.01) as assessed by transcriptomic, steady-state and dynamic measurements. Consistent with the in vitro data, individuals with the rs1474040-A and rs632758-C variants had lower fasting plasma insulin (p < 0.05 and p < 0.01, respectively) and TG (p < 0.05 and p < 0.01, respectively). Although there was no difference in IHTG or gluconeogenesis, individuals with rs632758 SNP had notably lower hepatic DNL (p < 0.01). CONCLUSION: We have demonstrated using human in vitro and in vivo models that MLX inhibition favored lipid catabolism over anabolism and increased glucose production, despite increased glycolysis and phosphorylation of Akt, suggesting a metabolic mechanism that involves futile cycling.


Insulin Resistance , Non-alcoholic Fatty Liver Disease , Humans , Mice , Animals , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Glucose/metabolism , Transcription Factors/metabolism , Gluconeogenesis/genetics , Insulin/metabolism , Lipid Metabolism/genetics , Lipogenesis/physiology , Insulin Resistance/genetics , Triglycerides/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
14.
J Phys Chem B ; 127(13): 2918-2926, 2023 04 06.
Article En | MEDLINE | ID: mdl-36976708

De novo lipogenesis (DNL) is a critical metabolic process that provides the majority of lipids for adipocyte and liver tissue. In cancer, obesity, type II diabetes, and nonalcoholic fatty liver disease DNL becomes dysregulated. A deeper understanding of the rates and of subcellular organization of DNL is necessary for identifying how this dysregulation occurs and varies across individuals and diseases. However, DNL is difficult to study inside the cell because labeling lipids and their precursors is not trivial. Existing techniques either can only measure parts of DNL, like glucose uptake, or do not provide spatiotemporal resolution. Here, we track DNL in space and time as isotopically labeled glucose is converted to lipids in adipocytes using optical photothermal infrared microscopy (OPTIR). OPTIR provides submicron resolution infrared imaging of the glucose metabolism in both living and fixed cells while also reporting on the identity of lipids and other biomolecules. We show significant incorporation of the labeled carbons into triglycerides in lipid droplets over the course of 72 h. Live cells had better preservation of lipid droplet morphology, but both showed similar DNL rates. Rates of DNL, as measured by the ratio of 13C-labeled lipid to 12C-labeled lipid, were heterogeneous, with differences within and between lipid droplets and from cell to cell. The high rates of DNL measured in adipocyte cells match upregulated rates of DNL previously reported in PANC1 pancreatic cancer cells. Taken together, our findings support a model where DNL is locally regulated to meet energy needs within cells.


Diabetes Mellitus, Type 2 , Lipogenesis , Humans , Adipocytes/metabolism , Diabetes Mellitus, Type 2/metabolism , Lipogenesis/physiology , Liver/metabolism , Triglycerides , Single-Cell Analysis , Cell Survival
15.
J Clin Invest ; 133(9)2023 05 01.
Article En | MEDLINE | ID: mdl-36928190

BACKGROUNDHepatic de novo lipogenesis (DNL) and ß-oxidation are tightly coordinated, and their dysregulation is thought to contribute to the pathogenesis of nonalcoholic fatty liver (NAFL). Fasting normally relaxes DNL-mediated inhibition of hepatic ß-oxidation, dramatically increasing ketogenesis and decreasing reliance on the TCA cycle. Thus, we tested whether aberrant oxidative metabolism in fasting NAFL subjects is related to the inability to halt fasting DNL.METHODSForty consecutive nondiabetic individuals with and without a history of NAFL were recruited for this observational study. After phenotyping, subjects fasted for 24 hours, and hepatic metabolism was interrogated using a combination of 2H2O and 13C tracers, magnetic resonance spectroscopy, and high-resolution mass spectrometry.RESULTSWithin a subset of subjects, DNL was detectable after a 24-hour fast and was more prominent in those with NAFL, though it was poorly correlated with steatosis. However, fasting DNL negatively correlated with hepatic ß-oxidation and ketogenesis and positively correlated with citrate synthesis. Subjects with NAFL but undetectable fasting DNL (25th percentile) were comparatively normal. However, those with the highest fasting DNL (75th percentile) were intransigent to the effects of fasting on the concentration of insulin, non-esterified fatty acid, and ketones. Additionally, they sustained glycogenolysis and were spared the loss of oxaloacetate to gluconeogenesis in favor of citrate synthesis, which correlated with DNL and diminished ketogenesis.CONCLUSIONMetabolic flux analysis in fasted subjects indicates that shared metabolic mechanisms link the dysregulations of hepatic DNL, ketogenesis, and the TCA cycle in NAFL.TRIAL REGISTRATIONData were obtained during the enrollment/non-intervention phase of Effect of Vitamin E on Non-Alcoholic Fatty Liver Disease, ClinicalTrials.gov NCT02690792.FUNDINGThis work was supported by the University of Texas Southwestern NORC Quantitative Metabolism Core (NIH P30DK127984), the NIH/National Institute of Diabetes and Digestive and Kidney Diseases (R01DK078184, R01DK128168, R01DK087977, R01DK132254, and K01DK133630), the NIH/National Institute on Alcohol Abuse and Alcoholism (K01AA030327), and the Robert A. Welch Foundation (I-1804).


Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Lipogenesis/physiology , Citric Acid , Liver/metabolism , Ketone Bodies/metabolism , Citrates/metabolism , Fasting
16.
Int J Mol Sci ; 24(3)2023 Jan 19.
Article En | MEDLINE | ID: mdl-36768334

Triacylglycerol (TG) biosynthesis is an important metabolic process for intracellular storage of surplus energy, intestinal dietary fat absorption, attenuation of lipotoxicity, lipid transportation, lactation and signal transduction in mammals. Transmembrane protein 68 (TMEM68) is an endoplasmic reticulum (ER)-anchored acyltransferase family member of unknown function. In the current study we show that overexpression of TMEM68 promotes TG accumulation and lipid droplet (LD) formation in a conserved active sites-dependent manner. Quantitative targeted lipidomic analysis showed that diacylglycerol (DG), free fatty acid (FFA) and TG levels were increased by TMEM68 expression. In addition, TMEM68 overexpression affected the levels of several glycerophospholipids, such as phosphatidylcholine, phosphatidylethanolamine and phosphatidylinositol, as well as sterol ester contents. TMEM68 exhibited monoacylglycerol acyltransferase (MGAT) and diacylglycerol acyltransferase (DGAT) activities dependent on the conserved active sites in an in vitro assay. The expression of lipogenesis genes, including DGATs, fatty acid synthesis-related genes and peroxisome proliferator-activated receptor γ was upregulated in TMEM68-overexpressing cells. These results together demonstrate for the first time that TMEM68 functions as an acyltransferase and affects lipogenic gene expression, glycerolipid metabolism and TG storage in mammalian cells.


Diacylglycerol O-Acyltransferase , Lipogenesis , Membrane Proteins , Triglycerides , Animals , Female , Humans , Acyltransferases/genetics , Acyltransferases/metabolism , Diacylglycerol O-Acyltransferase/genetics , Diacylglycerol O-Acyltransferase/metabolism , Lipogenesis/genetics , Lipogenesis/physiology , Mammals/metabolism , Triglycerides/biosynthesis , Triglycerides/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism
17.
J Endocrinol ; 257(2)2023 05 01.
Article En | MEDLINE | ID: mdl-36753292

Despite the existence of numerous studies supporting a pathological link between fructose consumption and the development of the metabolic syndrome and its sequelae, such as non-alcoholic fatty liver disease (NAFLD), this link remains a contentious issue. With this article, we shed a light on the impact of sugar/fructose intake on hepatic de novo lipogenesis (DNL), an outcome parameter known to be dysregulated in subjects with type 2 diabetes and/or NAFLD. In this review, we present findings from human intervention studies using physiological doses of sugar as well as mechanistic animal studies. There is evidence from both human and animal studies that fructose is a more potent inducer of hepatic lipogenesis than glucose. This is most likely due to the liver's prominent physiological role in fructose metabolism, which may be disrupted under pathological conditions by increased hepatic expression of fructolytic and lipogenic enzymes. Increased DNL may not only contribute to ectopic fat deposition (i.e. in the liver), but it may also impair several metabolic processes through DNL-related fatty acids (e.g. beta-cell function, insulin secretion, or insulin sensitivity).


Diabetes Mellitus, Type 2 , Non-alcoholic Fatty Liver Disease , Animals , Humans , Non-alcoholic Fatty Liver Disease/metabolism , Fructose/adverse effects , Lipogenesis/physiology , Diabetes Mellitus, Type 2/metabolism , Liver/metabolism
18.
J Cosmet Dermatol ; 22(4): 1361-1368, 2023 Apr.
Article En | MEDLINE | ID: mdl-36700382

BACKGROUND: The aim of this study was to explore the anti-inflammatory and anti-lipid effects of lactoferrin on SZ95 human sebaceous gland cells and mouse model of acne. METHODS: SZ95 cells were co-cultured with different concentrations of lactoferrin, and cell viability was determined using the 2,5-diphenyl-2H-tetrazolium bromide method. Oil red O and Nile red staining were performed to determine the lipid content. The mRNA expression of genes related to lipid metabolism (sterol regulatory element-binding protein-1 [SREBP-1], fatty acid synthase [FAS], stearoyl-CoA desaturase-1 [SCD-1], fatty acid desaturase 2 [FADS2]) and inflammation (interleukin-8 [IL-8]) was determined by reverse transcription-polymerase chain reaction. An acne mouse model was established using injection of P. acnes on the backs of mice. The proliferation and apoptosis of sebaceous gland cells were examined by immunohistochemistry against proliferating cell nuclear antigen (PCNA) and TUNEL staining, respectively. Western blotting was used to detect FADS2 and CXCL15 protein expression. RESULTS: Lactoferrin treatment at 10-500 µg/ml significantly decreased the lipid content, as revealed by the oil red O and Nile red staining. It also attenuated the increase of mRNA expression of SREBP-1, FAS, SCD-1, FADS2, and IL-8 in insulin-treated SZ95 cells. Moreover, lactoferrin treatment at the doses of 1-50 mg/mouse significantly reduced the inflammation and lipid production in the mouse model of acne. Also, the number of sebaceous gland cells was significantly reduced, and apoptosis was significantly increased by lactoferrin treatment in the mice. Mechanically, the levels of FADS2 and CXCL15 proteins in tissues were significantly decreased after lactoferrin treatment in the model mice. CONCLUSION: Our results demonstrate the potential of lactoferrin against sebogenesis, sebaceous gland inflammation in acne.


Acne Vulgaris , Lactoferrin , Sebaceous Glands , Animals , Humans , Mice , Acne Vulgaris/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Interleukin-8/metabolism , Lactoferrin/pharmacology , Lipogenesis/physiology , RNA, Messenger/metabolism , Sebaceous Glands/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/pharmacology
19.
Int J Cosmet Sci ; 45(1): 62-72, 2023 Feb.
Article En | MEDLINE | ID: mdl-36324215

BACKGROUND: Botanical ingredients are widely used in hair- and skin-care products. However, few studies have investigated the effectiveness of botanical products on counteracting sebum synthesis and secretion. OBJECTIVE: To investigate the composition of Lotus corniculatus seed extract (LC) and its potential inhibition of lipogenesis in SZ95 sebocytes and oily human skin. METHODS: The active components of LC solutions were identified by high-performance liquid chromatography (HPLC) and nuclear magnetic resonance (NMR). The in vitro effects of LC were evaluated using SZ95 cells treated with linoleic acid (LA) and dihydrotestosterone (DHT) and incubated with LCs for 24 h and 72 h. Lipogenesis was assessed by Oil Red O and Nile Red staining of the cells. In vivo effects were assessed on 30 subjects with oily skin who were enrolled in a randomized, blank-controlled trial and were treated with LC solution for 6 h and 4 weeks. The skin sebum contents and area on the forehead and cheeks were evaluated using a Sebumeter SM815 and Sebfix sebutape with Visioscan VC98. In addition, VISIA was used to collect half-face photos for analysis. RESULTS: A novel active molecule, 5'-o-rhamnosyl uridine, was identified in LC. LC exhibited a dose-dependent inhibitory effect on LA and DHT-induced lipid synthesis. When 5% LC was applied for 3 h, the skin sebum contents and area were significantly reduced compared with the vehicle control, with an obvious reduction after 6 h. Continued use of the serum containing 5% LC for 4 weeks resulted in a significant reduction in the skin sebum contents and area. No adverse reactions were reported during the study. CONCLUSIONS: Topical application of LC resulted in an immediate and long-lasting reduction of the sebum contents and area of oily human skin by reducing sebaceous lipogenesis through the LA and DHT pathways. This indicates the potential of LC as a new biological treatment for oily skin.


CONTEXTE: Les ingrédients végétaux sont largement utilisés dans les produits de soins des cheveux et de la peau. Cependant, peu d'études ont examiné l'efficacité des produits végétaux dans l'inhibition de la synthèse et de la sécrétion de sébum. OBJECTIF: Étudier les composants de l'extrait de graines de lotus (LC) et son effet inhibiteur potentiel sur la lipogenèse des cellules sébacées SZ95 et de la peau grasse. MÉTHODES: Les composants actifs de la solution LC ont été identifiés par chromatographie liquide à haute performance (HPLC) et par résonance magnétique nucléaire (NMR). Les effets de la LC in vitro ont été évalués à l'aide de cellules SZ95 traitées à l'acide linoléique (LA) et à la dihydrotestostérone (DHT) et incubées avec la LC pendant 24 et 72 heures. Les effets in vivo ont été évalués chez 30 sujets à peau grasse qui ont participé à un essai contrôlé randomisé à blanc et qui ont été traités avec une solution de LC pendant 6 heures et 4 semaines. Le sebumeter SM815 et le sebfix sebutape et le visioscan VC98 ont été utilisés pour évaluer la teneur en sébum et la surface de la peau sur le front et les joues. De plus, des photos de demi - visage ont été recueillies pour analyse à l'aide de VISIA. RÉSULTATS: Une nouvelle molécule active, 5'-o-rhamnosyluridine, a été identifiée dans la LC. La LC a un effet inhibiteur dose - dépendant sur la synthèse lipidique induite par LA et DHT. La teneur et la surface du sébum cutané ont été significativement diminuées par rapport à celles du support photographique après 3 heures d'application de 5% de LC, et significativement diminuées après 6 heures. L'utilization de sérum contenant 5% de LC pendant quatre semaines consécutives a entraîné une réduction significative de la teneur en sébum et de la surface de la peau. Aucun effet indésirable n'a été signalé au cours de l'étude. CONCLUSION: L'application topique de LC peut réduire la production de sébum par les voies LA et DHT, ce qui réduit immédiatement et durablement la teneur en sébum et la surface de la peau huileuse humaine. Cela démontre le potentiel de la LC en tant que nouveau traitement biologique de la peau huileuse.


Lotus , Sebum , Humans , Sebum/metabolism , Sebaceous Glands/metabolism , Lipogenesis/physiology , Oils , Plant Extracts/pharmacology
20.
Hepatology ; 78(2): 562-577, 2023 08 01.
Article En | MEDLINE | ID: mdl-35931467

BACKGROUND AND AIMS: NAFLD is the most prevalent chronic liver disease worldwide and has emerged as a serious public health issue with no approved treatment. The development of NAFLD is strongly associated with hepatic lipid content, and patients with NAFLD have significantly higher rates of hepatic de novo lipogenesis (DNL) than lean individuals. Leukotriene B4 (LTB4), a metabolite of arachidonic acid, is dramatically increased in obesity and plays important role in proinflammatory cytokine production and insulin resistance. But the role of liver LTB4/LTB4 receptor 1 (Ltb4r1) in lipid metabolism is unclear. APPROACH AND RESULTS: Hepatocyte-specific knockout (HKO) of Ltb4r1 improved hepatic steatosis and systemic insulin resistance in both diet-induced and genetically induced obese mice. The mRNA level of key enzymes involved in DNL and fatty acid esterification decreased in Ltb4r1 HKO obese mice. LTB4/Ltb4r1 directly promoted lipogenesis in HepG2 cells and primary hepatocytes. Mechanically, LTB4/Ltb4r1 promoted lipogenesis by activating the cAMP-protein kinase A (PKA)-inositol-requiring enzyme 1α (IRE1α)-spliced X-box-binding protein 1 (XBP1s) axis in hepatocytes, which in turn promoted the expression of lipogenesis genes regulated by XBP1s. In addition, Ltb4r1 suppression through the Ltb4r1 inhibitor or lentivirus-short hairpin RNA delivery alleviated the fatty liver phenotype in obese mice. CONCLUSIONS: LTB4/Ltb4r1 promotes hepatocyte lipogenesis directly by activating PKA-IRE1α-XBP1s to promote lipogenic gene expression. Inhibition of hepatocyte Ltb4r1 improved hepatic steatosis and insulin resistance. Ltb4r1 is a potential therapeutic target for NAFLD.


Insulin Resistance , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/metabolism , Receptors, Leukotriene B4/metabolism , Leukotriene B4/adverse effects , Leukotriene B4/metabolism , Mice, Obese , Endoribonucleases/metabolism , Protein Serine-Threonine Kinases/metabolism , Hepatocytes/metabolism , Liver/metabolism , Obesity/complications , Obesity/genetics , Lipogenesis/physiology , Diet, High-Fat
...