Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.250
1.
Nat Commun ; 15(1): 4410, 2024 May 23.
Article En | MEDLINE | ID: mdl-38782979

Pancreatic ß cells secrete insulin in response to glucose elevation to maintain glucose homeostasis. A complex network of inter-organ communication operates to modulate insulin secretion and regulate glucose levels after a meal. Lipids obtained from diet or generated intracellularly are known to amplify glucose-stimulated insulin secretion, however, the underlying mechanisms are not completely understood. Here, we show that a Drosophila secretory lipase, Vaha (CG8093), is synthesized in the midgut and moves to the brain where it concentrates in the insulin-producing cells in a process requiring Lipid Transfer Particle, a lipoprotein originating in the fat body. In response to dietary fat, Vaha stimulates insulin-like peptide release (ILP), and Vaha deficiency results in reduced circulatory ILP and diabetic features including hyperglycemia and hyperlipidemia. Our findings suggest Vaha functions as a diacylglycerol lipase physiologically, by being a molecular link between dietary fat and lipid amplified insulin secretion in a gut-brain axis.


Brain , Drosophila Proteins , Drosophila melanogaster , Insulin Secretion , Insulin , Animals , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Brain/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Brain-Gut Axis/physiology , Lipase/metabolism , Lipase/genetics , Dietary Fats/metabolism , Glucose/metabolism , Fat Body/metabolism , Lipoprotein Lipase/metabolism , Lipoprotein Lipase/genetics , Male
3.
BMC Endocr Disord ; 24(1): 47, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622573

BACKGROUND: Familial chylomicronemia syndrome (FCS) is a rare monogenic form of severe hypertriglyceridemia, caused by mutations in genes involved in triglyceride metabolism. Herein, we report the case of a Korean family with familial chylomicronemia syndrome caused by compound heterozygous deletions of glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 (GPIHBP1). CASE PRESENTATION: A 4-year-old boy was referred for the evaluation of severe hypertriglyceridemia (3734 mg/dL) that was incidentally detected 4 months prior. His elder brother also demonstrated an elevated triglyceride level of 2133 mg/dL at the age of 9. Lipoprotein electrophoresis revealed the presence of chylomicrons, an increase in the proportion of pre-beta lipoproteins, and low serum lipoprotein lipase levels. The patient's parents and first elder brother had stable lipid profiles. For suspected FCS, genetic testing was performed using the next-generation sequencing-based analysis of 31 lipid metabolism-associated genes, which revealed no pathogenic variants. However, copy number variant screening using sequencing depth information suggested large heterozygous deletion encompassing all the coding exons of GPIHBP1. A real-time quantitative polymerase chain reaction was performed to validate the deletion site. The results showed that the siblings had two heterozygous copy number variants consisting of the whole gene and an exon 4 deletion, each inherited from their parents. During the follow-up period of 17 months, the patient did not develop pancreatitis, following dietary intervention. CONCLUSION: These siblings' case of familial chylomicronemia syndrome caused by rare GPIHBP1 deletions highlight the implementation of copy number variants-beyond next-generation sequencing-as an important consideration in diagnosis. Accurate genetic diagnosis is necessary to establish the etiology of severe hypertriglyceridemia, which increases the risk of pancreatitis.


Hyperlipoproteinemia Type I , Hypertriglyceridemia , Pancreatitis , Receptors, Lipoprotein , Child, Preschool , Humans , Male , Hyperlipoproteinemia Type I/diagnosis , Hyperlipoproteinemia Type I/genetics , Hypertriglyceridemia/etiology , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Receptors, Lipoprotein/genetics , Receptors, Lipoprotein/chemistry , Receptors, Lipoprotein/metabolism , Siblings , Triglycerides , Child
4.
Lipids Health Dis ; 23(1): 92, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561841

BACKGROUND: Lipoprotein lipase (LPL) plays a crucial role in triglyceride hydrolysis. Rare biallelic variants in the LPL gene leading to complete or near-complete loss of function cause autosomal recessive familial chylomicronemia syndrome. However, rare biallelic LPL variants resulting in significant but partial loss of function are rarely documented. This study reports a novel occurrence of such rare biallelic LPL variants in a Chinese patient with hypertriglyceridemia-induced acute pancreatitis (HTG-AP) during pregnancy and provides an in-depth functional characterization. METHODS: The complete coding sequences and adjacent intronic regions of the LPL, APOC2, APOA5, LMF1, and GPIHBP1 genes were analyzed by Sanger sequencing. The aim was to identify rare variants, including nonsense, frameshift, missense, small in-frame deletions or insertions, and canonical splice site mutations. The functional impact of identified LPL missense variants on protein expression, secretion, and activity was assessed in HEK293T cells through single and co-transfection experiments, with and without heparin treatment. RESULTS: Two rare LPL missense variants were identified in the patient: the previously reported c.809G > A (p.Arg270His) and a novel c.331G > C (p.Val111Leu). Genetic testing confirmed these variants were inherited biallelically. Functional analysis showed that the p.Arg270His variant resulted in a near-complete loss of LPL function due to effects on protein synthesis/stability, secretion, and enzymatic activity. In contrast, the p.Val111Leu variant retained approximately 32.3% of wild-type activity, without impacting protein synthesis, stability, or secretion. Co-transfection experiments indicated a combined activity level of 20.7%, suggesting no dominant negative interaction between the variants. The patient's post-heparin plasma LPL activity was about 35% of control levels. CONCLUSIONS: This study presents a novel case of partial but significant loss-of-function biallelic LPL variants in a patient with HTG-AP during pregnancy. Our findings enhance the understanding of the nuanced relationship between LPL genotypes and clinical phenotypes, highlighting the importance of residual LPL function in disease manifestation and severity. Additionally, our study underscores the challenges in classifying partial loss-of-function variants in classical Mendelian disease genes according to the American College of Medical Genetics and Genomics (ACMG)'s variant classification guidelines.


Hyperlipidemias , Hypertriglyceridemia , Pancreatitis , Humans , Lipoprotein Lipase/genetics , Acute Disease , HEK293 Cells , Pancreatitis/genetics , Heparin
5.
Pharmacogenet Genomics ; 34(4): 91-104, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38682317

OBJECTIVES: This study explored the association of deleterious variants in pharmacodynamics (PD) genes with statin response and adverse effects in patients with familial hypercholesterolemia (FH) and analyzed their potential effects on protein structure and stability. METHODS: Clinical and laboratory data were obtained from 144 adult FH patients treated with statins. A panel of 32 PD genes was analyzed by exon-targeted gene sequencing. Deleterious variants were identified using prediction algorithms and their structural effects were analyzed by molecular modeling studies. RESULTS: A total of 102 variants were predicted as deleterious (83 missense, 8 stop-gain, 4 frameshift, 1 indel, 6 splicing). The variants ABCA1 rs769705621 (indel), LPA rs41267807 (p.Tyr2023Cys) and KIF6 rs20455 (p.Trp719Arg) were associated with reduced low-density lipoprotein cholesterol (LDLc) response to statins, and the LPL rs1801177 (p.Asp36Asn) with increased LDLc response (P < 0.05). LPA rs3124784 (p.Arg2016Cys) was predicted to increase statin response (P = 0.022), and ABCA1 rs769705621 to increase the risk of statin-related adverse events (SRAE) (P = 0.027). LPA p.Arg2016Cys and LPL p.Asn36Asp maintained interactions with solvent, LPA p.Tyr2023Cys reduced intramolecular interaction with Gln1987, and KIF6 p.Trp719Arg did not affect intramolecular interactions. DDMut analysis showed that LPA p.Arg2016Cys and p.Tyr2023Cys and LPL p.Asp36Asn caused energetically favorable changes, and KIF6 p.Trp719Arg resulted in unfavorable energetic changes, affecting protein stability. CONCLUSION: Deleterious variants in ABCA1, LPA, LPL and KIF6 are associated with variability in LDLc response to statins, and ABCA1 rs769705621 is associated with SRAE risk in FH patients. Molecular modeling studies suggest that LPA p.Tyr2023Cys and KIF6 p.Trp719Arg disturb protein conformational structure and stability.


ATP Binding Cassette Transporter 1 , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Hyperlipoproteinemia Type II , Kinesins , Lipoprotein Lipase , Humans , Kinesins/genetics , Male , Female , Middle Aged , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Hyperlipoproteinemia Type II/genetics , Hyperlipoproteinemia Type II/drug therapy , ATP Binding Cassette Transporter 1/genetics , Lipoprotein Lipase/genetics , Adult , Protein Stability , Cholesterol, LDL/blood , Polymorphism, Single Nucleotide
6.
Arch Endocrinol Metab ; 68: e230195, 2024 Mar 15.
Article En | MEDLINE | ID: mdl-38530959

Objective: The study aims to explore the relationship between lipoprotein lipase (LPL) variants and hyperlipidemic acute pancreatitis (HLAP) in the southeastern Chinese population. Subjects and methods: In total, 80 participants were involved in this study (54 patients with HLAP and 26 controls). All coding regions and intron-exon boundaries of the LPL gene were sequenced. The correlations between variants and phenotypes were also analysed. Results: The rate of rare LPL variants in the HLAP group is 14.81% (8 of 54), higher than in controls. Among the detected four variants (rs3735959, rs371282890, rs761886494 and rs761265900), the most common variant was rs371282890. Further analysis demonstrated that subjects with rs371282890 "GC" genotype had a 2.843-fold higher risk for HLAP (odds ratio [OR]: 2.843, 95% confidence interval [CI]: 1.119-7.225, p = 0.028) than subjects with the "CC" genotype. After adjusting for sex, the association remained significant (adjusted OR: 3.083, 95% CI: 1.208-7.869, p = 0.018). Subjects with rs371282890 "GC" genotype also exhibited significantly elevated total cholesterol, triglyceride and non-high-density lipoprotein cholesterol levels in all the participants and the HLAP group (p < 0.05). Conclusion: Detecting rare variants in LPL might be valuable for identifying higher-risk patients with HLAP and guiding future individualised therapeutic strategies.


Pancreatitis , Humans , Acute Disease , China/epidemiology , Genotype , Lipoprotein Lipase/genetics , Pancreatitis/diagnosis , Pancreatitis/genetics , Triglycerides
7.
J Lipid Res ; 65(4): 100526, 2024 Apr.
Article En | MEDLINE | ID: mdl-38431115

ANGPTL4 is an attractive pharmacological target for lowering plasma triglycerides and cardiovascular risk. Since most preclinical studies on ANGPTL4 were performed in male mice, little is known about sexual dimorphism in ANGPTL4 regulation and function. Here, we aimed to study potential sexual dimorphism in ANGPTL4 mRNA and protein levels and ANGPTL4 function. Additionally, we performed exploratory studies on the function of ANGPTL4 in the liver during fasting using Angptl4-transgenic and Angptl4-/- mice. Compared to female mice, male mice showed higher hepatic and adipose ANGPTL4 mRNA and protein levels, as well as a more pronounced effect of genetic ANGPTL4 modulation on plasma lipids. By contrast, very limited sexual dimorphism in ANGPTL4 levels was observed in human liver and adipose tissue. In human and mouse adipose tissue, ANGPTL8 mRNA and/or protein levels were significantly higher in females than males. Adipose LPL protein levels were higher in female than male Angptl4-/- mice, which was abolished by ANGPTL4 (over) expression. At the human genetic level, the ANGPTL4 E40K loss-of-function variant was associated with similar plasma triglyceride reductions in women and men. Finally, ANGPTL4 ablation in fasted mice was associated with changes in hepatic gene expression consistent with PPARα activation. In conclusion, the levels of ANGPTL4 and the magnitude of the effect of ANGPTL4 on plasma lipids exhibit sexual dimorphism. Nonetheless, inactivation of ANGPTL4 should confer a similar metabolic benefit in women and men. Expression levels of ANGPTL8 in human and mouse adipose tissue are highly sexually dimorphic, showing higher levels in females than males.


Adipose Tissue , Angiopoietin-Like Protein 4 , Liver , Peptide Hormones , Sex Characteristics , Animals , Male , Female , Humans , Angiopoietin-Like Protein 4/metabolism , Angiopoietin-Like Protein 4/genetics , Mice , Liver/metabolism , Adipose Tissue/metabolism , Angiopoietins/genetics , Angiopoietins/metabolism , Angiopoietin-Like Protein 8 , Triglycerides/blood , Triglycerides/metabolism , Mice, Knockout , RNA, Messenger/metabolism , RNA, Messenger/genetics , Lipoprotein Lipase/metabolism , Lipoprotein Lipase/genetics , Mice, Inbred C57BL
8.
Nutr J ; 23(1): 30, 2024 Mar 02.
Article En | MEDLINE | ID: mdl-38429792

BACKGROUND: Metabolic syndrome (MetS), a cluster of metabolic and cardiovascular risk factors is influenced by environmental, lifestyle, and genetic factors. We explored whether coffee consumption and the rs301 variant of the lipoprotein lipase (LPL) gene are related to MetS. METHODS: We conducted multiple logistic regression analyses using data gathered from 9523 subjects in Taiwan Biobank (TWB). RESULTS: Our findings indicated that individuals who consumed coffee had a reduced odds ratio (OR) for MetS (0.750 (95% confidence interval [CI] 0.653-0.861) compared to non-coffee drinkers. Additionally, the risk of MetS was lower for individuals with the 'TC' and 'CC' genotypes of rs301 compared to those with the 'TT' genotype. Specifically, the OR for MetS was 0.827 (95% CI 0.721-0.949) for the 'TC' genotype and 0.848 (95% CI 0.610-1.177) for the 'CC' genotype. We observed an interaction between coffee consumption and the rs301 variant, with a p-value for the interaction of 0.0437. Compared to the reference group ('no coffee drinking/TT'), the ORs for MetS were 0.836 (95% CI 0.706-0.992) for 'coffee drinking/TT', 0.557 (95% CI 0.438-0.707) for 'coffee drinking/TC', and 0.544 (95% CI 0.319-0.927) for 'coffee drinking/CC'. Notably, MetS was not observed in non-coffee drinkers regardless of their rs301 genotype. CONCLUSION: Our findings suggest that rs301 genotypes may protect against MetS in Taiwanese adults who consume coffee compared to non-coffee drinkers.


Coffee , Lipoprotein Lipase , Metabolic Syndrome , Adult , Humans , Genotype , Life Style , Metabolic Syndrome/epidemiology , Metabolic Syndrome/genetics , Risk Factors , Taiwan , East Asian People , Lipoprotein Lipase/genetics
9.
Mol Genet Metab ; 142(1): 108347, 2024 May.
Article En | MEDLINE | ID: mdl-38401382

RATIONALE: Lipoprotein lipase (LPL) deficiency, a rare inherited metabolic disorder, is characterized by high triglyceride (TG) levels and life-threatening acute pancreatitis. Current treatment for pediatric patients involves a lifelong severely fat-restricted diet, posing adherence challenges. Volanesorsen, an EMA-approved RNA therapy for adults, effectively reduces TG levels by decreasing the production of apolipoprotein C-III. This 96-week observational open-label study explores Volanesorsen's safety and efficacy in a 13-year-old female with LPL deficiency. METHODS: The patient, with a history of severe TG elevations, 53 hospital admissions, and life-threatening recurrent pancreatitis despite dietary restrictions, received weekly subcutaneous Volanesorsen injections. We designed a protocol for this investigator-initiated study, primarily focusing on changes in fasting TG levels and hospital admissions. RESULTS: While the injections caused occasional pain and swelling, no other adverse events were observed. TG levels decreased during treatment, with more measurements below the pancreatitis risk threshold compared to pre-treatment. No hospital admissions occurred in the initial 14 months of treatment, contrasting with 21 admissions in the 96 weeks before. In the past 10 months, two pancreatitis episodes may have been linked to dietary noncompliance. Dietary restrictions were relaxed, increasing fat intake by 65% compared to baseline. While not fully reflected in the PedsQL, both parents and the patient narratively reported an improved quality of life. CONCLUSION: This study demonstrates, for the first time, that Volanesorsen is tolerated in a pediatric patient with severe LPL deficiency and effectively lowers TG levels, preventing life-threatening complications. This warrants consideration for expanded access in this population.


Hyperlipoproteinemia Type I , Oligonucleotides , Pancreatitis , Triglycerides , Humans , Female , Adolescent , Hyperlipoproteinemia Type I/drug therapy , Hyperlipoproteinemia Type I/genetics , Pancreatitis/drug therapy , Triglycerides/blood , Lipoprotein Lipase/genetics , Lipoprotein Lipase/deficiency , Treatment Outcome , Apolipoprotein C-III
10.
Endocr J ; 71(5): 447-460, 2024 May 23.
Article En | MEDLINE | ID: mdl-38346769

Severe hypertriglyceridemia is a pathological condition caused by genetic factors alone or in combination with environmental factors, sometimes leading to acute pancreatitis (AP). In this study, exome sequencing and biochemical analyses were performed in 4 patients with hypertriglyceridemia complicated by obesity or diabetes with a history of AP or decreased post-heparin LPL mass. In a patient with a history of AP, SNP rs199953320 resulting in LMF1 nonsense mutation and APOE rs7412 causing apolipoprotein E2 were both found in heterozygous form. Three patients were homozygous for APOA5 rs2075291, and one was heterozygous. ELISA and Western blot analysis of the serum revealed the existence of apolipoprotein A-V in the lipoprotein-free fraction regardless of the presence or absence of rs2075291; furthermore, the molecular weight of apolipoprotein A-V was different depending on the class of lipoprotein or lipoprotein-free fraction. Lipidomics analysis showed increased serum levels of sphingomyelin and many classes of glycerophospholipid; however, when individual patients were compared, the degree of increase in each class of phospholipid among cases did not coincide with the increases seen in total cholesterol and triglycerides. Moreover, phosphatidylcholine, lysophosphatidylinositol, and sphingomyelin levels tended to be higher in patients who experienced AP than those who did not, suggesting that these phospholipids may contribute to the onset of AP. In summary, this study revealed a new disease-causing gene mutation in LMF1, confirmed an association between overlapping of multiple gene mutations and severe hypertriglyceridemia, and suggested that some classes of phospholipid may be involved in the pathogenesis of AP.


Apolipoprotein A-V , Hypertriglyceridemia , Lipoprotein Lipase , Pancreatitis , Humans , Pancreatitis/genetics , Pancreatitis/blood , Lipoprotein Lipase/genetics , Lipoprotein Lipase/blood , Hypertriglyceridemia/genetics , Hypertriglyceridemia/complications , Hypertriglyceridemia/blood , Male , Female , Middle Aged , Adult , Apolipoprotein A-V/genetics , Apolipoproteins E/genetics , Polymorphism, Single Nucleotide , Exome Sequencing , Obesity/complications , Obesity/genetics , Obesity/blood , Acute Disease , Triglycerides/blood , Membrane Proteins
11.
Lipids Health Dis ; 23(1): 44, 2024 Feb 08.
Article En | MEDLINE | ID: mdl-38331899

BACKGROUND AND AIMS: To study the role of gene mutations in the development of severe hypertriglyceridemia (HTG) in patients with hyperlipidemic acute pancreatitis (HLAP), especially different apolipoprotein A5 (APOA5) mutations. METHODS: Whole-exome sequencing was performed on 163 patients with HLAP and 30 patients with biliary acute pancreatitis (BAP). The pathogenicity of mutations was then assessed by combining clinical information, predictions of bioinformatics programs, information from multiple gene databases, and residue location and conservation. The pathogenic mutations of APOA5 were visualized using the software. RESULTS: 1. Compared with BAP patients, pathogenic mutations of APOA5 were frequent in HLAP patients; among them, the heterozygous mutation of p.G185C was the most common. 2. All six pathogenic mutations of APOA5 identified in this study (p.S35N, p.D167V, p.G185C, p.K188I, p.R223C, and p.H182fs) were positively correlated with severe HTG; they were all in the important domains of apolipoprotein A-V (apoA-V). Residue 223 is strictly conserved in multiple mammals and is located in the lipoprotein lipase (LPL)-binding domain (Pro215-Phe261). When Arg 223 is mutated to Cys 223, the positive charge of this residue is reduced, which is potentially destructive to the binding function of apoA-V to LPL. 3. Four new APOA5 mutations were identified, namely c.563A > T, c.667C > T, c.788G > A, and c.544_545 insGGTGC. CONCLUSIONS: The pathogenic mutations of APOA5 were specific to the patients with HLAP and severe HTG in China, and identifying such mutations had clinical significance in elucidating the etiology and subsequent treatment.


Hypertriglyceridemia , Pancreatitis , Humans , Apolipoprotein A-V/genetics , Apolipoproteins A/genetics , Apolipoproteins A/metabolism , Acute Disease , Pancreatitis/genetics , Lipoprotein Lipase/genetics , Hypertriglyceridemia/complications , Hypertriglyceridemia/genetics , Mutation
12.
Genes (Basel) ; 15(2)2024 Jan 30.
Article En | MEDLINE | ID: mdl-38397180

Hypertriglyceridemia is an exceptionally complex metabolic disorder characterized by elevated plasma triglycerides associated with an increased risk of acute pancreatitis and cardiovascular diseases such as coronary artery disease. Its phenotype expression is widely heterogeneous and heavily influenced by conditions as obesity, alcohol consumption, or metabolic syndromes. Looking into the genetic underpinnings of hypertriglyceridemia, this review focuses on the genetic variants in LPL, APOA5, APOC2, GPIHBP1 and LMF1 triglyceride-regulating genes reportedly associated with abnormal genetic transcription and the translation of proteins participating in triglyceride-rich lipoprotein metabolism. Hypertriglyceridemia resulting from such genetic abnormalities can be categorized as monogenic or polygenic. Monogenic hypertriglyceridemia, also known as familial chylomicronemia syndrome, is caused by homozygous or compound heterozygous pathogenic variants in the five canonical genes. Polygenic hypertriglyceridemia, also known as multifactorial chylomicronemia syndrome in extreme cases of hypertriglyceridemia, is caused by heterozygous pathogenic genetic variants with variable penetrance affecting the canonical genes, and a set of common non-pathogenic genetic variants (polymorphisms, using the former nomenclature) with well-established association with elevated triglyceride levels. We further address recent progress in triglyceride-lowering treatments. Understanding the genetic basis of hypertriglyceridemia opens new translational opportunities in the scope of genetic screening and the development of novel therapies.


Hypertriglyceridemia , Pancreatitis , Humans , Lipoprotein Lipase/genetics , Acute Disease , Pancreatitis/genetics , Hypertriglyceridemia/genetics , Hypertriglyceridemia/complications , Triglycerides/genetics
13.
J Clin Lipidol ; 18(1): e80-e89, 2024.
Article En | MEDLINE | ID: mdl-37981531

BACKGROUND: Severe hypertriglyceridemia can be caused by pathogenic variants in genes encoding proteins involved in the metabolism of triglyceride-rich lipoproteins. A key protein in this respect is lipoprotein lipase (LPL) which hydrolyzes triglycerides in these lipoproteins. Another important protein is glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) which transports LPL to the luminal side of the endothelial cells. OBJECTIVE: Our objective was to identify a genetic cause of hypertriglyceridemia in 459 consecutive unrelated subjects with levels of serum triglycerides ≥20 mmol/l. These patients had been referred for molecular genetic testing from 1998 to 2021. In addition, we wanted to study whether GPIHBP1 autoantibodies also were a cause of hypertriglyceridemia. METHODS: Molecular genetic analyses of the genes encoding LPL, GPIHBP1, apolipoprotein C2, lipase maturation factor 1 and apolipoprotein A5 as well as apolipoprotein E genotyping, were performed in all 459 patients. Serum was obtained from 132 of the patients for measurement of GPIHBP1 autoantibodies approximately nine years after molecular genetic testing was performed. RESULTS: A monogenic cause was found in four of the 459 (0.9%) patients, and nine (2.0%) patients had dyslipoproteinemia due to homozygosity for apolipoprotein E2. One of the 132 (0.8%) patients had GPIHBP1 autoantibody syndrome. CONCLUSION: Only 0.9% of the patients had monogenic hypertriglyceridemia, and only 0.8% had GPIHBP1 autoantibody syndrome. The latter figure is most likely an underestimate because serum samples were obtained approximately nine years after hypertriglyceridemia was first identified. There is a need to implement measurement of GPIHBP1 autoantibodies in clinical medicine to secure that proper therapeutic actions are taken.


Hypertriglyceridemia , Receptors, Lipoprotein , Humans , Autoantibodies , Endothelial Cells , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Lipoproteins , Hypertriglyceridemia/genetics , Triglycerides/metabolism , Molecular Biology , Apolipoproteins
14.
Mol Ther ; 32(1): 59-73, 2024 Jan 03.
Article En | MEDLINE | ID: mdl-37974401

GPIHBP1 plays an important role in the hydrolysis of triglyceride (TG) lipoproteins by lipoprotein lipases (LPLs). However, Gpihbp1 knockout mice did not develop hypertriglyceridemia (HTG) during the suckling period but developed severe HTG after weaning on a chow diet. It has been postulated that LPL expression in the liver of suckling mice may be involved. To determine whether hepatic LPL expression could correct severe HTG in Gpihbp1 deficiency, liver-targeted LPL expression was achieved via intravenous administration of the adeno-associated virus (AAV)-human LPL gene, and the effects of AAV-LPL on HTG and HTG-related acute pancreatitis (HTG-AP) were observed. Suckling Gpihbp1-/- mice with high hepatic LPL expression did not develop HTG, whereas Gpihbp1-/- rat pups without hepatic LPL expression developed severe HTG. AAV-mediated liver-targeted LPL expression dose-dependently decreased plasma TG levels in Gpihbp1-/- mice and rats, increased post-heparin plasma LPL mass and activity, decreased mortality in Gpihbp1-/- rat pups, and reduced the susceptibility and severity of both Gpihbp1-/- animals to HTG-AP. However, the muscle expression of AAV-LPL had no significant effect on HTG. Targeted expression of LPL in the liver showed no obvious adverse reactions. Thus, liver-targeted LPL expression may be a new therapeutic approach for HTG-AP caused by GPIHBP1 deficiency.


Hypertriglyceridemia , Pancreatitis , Receptors, Lipoprotein , Animals , Humans , Mice , Rats , Acute Disease , Dependovirus/genetics , Dependovirus/metabolism , Hypertriglyceridemia/genetics , Hypertriglyceridemia/therapy , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Liver/metabolism , Pancreatitis/genetics , Pancreatitis/therapy , Pancreatitis/metabolism , Receptors, Lipoprotein/genetics , Receptors, Lipoprotein/metabolism , Triglycerides/metabolism
15.
J Lipid Res ; 65(2): 100495, 2024 02.
Article En | MEDLINE | ID: mdl-38160757

Angiopoietin-like protein (ANGPTL) complexes 3/8 and 4/8 are established inhibitors of LPL and novel therapeutic targets for dyslipidemia. However, the effects of regular exercise on ANGPTL3/8 and ANGPTL4/8 are unknown. We characterized ANGPTL3/8 and ANGPTL4/8 and their relationship with in vivo measurements of lipase activities and cardiometabolic traits before and after a 5-month endurance exercise training intervention in 642 adults from the HERITAGE (HEalth, RIsk factors, exercise Training And GEnetics) Family Study. At baseline, higher levels of both ANGPTL3/8 and ANGPTL4/8 were associated with a worse lipid, lipoprotein, and cardiometabolic profile, with only ANGPTL3/8 associated with postheparin LPL and HL activities. ANGPTL3/8 significantly decreased with exercise training, which corresponded with increases in LPL activity and decreases in HL activity, plasma triglycerides, apoB, visceral fat, and fasting insulin (all P < 5.1 × 10-4). Exercise-induced changes in ANGPTL4/8 were directly correlated to concomitant changes in total cholesterol, LDL-C, apoB, and HDL-triglycerides and inversely related to change in insulin sensitivity index (all P < 7.0 × 10-4). In conclusion, exercise-induced decreases in ANGPTL3/8 and ANGPTL4/8 were related to concomitant improvements in lipase activity, lipid profile, and cardiometabolic risk factors. These findings reveal the ANGPTL3-4-8 model as a potential molecular mechanism contributing to adaptations in lipid metabolism in response to exercise training.


Angiopoietin-Like Protein 3 , Cardiovascular Diseases , Adult , Humans , Angiopoietin-like Proteins/metabolism , Triglycerides/metabolism , Lipase , Exercise , Apolipoproteins B , Lipoprotein Lipase/genetics , Angiopoietin-Like Protein 4
16.
Zhongguo Dang Dai Er Ke Za Zhi ; 25(12): 1293-1298, 2023 Dec 15.
Article Zh | MEDLINE | ID: mdl-38112150

This report presents a case of a male infant, aged 32 days, who was admitted to the hospital due to 2 days of bloody stools and 1 day of fever. Upon admission, venous blood samples were collected, which appeared pink. Blood biochemistry tests revealed elevated levels of triglycerides and total cholesterol. The familial whole genome sequencing revealed a compound heterozygous variation in the LPL gene, with one variation inherited from the father and the other from the mother. The patient was diagnosed with lipoprotein lipase deficiency-related hyperlipoproteinemia. Acute symptoms including bloody stools, fever, and bloody ascites led to the consideration of acute pancreatitis, and the treatment involved fasting, plasma exchange, and whole blood exchange. Following the definitive diagnosis based on the genetic results, the patient was given a low-fat diet and received treatment with fat-soluble vitamins and trace elements, as well as adjustments to the feeding plan. After a 4-week hospitalization, the patient's condition improved and he was discharged. Follow-up showed a decrease in triglycerides and total cholesterol levels. At the age of 1 year, the patient's growth and psychomotor development were normal. This article emphasizes the multidisciplinary diagnosis and treatment of familial hyperlipoproteinemia presenting with symptoms suggestive of acute pancreatitis, including bloody ascites, in the neonatal period.


Hyperlipoproteinemia Type I , Hyperlipoproteinemias , Pancreatitis , Humans , Infant , Male , Acute Disease , Ascites , Cholesterol , Hyperlipoproteinemia Type I/diagnosis , Hyperlipoproteinemia Type I/genetics , Lipoprotein Lipase/genetics , Triglycerides
17.
J Obes ; 2023: 7392513, 2023.
Article En | MEDLINE | ID: mdl-37901192

Obesity develops largely due to genetic factors, with the genetic polymorphism of lipid metabolism enzymes being of particular importance. However, it is still unclear how the genetic variants of one of the key enzymes in lipid transport, lipoprotein lipase (LPL), are associated with the endocrine function of mesenchymal tissues in obesity. The current study was aimed at the investigation of the LPL rs328 gene variant association with adipokines and myokines levels, as well as lipid metabolism indices in the blood of children and adolescents of both genders with obesity. We found that LPL polymorphism rs328 is not characterized by the differences in the levels of hormones, adipokines, and myokines and in the blood of healthy children and adolescents; however, it significantly affects these indices during obesity in gender-dependent manner. The shifts in hormones, adipokines, and myokines manifest mostly in the obese individuals with Ser447Ser genotype rather than with 447Ter genotype. Obese boys homozygous for Ser447Ser have more elevated leptin levels than girls. They also demonstrate lower adiponectin, apelin, prolactin, and osteocrine levels than those in obese girls with the same genotype. The gender-based differences are less pronounced in individuals with 447Ter genotype than in the homozygotes for 447Ser. Thus, we conclude that the polymorphism rs328 of the lipoprotein lipase gene is accompanied by the changes in hormones, adipokines, and myokines levels in the blood of children and adolescents with obesity in gender-dependent manner.


Lipoprotein Lipase , Pediatric Obesity , Adolescent , Child , Female , Humans , Male , Adipokines/blood , Adiponectin , Genotype , Lipoprotein Lipase/genetics , Pediatric Obesity/genetics
18.
Fish Physiol Biochem ; 49(6): 1229-1239, 2023 Dec.
Article En | MEDLINE | ID: mdl-37843716

Lipoprotein lipase (LPL) functions as a marker of adipocyte differentiation in mammals, but little is known about its role in fish adipogenesis. The aim of this research is to investigate the function of Lpl in adipocyte differentiation in fish. In this paper, we isolated and characterized lipoprotein lipase a (lpla) and lipoprotein lipase b (lplb) from grass carp (Ctenopharyngodon idellus). The complete coding sequence of lpla and lplb was 1524 bp and 1503 bp in length, coding for 507 amino acids and 500 amino acids, respectively. Both lpla and lplb mRNA were expressed in a great number of tissues. During adipogenesis, the level of lpla mRNA reached its maximum at day 2 and then dropped gradually, while the level of lplb mRNA had no significant changes, indicating that lpla and lplb may have different function in the differentiation of grass carp adipocyte. Furthermore, inhibition of lpla by inhibitor of LPL(GSK264220A) at early time points most clearly reduced adipogenesis, whereas these effects were less pronounced at later stages, suggesting that lpla predominantly affects early adipogenesis rather than late adipogenesis. Based on these findings, it can be inferred that lpla and lplb in grass carp may have distinct roles in the differentiation of grass carp adipocyte, and lpla may play an important role in the early adipogenesis rather than late adipogenesis in grass carp.


Adipogenesis , Carps , Animals , Lipoprotein Lipase/genetics , Carps/genetics , Carps/metabolism , RNA, Messenger/metabolism , Amino Acids , Fish Proteins/metabolism , Mammals/genetics , Mammals/metabolism
19.
J Clin Lipidol ; 17(6): 808-817, 2023.
Article En | MEDLINE | ID: mdl-37858495

BACKGROUND: Lipoprotein lipase (LPL) deficiency, the most common familial chylomicronemia syndrome (FCS), is a rare autosomal recessive disease characterized by chylomicronemia and severe hypertriglyceridemia (HTG), with limited clinical and genetic characterization. OBJECTIVE: To describe the manifestations and management of 19 pediatric patients with LPL-FCS. METHODS: LPL-FCS patients from 2014 to 2022 were divided into low-fat (LF), very-low-fat (VLF) and medium-chain-triglyceride (MCT) groups. Their clinical data were evaluated to investigate the effect of different diets. The genotype-phenotype relationship was assessed. Linear regression comparing long-chain triglyceride (LCT) intake and TG levels was analyzed. RESULTS: Nine novel LPL variants were identified in 19 LPL-FCS pediatric patients. At baseline, eruptive xanthomas occurred in 3/19 patients, acute pancreatitis in 2/19, splenomegaly in 6/19 and hepatomegaly in 3/19. The median triglyceride (TG) level (30.3 mmol/L) was markedly increased. The MCT group and VLF group with LCT intakes <20 en% (energy percentage) had considerably lower TG levels than the LF group (both p<0.05). The LF group presented with severe HTG and significantly decreased TG levels after restricting LCT intakes to <20 en% (p<0.05). Six infants decreased TG levels to <10 mmol/L by keeping LCT intake <10 en%. TG levels and LCT intake were positively correlated in both patients under 2 years (r=0.84) and those aged 2-9 years (r=0.89). No genotype-phenotype relationship was observed. CONCLUSIONS: This study broadens the clinical and genetic spectra of LPL-FCS. The primary therapy for LPL-FCS pediatric patients is restricting dietary LCTs to <10 en% or <20 en% depending on different ages. MCTs potentially provide extra energy.


Hyperlipoproteinemia Type I , Hypertriglyceridemia , Pancreatitis , Infant , Humans , Child , Hyperlipoproteinemia Type I/therapy , Hyperlipoproteinemia Type I/drug therapy , Acute Disease , Genetic Profile , Pancreatitis/genetics , Hypertriglyceridemia/genetics , Triglycerides , China , Lipoprotein Lipase/genetics
20.
J Clin Invest ; 133(23)2023 Dec 01.
Article En | MEDLINE | ID: mdl-37824203

Why apolipoprotein AV (APOA5) deficiency causes hypertriglyceridemia has remained unclear, but we have suspected that the underlying cause is reduced amounts of lipoprotein lipase (LPL) in capillaries. By routine immunohistochemistry, we observed reduced LPL staining of heart and brown adipose tissue (BAT) capillaries in Apoa5-/- mice. Also, after an intravenous injection of LPL-, CD31-, and GPIHBP1-specific mAbs, the binding of LPL Abs to heart and BAT capillaries (relative to CD31 or GPIHBP1 Abs) was reduced in Apoa5-/- mice. LPL levels in the postheparin plasma were also lower in Apoa5-/- mice. We suspected that a recent biochemical observation - that APOA5 binds to the ANGPTL3/8 complex and suppresses its capacity to inhibit LPL catalytic activity - could be related to the low intracapillary LPL levels in Apoa5-/- mice. We showed that an ANGPTL3/8-specific mAb (IBA490) and APOA5 normalized plasma triglyceride (TG) levels and intracapillary LPL levels in Apoa5-/- mice. We also showed that ANGPTL3/8 detached LPL from heparan sulfate proteoglycans and GPIHBP1 on the surface of cells and that the LPL detachment was blocked by IBA490 and APOA5. Our studies explain the hypertriglyceridemia in Apoa5-/- mice and further illuminate the molecular mechanisms that regulate plasma TG metabolism.


Apolipoprotein A-V , Hypertriglyceridemia , Receptors, Lipoprotein , Animals , Mice , Capillaries/metabolism , Hypertriglyceridemia/genetics , Hypertriglyceridemia/metabolism , Lipoprotein Lipase/genetics , Lipoprotein Lipase/metabolism , Receptors, Lipoprotein/genetics , Receptors, Lipoprotein/metabolism , Triglycerides/blood , Apolipoprotein A-V/genetics
...