Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.340
1.
Acta Biochim Pol ; 71: 11999, 2024.
Article En | MEDLINE | ID: mdl-38721306

Candida glabrata is an important opportunistic human pathogen well known to develop resistance to antifungal drugs. Due to their numerous desirable qualities, antimicrobial lipopeptides have gained significant attention as promising candidates for antifungal drugs. In the present study, two bioactive lipopeptides (AF4 and AF5 m/z 1071.5 and 1085.5, respectively), coproduced and purified from Bacillus subtilis RLID12.1, consist of seven amino acid residues with lipid moieties. In our previous studies, the reversed phased-HPLC purified lipopeptides demonstrated broad-spectrum of antifungal activities against over 110 Candida albicans, Candida non-albicans and mycelial fungi. Two lipopeptides triggered membrane permeabilization of C. glabrata cells, as confirmed by propidium iodide-based flow cytometry, with PI uptake up to 99% demonstrating fungicidal effects. Metabolic inactivation in treated cells was confirmed by FUN-1-based confocal microscopy. Together, the results indicate that these lipopeptides have potentials to be developed into a new set of antifungals for combating fungal infections.


Antifungal Agents , Bacillus subtilis , Candida glabrata , Cell Membrane Permeability , Lipopeptides , Microbial Sensitivity Tests , Lipopeptides/pharmacology , Lipopeptides/chemistry , Lipopeptides/isolation & purification , Bacillus subtilis/drug effects , Candida glabrata/drug effects , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/isolation & purification , Cell Membrane Permeability/drug effects , Humans , Cell Membrane/drug effects , Cell Membrane/metabolism
2.
Methods Mol Biol ; 2808: 167-175, 2024.
Article En | MEDLINE | ID: mdl-38743370

Measles virus is one of the most contagious airborne human viruses which keeps causing outbreaks in numerous countries over the world despite the existence of an efficient vaccine. Fusion inhibitory lipopeptides were shown to inhibit viral entry into target cells, and their adequate administration into the respiratory tract may provide a novel preventive approach against airborne infections. Aerosol delivery presents the best administration route to deliver such preventive compounds to the upper and lower respiratory tract. This approach offers a conceptually new strategy to protect the population at risk against infection by respiratory viruses, including measles. It is a noninvasive needle-free approach, which may be used when antiviral protection is required, without any medical assistance. In this chapter, we describe the nebulization approach of lipopeptide compounds in nonhuman primates and the subsequent measles virus challenge.


Aerosols , Disease Models, Animal , Measles virus , Measles , Animals , Measles/prevention & control , Lipopeptides/administration & dosage , Humans , Drug Delivery Systems/methods
3.
Microb Cell Fact ; 23(1): 144, 2024 May 22.
Article En | MEDLINE | ID: mdl-38773450

Fengycin is an important member of the lipopeptide family with a wide range of applications in the agricultural, food, medical and cosmetic industries. However, its commercial application is severely hindered by low productivity and high cost. Therefore, numerous studies have been devoted to improving the production of fengycin. We summarize these studies in this review with the aim of providing a reference and guidance for future researchers. This review begins with an overview of the synthesis mechanism of fengycin via the non-ribosomal peptide synthetases (NRPS), and then delves into the strategies for improving the fengycin production in recent years. These strategies mainly include fermentation optimization and metabolic engineering, and the metabolic engineering encompasses enhancement of precursor supply, application of regulatory factors, promoter engineering, and application of genome-engineering (genome shuffling and genome-scale metabolic network model). Finally, we conclude this review with a prospect of fengycin production.


Lipopeptides , Metabolic Engineering , Metabolic Engineering/methods , Lipopeptides/biosynthesis , Lipopeptides/metabolism , Fermentation , Peptide Synthases/genetics , Peptide Synthases/metabolism
4.
Microb Cell Fact ; 23(1): 100, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38566071

Surfactin is a cyclic hexalipopeptide compound, nonribosomal synthesized by representatives of the Bacillus subtilis species complex which includes B. subtilis group and its closely related species, such as B. subtilis subsp subtilis, B. subtilis subsp spizizenii, B. subtilis subsp inaquosorum, B. atrophaeus, B. amyloliquefaciens, B. velezensis (Steinke mSystems 6: e00057, 2021) It functions as a biosurfactant and signaling molecule and has antibacterial, antiviral, antitumor, and plant disease resistance properties. The Bacillus lipopeptides play an important role in agriculture, oil recovery, cosmetics, food processing and pharmaceuticals, but the natural yield of surfactin synthesized by Bacillus is low. This paper reviews the regulatory pathways and mechanisms that affect surfactin synthesis and release, highlighting the regulatory genes involved in the transcription of the srfAA-AD operon. The several ways to enhance surfactin production, such as governing expression of the genes involved in synthesis and regulation of surfactin synthesis and transport, removal of competitive pathways, optimization of media, and fermentation conditions were commented. This review will provide a theoretical platform for the systematic genetic modification of high-yielding strains of surfactin.


Bacillus , Bacillus/genetics , Bacillus/metabolism , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Operon , Fermentation , Lipopeptides , Peptides, Cyclic
5.
J Med Chem ; 67(8): 6822-6838, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38588468

Weak antigens represented by MUC1 are poorly immunogenic, which greatly constrains the development of relevant vaccines. Herein, we developed a multifunctional lipidated protein as a carrier, in which the TLR1/2 agonist Pam3CSK4 was conjugated to the N-terminus of MUC1-loaded carrier protein BSA through pyridoxal 5'-phosphate-mediated transamination reaction. The resulting Pam3CSK4-BSA-MUC1 conjugate was subsequently incorporated into liposomes, which biomimics the membrane structure of tumor cells. The results indicated that this lipidated protein carrier significantly enhanced antigen uptake by APCs and obviously augmented the retention of the vaccine at the injection site. Compared with the BSA-MUC1 and BSA-MUC1 + Pam3CSK4 groups, Pam3CSK4-BSA-MUC1 evoked 22- and 11-fold increases in MUC1-specific IgG titers. Importantly, Pam3CSK4-BSA-MUC1 elicited robust cellular immunity and significantly inhibited tumor growth. This is the first time that lipidated protein was constructed to enhance antigen immunogenicity, and this universal carrier platform exhibits promise for utilization in various vaccines, holding the potential for further clinical application.


Liposomes , Mucin-1 , Animals , Mucin-1/immunology , Mucin-1/chemistry , Mice , Humans , Lipopeptides/chemistry , Lipopeptides/immunology , Lipopeptides/pharmacology , Cancer Vaccines/immunology , Cancer Vaccines/chemistry , Serum Albumin, Bovine/chemistry , Adjuvants, Immunologic/pharmacology , Adjuvants, Immunologic/chemistry , Female , Mice, Inbred BALB C , Antigens/immunology , Cell Line, Tumor
6.
ACS Chem Biol ; 19(5): 1106-1115, 2024 May 17.
Article En | MEDLINE | ID: mdl-38602492

The prevalence of multidrug-resistant (MDR) pathogens combined with a decline in antibiotic discovery presents a major challenge for health care. To refill the discovery pipeline, we need to find new ways to uncover new chemical entities. Here, we report the global genome mining-guided discovery of new lipopeptide antibiotics tridecaptin A5 and tridecaptin D, which exhibit unusual bioactivities within their class. The change in the antibacterial spectrum of Oct-TriA5 was explained solely by a Phe to Trp substitution as compared to Oct-TriA1, while Oct-TriD contained 6 substitutions. Metabolomic analysis of producer Paenibacillus sp. JJ-21 validated the predicted amino acid sequence of tridecaptin A5. Screening of tridecaptin analogues substituted at position 9 identified Oct-His9 as a potent congener with exceptional efficacy against Pseudomonas aeruginosa and reduced hemolytic and cytotoxic properties. Our work highlights the promise of tridecaptin analogues to combat MDR pathogens.


Anti-Bacterial Agents , Microbial Sensitivity Tests , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Pseudomonas aeruginosa/drug effects , Humans , Host Specificity , Drug Discovery , Lipopeptides/pharmacology , Lipopeptides/chemistry , Peptides
7.
Curr Microbiol ; 81(6): 142, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38625396

The present work aims to quantitatively and qualitatively monitor the production of lipopeptide mixtures by Bacillus methylotrophicus DCS1 strain in Landy medium and to investigate the antifungal activities of DCS1 strain and its produced lipopeptides. The in vitro activities were tested by the direct confrontation and agar well diffusion methods, while the in vivo study was carried out in order to test the efficiency of DCS1 bacterial suspension in the control of Fusarium wilt in tomato plants. Identification of lipopeptides by mass spectrometry (LC/MSD-TOF) showed that lipopeptide isoforms produced during the first 24 h and 48 h of fermentation are identical, belonging to bacillomycin D and fengycins A and B homologues with a difference in the yield of production. After 72 h of fermentation corresponding to the end of incubation period, B. methylotrophicus DCS1 is able to produce a mixture of surfactin, pumilacidin, iturin A/mycosubtilin, iturin C1, bacillomycin D and fengycins A and B isoforms. The results of in vitro antifungal experiments suggest that B. methylotrophicus DCS1 has a significant potential as a biocontrol agent, owing to lipopeptides produced, endowed with antifungal activity against several phytopathogenic fungi. The curative treatment of tomato plants with DCS1 bacterial suspension was more effective in the protection against Fusarium oxysporum f. sp. radicis-lycopersici (FORL) than the preventive treatment by comparing the average number of leaves remaining healthy after 30 days of each treatment and the appearance of tomato plants roots. The results indicate that B. methylotrophicus DCS1 exhibit a significant suppression of Fusarium wilt symptoms in tomato plants comparable to that of commercial fungicides and could be an alternative to chemically synthesized pesticides.


Bacillus , Fusarium , Solanum lycopersicum , Antifungal Agents/pharmacology , Lipopeptides/pharmacology , Protein Isoforms
8.
J Immunol ; 212(11): 1639-1646, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38629913

Recently, we reported that preexposure of B cells to IL-4 induced an alternate, signalosome-independent BCR signaling pathway leading to protein kinase C (PKC)δ phosphorylation (pTyr311), which occurs in the membrane compartment. This is considered to represent a form of receptor crosstalk and signal integration. Unlike the classical BCR signaling pathway, Lyn kinase is indispensable for BCR-induced downstream events in the alternate pathway. Our previous report that alternate BCR signaling leading to ERK phosphorylation is triggered by LPS and PAM3CSK4 (much like IL-4) raises the possibility that other signaling outcomes such as PKCδ phosphorylation might be similarly affected. To explore the range of mediators capable of producing an alternate pathway for BCR signaling, we examined PKCδ translocation and phosphorylation in LPS- and PAM3CSK4-treated B cells stimulated by anti-Ig. We found that LPS and PAM3CSK4 alter the signaling pathway used by the BCR to produce PKCδ phosphorylation. As with IL-4, elements of the signalosome are not needed for PKCδ phosphorylation when BCR triggering occurs after LPS and PAM3CSK4. However, with LPS and PAM3CSK4, anti-Ig-induced phosphorylation of PKCδ takes place in the cytosol, in contrast to the IL-4-induced alternate pathway, wherein PKCδ phosphorylation occurs in the membrane. Furthermore, the BCR signaling pathway induced by LPS and PAM3CSK4 differs from that induced by IL-4 by not requiring Lyn. Thus, an alternate, signalosome-independent BCR signaling pathway for PKCδ phosphorylation is induced by TLR agonists but differs in important ways from the alternate pathway induced by IL-4.


Interleukin-4 , Lipopeptides , Lipopolysaccharides , Protein Kinase C-delta , Receptors, Antigen, B-Cell , Signal Transduction , src-Family Kinases , Protein Kinase C-delta/metabolism , Phosphorylation , Animals , Mice , Lipopolysaccharides/pharmacology , Interleukin-4/metabolism , Receptors, Antigen, B-Cell/metabolism , Lipopeptides/pharmacology , src-Family Kinases/metabolism , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Toll-Like Receptors/metabolism , Mice, Inbred C57BL
9.
J Nat Prod ; 87(4): 984-993, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38587271

A chemical investigation of the hydrophilic fraction of a cultured Nodularia sp. (NIES-3585) afforded six new cyclic lipopeptides, noducyclamides A1-A4 (1-4) containing 10 amino acid residues and dodecapeptides noducyclamides B1 and B2 (5 and 6). The planar structures of these lipopeptides were elucidated based on the combination of HRMS and 1D and 2D NMR spectroscopic data analyses. These peptides are structurally analogous to laxaphycins and contain the nonproteinogenic amino acids 3-hydroxyvaline and 3-hydroxyleucine and a ß-amino decanoic acid residue. The absolute configurations of the noducyclamides (1-6) were determined by acid hydrolysis, followed by advanced Marfey's analysis. Noducyclamide B1 (5) showed cytotoxic activities against MCF7 breast cancer cell lines with an IC50 value of 3.0 µg/mL (2.2 µM).


Cyanobacteria , Peptides, Cyclic , Humans , Molecular Structure , Cyanobacteria/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Lipopeptides/pharmacology , Lipopeptides/chemistry , Drug Screening Assays, Antitumor , MCF-7 Cells , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/isolation & purification , Female , Nuclear Magnetic Resonance, Biomolecular
10.
Sci Rep ; 14(1): 9469, 2024 04 24.
Article En | MEDLINE | ID: mdl-38658583

Bovine mastitis caused by S. aureus has a major economic impact on the dairy sector. With the crucial need for new therapies, anti-virulence strategies have gained attention as alternatives to antibiotics. Here we aimed to identify novel compounds that inhibit the production/activity of hemolysins, a virulence factor of S. aureus associated with mastitis severity. We screened Bacillus strains obtained from diverse sources for compounds showing anti-hemolytic activity. Our results demonstrate that lipopeptides produced by Bacillus spp. completely prevented the hemolytic activity of S. aureus at certain concentrations. Following purification, both iturins, fengycins, and surfactins were able to reduce hemolysis caused by S. aureus, with iturins showing the highest anti-hemolytic activity (up to 76% reduction). The lipopeptides showed an effect at the post-translational level. Molecular docking simulations demonstrated that these compounds can bind to hemolysin, possibly interfering with enzyme action. Lastly, molecular dynamics analysis indicated general stability of important residues for hemolysin activity as well as the presence of hydrogen bonds between iturins and these residues, with longevous interactions. Our data reveals, for the first time, an anti-hemolytic activity of lipopeptides and highlights the potential application of iturins as an anti-virulence therapy to control bovine mastitis caused by S. aureus.


Bacillus , Hemolysin Proteins , Hemolysis , Lipopeptides , Molecular Docking Simulation , Staphylococcus aureus , Bacillus/metabolism , Bacillus/chemistry , Staphylococcus aureus/drug effects , Hemolysis/drug effects , Animals , Cattle , Lipopeptides/pharmacology , Lipopeptides/chemistry , Hemolysin Proteins/antagonists & inhibitors , Hemolysin Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Mastitis, Bovine/microbiology , Mastitis, Bovine/drug therapy , Female , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Molecular Dynamics Simulation
11.
Waste Manag ; 181: 89-100, 2024 May 30.
Article En | MEDLINE | ID: mdl-38598883

High-salt content in food waste (FW) affects its resource utilization during biotransformation. In this study, adaptive laboratory evolution (ALE), gene editing, and artificial consortia were performed out to improve the salt-tolerance of Bacillus amyloliquefaciens for producing lipopeptide under FW and seawater. High-salt stress significantly decreased lipopeptide production in the B. amyloliquefaciens HM618 and ALE strains. The total lipopeptide production in the recombinant B. amyloliquefaciens HM-4KSMSO after overexpressing the ion transportor gene ktrA and proline transporter gene opuE and replacing the promoter of gene mrp was 1.34 times higher than that in the strain HM618 in medium containing 30 g/L NaCl. Lipopeptide production under salt-tolerant consortia containing two strains (HM-4KSMSO and Corynebacterium glutamicum) and three-strains (HM-4KSMSO, salt-tolerant C. glutamicum, and Yarrowia lipolytica) was 1.81- and 2.28-fold higher than that under pure culture in a medium containing FW or both FW and seawater, respectively. These findings provide a new strategy for using high-salt FW and seawater to produce value-added chemicals.


Bacillus amyloliquefaciens , Lipopeptides , Bacillus amyloliquefaciens/metabolism , Bacillus amyloliquefaciens/genetics , Lipopeptides/metabolism , Salt Tolerance , Seawater/microbiology , Food , Food Loss and Waste
12.
Lett Appl Microbiol ; 77(5)2024 May 03.
Article En | MEDLINE | ID: mdl-38658187

Species from Candida parapsilosis complex are frequently found in neonatal candidemia. The antifungal agents to treat this infection are limited and the occurrence of low in vitro susceptibility to echinocandins such as micafungin has been observed. In this context, the chaperone Hsp90 could be a target to reduce resistance. Thus, the objective of this research was to identify isolates from the C. parapsilosis complex and verify the action of Hsp90 inhibitors associated with micafungin. The fungal identification was based on genetic sequencing and mass spectrometry. Minimal inhibitory concentrations were determined by broth microdilution method according to Clinical Laboratory and Standards Institute. The evaluation of the interaction between micafungin with Hsp90 inhibitors was realized using the checkerboard methodology. According to the polyphasic taxonomy, C. parapsilosis sensu stricto was the most frequently identified, followed by C. orthopsilosis and C. metapsilosis, and one isolate of Lodderomyces elongisporus was identified by genetic sequencing. The Hsp90 inhibitor geladanamycin associated with micafungin showed a synergic effect in 31.25% of the isolates, a better result was observed with radicicol, which shows synergic effect in 56.25% tested yeasts. The results obtained demonstrate that blocking Hsp90 could be effective to reduce antifungal resistance to echinocandins.


Antifungal Agents , Candida parapsilosis , HSP90 Heat-Shock Proteins , Micafungin , Microbial Sensitivity Tests , Antifungal Agents/pharmacology , Micafungin/pharmacology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Humans , Candida parapsilosis/drug effects , Candida parapsilosis/isolation & purification , Candida parapsilosis/genetics , Infant, Newborn , Echinocandins/pharmacology , Benzoquinones/pharmacology , Lipopeptides/pharmacology , Drug Synergism , Lactams, Macrocyclic/pharmacology , Candidemia/microbiology , Drug Resistance, Fungal , Candida/drug effects , Candida/classification , Candida/genetics
13.
Proc Natl Acad Sci U S A ; 121(15): e2401632121, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38568970

Photosynthetic protists, known as microalgae, are key contributors to primary production on Earth. Since early in evolution, they coexist with bacteria in nature, and their mode of interaction shapes ecosystems. We have recently shown that the bacterium Pseudomonas protegens acts algicidal on the microalga Chlamydomonas reinhardtii. It secretes a cyclic lipopeptide and a polyyne that deflagellate, blind, and lyse the algae [P. Aiyar et al., Nat. Commun. 8, 1756 (2017) and V. Hotter et al., Proc. Natl. Acad. Sci. U.S.A. 118, e2107695118 (2021)]. Here, we report about the bacterium Mycetocola lacteus, which establishes a mutualistic relationship with C. reinhardtii and acts as a helper. While M. lacteus enhances algal growth, it receives methionine as needed organic sulfur and the vitamins B1, B3, and B5 from the algae. In tripartite cultures with the alga and the antagonistic bacterium P. protegens, M. lacteus aids the algae in surviving the bacterial attack. By combining synthetic natural product chemistry with high-resolution mass spectrometry and an algal Ca2+ reporter line, we found that M. lacteus rescues the alga from the antagonistic bacterium by cleaving the ester bond of the cyclic lipopeptide involved. The resulting linearized seco acid does not trigger a cytosolic Ca2+ homeostasis imbalance that leads to algal deflagellation. Thus, the algae remain motile, can swim away from the antagonistic bacteria and survive the attack. All three involved genera cooccur in nature. Remarkably, related species of Pseudomonas and Mycetocola also act antagonistically against C. reinhardtii or as helper bacteria in tripartite cultures.


Chlamydomonas reinhardtii , Ecosystem , Bacteria , Eukaryota , Lipopeptides
14.
World J Microbiol Biotechnol ; 40(4): 135, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38489053

As lead molecules, cyclic lipopeptides with antibacterial, antifungal, and antiviral properties have garnered a lot of attention in recent years. Because of their potential, cyclic lipopeptides have earned recognition as a significant class of antimicrobial compounds with applications in pharmacology and biotechnology. These lipopeptides, often with biosurfactant properties, are amphiphilic, consisting of a hydrophilic moiety, like a carboxyl group, peptide backbone, or carbohydrates, and a hydrophobic moiety, mostly a fatty acid. Besides, several lipopeptides also have cationic groups that play an important role in biological activities. Antimicrobial lipopeptides can be considered as possible substitutes for antibiotics that are conventional to address the current drug-resistant issues as pharmaceutical industries modify the parent antibiotic molecules to render them more effective against antibiotic-resistant bacteria and fungi, leading to the development of more resistant microbial strains. Bacillus species produce lipopeptides, which are secondary metabolites that are amphiphilic and are typically synthesized by non-ribosomal peptide synthetases (NRPSs). They have been identified as potential biocontrol agents as they exhibit a broad spectrum of antimicrobial activity. A further benefit of lipopeptides is that they can be produced and purified biotechnologically or biochemically in a sustainable manner using readily available, affordable, renewable sources without harming the environment. In this review, we discuss the biochemical and functional characterization of antifungal lipopeptides, as well as their various modes of action, method of production and purification (in brief), and potential applications as novel antibiotic agents.


Anti-Infective Agents , Lipopeptides , Lipopeptides/metabolism , Antifungal Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Bacterial Agents/pharmacology , Pharmaceutical Preparations
15.
ACS Infect Dis ; 10(4): 1056-1079, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38470446

The polymyxins are nonribosomal lipopeptides produced by Paenibacillus polymyxa and are potent antibiotics with activity specifically directed against Gram-negative bacteria. While the clinical use of polymyxins has historically been limited due to their toxicity, their use is on the rise given the lack of alternative treatment options for infections due to multidrug resistant Gram-negative pathogens. The Gram-negative specificity of the polymyxins is due to their ability to target lipid A, the membrane embedded LPS anchor that decorates the cell surface of Gram-negative bacteria. Notably, the mechanisms responsible for polymyxin toxicity, and in particular their nephrotoxicity, are only partially understood with most insights coming from studies carried out in the past decade. In parallel, many synthetic and semisynthetic polymyxin analogues have been developed in recent years in an attempt to mitigate the nephrotoxicity of the natural products. Despite these efforts, to date, no polymyxin analogues have gained clinical approval. This may soon change, however, as at the moment there are three novel polymyxin analogues in clinical trials. In this context, this review provides an update of the most recent insights with regard to the structure-activity relationships and nephrotoxicity of new polymyxin variants reported since 2010. We also discuss advances in the synthetic methods used to generate new polymyxin analogues, both via total synthesis and semisynthesis.


Anti-Bacterial Agents , Polymyxins , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Polymyxins/pharmacology , Lipopeptides , Gram-Negative Bacteria , Structure-Activity Relationship
16.
Microb Pathog ; 190: 106604, 2024 May.
Article En | MEDLINE | ID: mdl-38490458

Early blight caused by Alternaria solani is a common foliar disease of potato around the world, and serious infections result in reduced yields and marketability due to infected tubers. The major aim of this study is to figure out the synergistic effect between microorganism and fungicides and to evaluate the effectiveness of Bacillus subtilis NM4 in the control of early blight in potato. Based on its colonial morphology and a 16S rRNA analysis, a bacterial antagonist isolated from kimchi was identified as B. subtilis NM4 and it has strong antifungal and anti-oomycete activity against several phytopathogenic fungi and oomycetes. The culture filtrate of strain NM4 with the fungicide effectively suppressed the mycelial growth of A. solani, with the highest growth inhibition rate of 83.48%. Although exposure to culture filtrate prompted hyphal alterations in A. solani, including bulging, combining it with the fungicide caused more severe hyphal damage with continuous bulging. Surfactins and fengycins, two lipopeptide groups, were isolated and identified as the main compounds in two fractions using LC-ESI-MS. Although the surfactin-containing fraction failed to inhibit growth, the fengycin-containing fraction, alone and in combination with chlorothalonil, restricted mycelial development, producing severe hyphal deformations with formation of chlamydospores. A pot experiment combining strain NM4, applied as a broth culture, with fungicide, at half the recommended concentration, resulted in a significant reduction in potato early blight severity. Our results indicate the feasibility of an integrated approach for the management of early blight in potato that can reduce fungicide application rates, promoting a healthy ecosystem in agriculture.


Alternaria , Bacillus subtilis , Fungicides, Industrial , Lipopeptides , Nitriles , Plant Diseases , Solanum tuberosum , Solanum tuberosum/microbiology , Plant Diseases/microbiology , Plant Diseases/prevention & control , Alternaria/drug effects , Alternaria/growth & development , Bacillus subtilis/drug effects , Bacillus subtilis/growth & development , Fungicides, Industrial/pharmacology , Nitriles/pharmacology , Lipopeptides/pharmacology , RNA, Ribosomal, 16S/genetics , Hyphae/drug effects , Hyphae/growth & development , Mycelium/drug effects , Mycelium/growth & development , Peptides, Cyclic/pharmacology
17.
J Dent ; 144: 104961, 2024 May.
Article En | MEDLINE | ID: mdl-38527516

OBJECTIVES: Lipopeptide Biosurfactant (LB) is a bacteria derived compound able to reduce surface tension between water and hydrophobic substances and exhibit antimicrobial and anti-biofilm properties. This study aimed to investigate the antimicrobial and anti-biofilm effect of a Lipopeptide Biosurfactant (LB) on Enterococcus faecalis, and its potential use in root canal treatment, either as a standalone irrigation solution or in conjunction with sodium hypochlorite (NaOCl). METHODS: LB was extracted from Bacillus clausii isolate and the dry extract was diluted in deionized water. The antimicrobial effect of LB against planktonic E. faecalis was evaluated by determining the Minimal Inhibitory Concentration (MIC50). The anti-biofilm effect was evaluated by Minimal Biofilm Inhibitory Concentration (MBIC50) and Minimal Biofilm Eradication Concentration (MBEC50) assays on biofilm grown on dentin specimen surface. To evaluate the effectiveness of LB as a single irrigation solution and as a pre-irrigation prior to NaOCl, live and dead bacterial cells were quantified using Confocal Laser Scanning Microscopy (CLSM), and cell biomass was assessed. RESULTS: LB exhibited an MIC50 and MBIC50 of 100 ppm, with an MBEC50 of 1000 ppm, resulting in 52.94 % biofilm inhibition and 60.95 % biofilm eradication on dentin specimens. The effectiveness was concentration-dependent, at 500 ppm, LB demonstrated comparable antimicrobial efficacy to 2.5 % NaOCl. Pre-irrigation with LB resulted in lower biofilm biomass compared to NaOCl alone. CONCLUSION: Pre-irrigation with LB enhanced the antimicrobial effect when followed by NaOCl irrigation. Consequently, LB shows promise as both a standalone root canal irrigation solution and as an adjunct to NaOCl in root canal treatment. CLINICAL SIGNIFICANCE: The study highlights the potential of Lipopeptide Biosurfactant (LB) as an environmentally friendly irrigation solution for root canal treatment, demonstrating potent antimicrobial and anti-biofilm properties against Enterococcus faecalis. LB exhibits concentration-dependent efficacy comparable to 2.5 % NaOCl and can be used as a standalone irrigation solution or in conjunction with NaOCl.


Biofilms , Enterococcus faecalis , Lipopeptides , Microbial Sensitivity Tests , Root Canal Irrigants , Sodium Hypochlorite , Surface-Active Agents , Biofilms/drug effects , Root Canal Irrigants/pharmacology , Enterococcus faecalis/drug effects , Surface-Active Agents/pharmacology , Sodium Hypochlorite/pharmacology , Lipopeptides/pharmacology , Humans , Microscopy, Confocal , Dentin/microbiology , Dentin/drug effects , Bacillus/drug effects , Dental Pulp Cavity/microbiology , Anti-Infective Agents/pharmacology , Anti-Bacterial Agents/pharmacology
18.
Microbiol Spectr ; 12(4): e0400823, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38451229

Biological control is a more sustainable and environmentally friendly alternative to chemical fungicides for controlling Fusarium spp. infestations. In this work, Bacillus siamensis Sh420 isolated from wheat rhizosphere showed a high antifungal activity against Fusarium graminearum as a secure substitute for fungicides. Sh420 was identified as B. siamensis using phenotypic evaluation and 16S rDNA gene sequence analysis. An in vitro antagonistic study showed that Sh420's lipopeptide (LP) extract exhibited strong antifungal properties and effectively combated F. graminearum. Meanwhile, lipopeptides have the ability to decrease ergosterol content, which has an impact on the overall structure and stability of the plasma membrane. The PCR-based screening revealed the presence of antifungal LP biosynthetic genes in this strain's genomic DNA. In the crude LP extract of Sh420, we were able to discover several LPs such as bacillomycin, iturins, fengycin, and surfactins using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Microscopic investigations (fluorescent/transmission electron microscopy) revealed deformities and alterations in the morphology of the phytopathogen upon interaction with LPs. Sh420 LPs have been shown in grape tests to be effective against F. graminearum infection and to stimulate antioxidant activity in fruits by avoiding rust and gray lesions. The overall findings of this study highlight the potential of Sh420 lipopeptides as an effective biological control agent against F. graminearum infestations.IMPORTANCEThis study addresses the potential of lipopeptide (LP) extracts obtained from the strain identified as Bacillus siamensis Sh420. This Sh420 isolate acts as a crucial player in providing a sustainable and environmentally friendly alternative to chemical fungicides for suppressing Fusarium graminearum phytopathogen. Moreover, these LPs can reduce ergosterol content in the phytopathogen influencing the overall structure and stability of its plasma membrane. PCR screening provided confirmation regarding the existence of genes responsible for biosynthesizing antifungal LPs in the genomic DNA of Sh420. Several antibiotic lipopeptide compounds were identified from this bacterial crude extract using ultra-high-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Microscopic investigations revealed deformities and alterations in the morphology of F. graminearum upon interaction with LPs. Furthermore, studies on fruit demonstrated the efficacy of Sh420 LPs in mitigating F. graminearum infection and stimulating antioxidant activity in fruits, preventing rust and gray lesions.


Bacillus , Fungicides, Industrial , Fusarium , Antifungal Agents/chemistry , Fusarium/genetics , Fungicides, Industrial/metabolism , Fungicides, Industrial/pharmacology , Antioxidants/pharmacology , Antioxidants/metabolism , Lipopolysaccharides/metabolism , Lipopeptides/pharmacology , DNA/metabolism , Ergosterol , Plant Diseases/prevention & control , Plant Diseases/microbiology
19.
J Agric Food Chem ; 72(14): 7943-7953, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38529919

Fusarium wilt is a worldwide soil-borne fungal disease caused by Fusarium oxysporum that causes serious damage to agricultural products. Therefore, preventing and treating fusarium wilt is of great significance. In this study, we purified ten single lipopeptide fengycin components from Bacillus subtilis FAJT-4 and found that C17 fengycin B inhibited the growth of F. oxysporum FJAT-31362. We observed early apoptosis hallmarks, including reactive oxygen species accumulation, mitochondrial dysfunction, and phosphatidylserine externalization in C17 fengycin B-treated F. oxysporum cells. Further data showed that C17 fengycin B induces cell apoptosis in a metacaspase-dependent manner. Importantly, we found that the expression of autophagy-related genes in the TOR signaling pathway was significantly upregulated; simultaneously, the accumulation of acidic autophagy vacuoles in F. oxysporum cell indicated that the autophagy pathway was activated during apoptosis induced by C17 fengycin B. Therefore, this study provides new insights into the antifungal mechanism of fengycin.


Antifungal Agents , Fusarium , Antifungal Agents/pharmacology , Antifungal Agents/metabolism , Lipopeptides/pharmacology , Lipopeptides/metabolism , Apoptosis , Plant Diseases/microbiology
20.
J Agric Food Chem ; 72(14): 7861-7869, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38546430

The extracellular substance of Bacillus has antibacterial effects inhibiting multiple foodborne pathogens and plays important roles in food production. This study found one Bacillus velezensis BVQ121 strain producing antibacterial lipopeptides (BVAL). After optimization of the fermentation conditions, the BVAL yield was the highest at 1.316 ± 0.03 g/L in reality with the initial pH 6.0, temperature 31 °C, and shaker speed 238 rpm when the optimal nitrogen and carbon sources were used in Landy medium for fermentation. The antibacterial components were identified as iturin, surfactin, and fengycin by HPLC and MALDI-TOF-MS. The MIC was at 2 mg/mL and MBC was at 5 mg/mL. The 6% weight ratio of nanocellulose dosage in chitosan solution could improve the tensile length and strength of the film, and the antibacterial performance was enhanced by the addition of BVAL. The addition of BVAL had no effect on the color and ductility of the film and improved its antibacterial effect. The shelf life of pigeon eggs can be extended by more than 10 days to resist bacterial infections after coating with the chitosan-nanocellulose-BVAL film solution.


Bacillus , Chitosan , Chitosan/pharmacology , Bacillus/chemistry , Anti-Bacterial Agents/pharmacology , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Lipopeptides/pharmacology , Lipopeptides/chemistry
...