Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 11.123
1.
Molecules ; 29(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731489

Gallic acid (GA) is a type of polyphenolic compound that can be found in a range of fruits, vegetables, and tea. Although it has been confirmed it improves non-alcoholic fatty liver disease (NAFLD), it is still unknown whether GA can improve the occurrence of NAFLD by increasing the low-density lipoprotein receptor (LDLR) accumulation and alleviating cholesterol metabolism disorders. Therefore, the present study explored the effect of GA on LDLR and its mechanism of action. The findings indicated that the increase in LDLR accumulation in HepG2 cells induced by GA was associated with the stimulation of the epidermal growth factor receptor-extracellular regulated protein kinase (EGFR-ERK1/2) signaling pathway. When the pathway was inhibited by EGFR mab cetuximab, it was observed that the activation of the EGFR-ERK1/2 signaling pathway induced by GA was also blocked. At the same time, the accumulation of LDLR protein and the uptake of LDL were also suppressed. Additionally, GA can also promote the accumulation of forkhead box O3 (FOXO3) and suppress the accumulation of hepatocyte nuclear factor-1α (HNF1α), leading to the inhibition of proprotein convertase subtilisin/kexin 9 (PCSK9) mRNA expression and protein accumulation. This ultimately results in increased LDLR protein accumulation and enhanced uptake of LDL in cells. In summary, the present study revealed the potential mechanism of GA's role in ameliorating NAFLD, with a view of providing a theoretical basis for the dietary supplementation of GA.


Gallic Acid , Lipoproteins, LDL , Receptors, LDL , Humans , Gallic Acid/pharmacology , Receptors, LDL/metabolism , Hep G2 Cells , Lipoproteins, LDL/metabolism , ErbB Receptors/metabolism , MAP Kinase Signaling System/drug effects , Signal Transduction/drug effects , Proprotein Convertase 9/metabolism , Proprotein Convertase 9/genetics
2.
Sci Rep ; 14(1): 10782, 2024 05 11.
Article En | MEDLINE | ID: mdl-38734775

The inflammatory corpuscle recombinant absents in melanoma 2 (AIM2) and cholesterol efflux protein ATP binding cassette transporter A1(ABCA1) have been reported to play opposing roles in atherosclerosis (AS) plaques. However, the relationship between AIM2 and ABCA1 remains unclear. In this study, we explored the potential connection between AIM2 and ABCA1 in the modulation of AS by bioinformatic analysis combined with in vitro experiments. The GEO database was used to obtain AS transcriptional profiling data; screen differentially expressed genes (DEGs) and construct a weighted gene co-expression network analysis (WGCNA) to obtain AS-related modules. Phorbol myristate acetate (PMA) was used to induce macrophage modelling in THP-1 cells, and ox-LDL was used to induce macrophage foam cell formation. The experiment was divided into Negative Control (NC) group, Model Control (MC) group, AIM2 overexpression + ox-LDL (OE AIM2 + ox-LDL) group, and AIM2 short hairpin RNA + ox-LDL (sh AIM2 + ox-LDL) group. The intracellular cholesterol efflux rate was detected by scintillation counting; high-performance liquid chromatography (HPLC) was used to detect intracellular cholesterol levels; apoptosis levels were detected by TUNEL kit; levels of inflammatory markers (IL-1ß, IL-18, ROS, and GSH) were detected by ELISA kits; and levels of AIM2 and ABCA1 proteins were detected by Western blot. Bioinformatic analysis revealed that the turquoise module correlated most strongly with AS, and AIM2 and ABCA1 were co-expressed in the turquoise module with a trend towards negative correlation. In vitro experiments demonstrated that AIM2 inhibited macrophage cholesterol efflux, resulting in increased intracellular cholesterol levels and foam cell formation. Moreover, AIM2 had a synergistic effect with ox-LDL, exacerbating macrophage oxidative stress and inflammatory response. Silencing AIM2 ameliorated the above conditions. Furthermore, the protein expression levels of AIM2 and ABCA1 were consistent with the bioinformatic analysis, showing a negative correlation. AIM2 inhibits ABCA1 expression, causing abnormal cholesterol metabolism in macrophages and ultimately leading to foam cell formation. Inhibiting AIM2 may reverse this process. Overall, our study suggests that AIM2 is a reliable anti-inflammatory therapeutic target for AS. Inhibiting AIM2 expression may reduce foam cell formation and, consequently, inhibit the progression of AS plaques.


ATP Binding Cassette Transporter 1 , Cholesterol , DNA-Binding Proteins , Foam Cells , Lipoproteins, LDL , ATP Binding Cassette Transporter 1/metabolism , ATP Binding Cassette Transporter 1/genetics , Foam Cells/metabolism , Humans , Cholesterol/metabolism , Lipoproteins, LDL/metabolism , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Atherosclerosis/metabolism , Atherosclerosis/pathology , Atherosclerosis/genetics , THP-1 Cells , Macrophages/metabolism , Computational Biology/methods , Apoptosis , Inflammation/metabolism , Inflammation/pathology
4.
Nutrients ; 16(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38732567

Imbalances in lipid uptake and efflux and inflammation are major contributors to foam cell formation, which is considered a therapeutic target to protect against atherosclerosis. Naringin, a citrus flavonoid abundant in citrus fruits, has been reported to exert an antiatherogenic function, but its pharmacological mechanism is unclear. Naringin treatment effectively inhibits foam cell formation in THP-1 and RAW264.7 macrophages. In this study, mechanically, naringin maintained lipid homeostasis within macrophages through downregulation of the key genes for lipid uptake (MSR1 and CD36) and the upregulation of ABCA1, ABCG1 and SR-B1, which are responsible for cholesterol efflux. Meanwhile, naringin significantly decreased the cholesterol synthesis-related genes and increased the genes involved in cholesterol metabolism. Subsequently, the results showed that ox-LDL-induced macrophage inflammatory responses were inhibited by naringin by reducing the proinflammatory cytokines IL-1ß, IL-6 and TNF-α, and increasing the anti- inflammatory cytokine IL-10, which was further verified by the downregulation of pro-inflammatory and chemokine-related genes. Additionally, we found that naringin reprogrammed the metabolic phenotypes of macrophages by suppressing glycolysis and promoting lipid oxidation metabolism to restore macrophage phenotypes and functions. These results suggest that naringin is a potential drug for the treatment of AS as it inhibits macrophage foam cell formation by regulating metabolic phenotypes and inflammation.


Flavanones , Foam Cells , Homeostasis , Lipid Metabolism , Phenotype , Foam Cells/drug effects , Foam Cells/metabolism , Flavanones/pharmacology , Mice , Lipid Metabolism/drug effects , Animals , Humans , Homeostasis/drug effects , RAW 264.7 Cells , Cytokines/metabolism , Cholesterol/metabolism , THP-1 Cells , Macrophages/drug effects , Macrophages/metabolism , Lipoproteins, LDL/metabolism , Inflammation/metabolism , Inflammation/drug therapy
5.
Aging (Albany NY) ; 16(9): 8070-8085, 2024 May 08.
Article En | MEDLINE | ID: mdl-38728249

BACKGROUND: Inflammation is one of the significant consequences of ox-LDL-induced endothelial cell (EC) dysfunction. The senescence-associated secretory phenotype (SASP) is a critical source of inflammation factors. However, the molecular mechanism by which the SASP is regulated in ECs under ox-LDL conditions remains unknown. RESULTS: The level of SASP was increased in ox-LDL-treated ECs, which could be augmented by KLF4 knockdown whereas restored by KLF4 knock-in. Furthermore, we found that KLF4 directly promoted PDGFRA transcription and confirmed the central role of the NAPMT/mitochondrial ROS pathway in KLF4/PDGFRA-mediated inhibition of SASP. Animal experiments showed a higher SASP HFD-fed mice, compared with normal feed (ND)-fed mice, and the endothelium of EC-specific KLF4-/- mice exhibited a higher proportion of SA-ß-gal-positive cells and lower PDGFRA/NAMPT expression. CONCLUSIONS: Our results revealed that KLF4 inhibits the SASP of endothelial cells under ox-LDL conditions through the PDGFRA/NAMPT/mitochondrial ROS. METHODS: Ox-LDL-treated ECs and HFD-fed mice were used as endothelial senescence models in vitro and in vivo. SA-ß-gal stain, detection of SAHF and the expression of inflammatory factors determined SASP and senescence of ECs. The direct interaction of KLF4 and PDGFRA promotor was analyzed by EMSA and fluorescent dual luciferase reporting analysis.


Cellular Senescence , Endothelial Cells , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors , Lipoproteins, LDL , Mitochondria , Reactive Oxygen Species , Receptor, Platelet-Derived Growth Factor alpha , Kruppel-Like Factor 4/metabolism , Animals , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Reactive Oxygen Species/metabolism , Cellular Senescence/drug effects , Mitochondria/metabolism , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Mice , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Receptor, Platelet-Derived Growth Factor alpha/genetics , Humans , Endothelial Cells/metabolism , Cytokines/metabolism , Phenotype , Mice, Knockout , Human Umbilical Vein Endothelial Cells/metabolism , Male , Signal Transduction
6.
Biomacromolecules ; 25(5): 3141-3152, 2024 May 13.
Article En | MEDLINE | ID: mdl-38687279

Atherosclerosis (AS) is characterized by the accumulation of substantial low-density lipoprotein (LDL) and inflammatory response. Hemoperfusion is commonly employed for the selective removal of LDL from the body. However, conventional hemoperfusion merely focuses on LDL removal and does not address the symptom of plaque associated with AS. Based on the LDL binding properties of acrylated chondroitin sodium sulfate (CSA), acrylated beta-cyclodextrin (CD) and acrylic acid (AA), along with the anti-inflammatory property of rosiglitazone (R), the fabricated AA-CSA-CD-R microspheres could simultaneously release R and facilitate LDL removal for hemoperfusion. The AA and CSA offer electrostatic adsorption sites for LDL, while the CD provides hydrophobic adsorption sites for LDL and weak binding sites for R. According to the Sips model, the maximum static LDL adsorption capacity of AA-CSA-CD-R is determined to be 614.73 mg/g. In dynamic simulated perfusion experiments, AA-CSA-CD-R exhibits an initial cycle LDL adsorption capacity of 150.97 mg/g. The study suggests that the weakened inflammatory response favors plaque stabilization. The anti-inflammatory property of the microspheres is verified through an inflammation model, wherein the microsphere extracts are cocultured with mouse macrophages. Both qualitative analysis of iNOS\TNF-α and quantitative analysis of IL-6\TNF-α collectively demonstrate the remarkable anti-inflammatory effect of the microspheres. Therefore, the current study presents a novel blood purification treatment of eliminating pathogenic factors and introducing therapeutic factors to stabilize AS plaque.


Acrylic Resins , Atherosclerosis , Chondroitin Sulfates , Lipoproteins, LDL , Rosiglitazone , Animals , Mice , Lipoproteins, LDL/chemistry , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/isolation & purification , Chondroitin Sulfates/chemistry , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Acrylic Resins/chemistry , Rosiglitazone/pharmacology , Rosiglitazone/chemistry , Adsorption , RAW 264.7 Cells , Microspheres , Cyclodextrins/chemistry
7.
Bioorg Med Chem Lett ; 106: 129762, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38649117

Lipids play an important role in varying vital cellular processes including cell growth and division. Elevated levels of low-density lipoprotein (LDL) and oxidized-LDL (ox-LDL), and overexpression of the corresponding receptors including LDL receptor (LDLR), lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), and cluster of differentiation 36 (CD36), have shown strong correlations with different facets of carcinogenesis including proliferation, invasion, and angiogenesis. Furthermore, a high serum level of LOX-1 is considered as a poor prognostic factor in many types of cancer including colorectal cancer. Ox-LDL could contribute to cancer progression and metastasis through endothelial-to-mesenchymal transition (EMT) and autophagy. Thus, many studies have shed light on the significant role of ox-LDL as a potential therapeutic target for cancer therapy. In various repurposing approaches, anti-dyslipidemia agents, phytochemicals, autophagy modulators as well as recently developed ldl-like nanoparticles have been investigated as potential tumor therapeutic agents by targeting oxidized-LDL/LOX-1 pathways. Herein, we reviewed the role of oxidized-LDL and LOX-1 in cancer progression, invasion, metastasis, and also cancer-associated angiogenesis. Moreover, we addressed therapeutic utility of several compounds that proved to be capable of targeting the metabolic moieties in cancer. This review provides insights on the potential impact of targeting LDL and ox-LDL in cancer therapy and their future biomedical implementations.


Lipoproteins, LDL , Neoplasms , Humans , Lipoproteins, LDL/metabolism , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Scavenger Receptors, Class E/metabolism , Scavenger Receptors, Class E/antagonists & inhibitors , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Animals
8.
J Pharm Biomed Anal ; 245: 116143, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38678859

Centella asiatica (L.) Urb. is a small herbaceous plant belonging to the Apiaceae family that is rich in triterpenes, such as asiaticoside and madecassoside. Centella asiatica finds broad application in promoting wound healing, addressing skin disorders, and boosting both memory and cognitive function. Given its extensive therapeutic potential, this study aimed not only to investigate the Centella asiatica ethanolic extract but also to analyze the biological properties of its organic fractions, such as antioxidant antiglycation capacity, which are little explored. We also identified the main bioactive compounds through spectrometry analysis. The ethanolic extract (EE) was obtained through a static maceration for seven days, while organic fractions (HF: hexane fraction; DF: dichloromethane fraction; EAF: ethyl acetate fraction; BF: n-butanol fraction and HMF: hydromethanolic fraction) were obtained via liquid-liquid fractionation. The concentration of phenolic compounds, flavonoids, and tannins in each sample was quantified. Additionally, the antiglycation (BSA/FRU, BSA/MGO, and ARG/MGO models) and antioxidant (FRAP, ORAC, and DPPH) properties, as well as the ability to inhibit LDL oxidation and hepatic tissue peroxidation were evaluated. The inhibition of enzyme activity was also analyzed (α-amylase, α-glycosidase, acetylcholinesterase, and butyrylcholinesterase). We also evaluated the antimicrobial and cytotoxicity against RAW 264.7 macrophages. The main compounds present in the most bioactive fractions were elucidated through ESI FT-ICR MS and HPLC-ESI-MS/MS analysis. In the assessment of antioxidant capacity (FRAP, ORAC, and DPPH), the EAF and BF fractions exhibited notable results, and as they are the phenolic compounds richest fractions, they also inhibited LDL oxidation, protected the hepatic tissue from peroxidation and inhibited α-amylase activity. Regarding glycation models, the EE, EAF, BF, and HMF fractions demonstrated substantial activity in the BSA/FRU model. However, BF was the only fraction that presented non-cytotoxic activity in RAW 264.7 macrophages at all tested concentrations. In conclusion, this study provides valuable insights into the antioxidant, antiglycation, and enzymatic inhibition capacities of the ethanolic extract and organic fractions of Centella asiatica. The findings suggest that further in vivo studies, particularly focusing on the butanol fraction (BF), may be promising routes for future research and potential therapeutic applications.


Antioxidants , Centella , Lipoproteins, LDL , Oxidation-Reduction , Plant Extracts , Serum Albumin, Bovine , Triterpenes , alpha-Amylases , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Centella/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Mice , Oxidation-Reduction/drug effects , Glycosylation/drug effects , Serum Albumin, Bovine/metabolism , Lipoproteins, LDL/metabolism , Triterpenes/pharmacology , Triterpenes/chemistry , RAW 264.7 Cells
9.
Mol Immunol ; 170: 119-130, 2024 Jun.
Article En | MEDLINE | ID: mdl-38657333

BACKGROUND: Endothelial cell injury and dysfunction lead to cholesterol and lipid accumulation and atherosclerotic plaque formation in the arterial wall during atherosclerosis (AS) progression, Ubiquitin-like containing PHD and RING finger domain 1 (UHRF1), a DNA methylation regulator, was strongly upregulated in atherosclerotic plaque lesions in mice. This study aimed to investigate the precise biological functions and regulatory mechanisms of UHRF1 on endothelial dysfunction during AS development. METHODS: UHRF1 levels in the atherosclerotic plaque tissues and normal arterial intima from AS patients were tested with Western blot analysis and immunohistochemistry assays. Human umbilical vein endothelial cells (HUVECs) were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce an injury model and then transfected with short hairpin RNA targeting UHRF1 (sh-UHRF1). Cell proliferation, migration, apoptosis, the levels of inflammatory cytokines including tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6), and the protein levels adhesion molecules including vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were measured. Moreover, co-immunoprecipitation assay was used to determine the interactions between UHRF1 and DNA methyltransferases 1 (DNMT1), As well as mothers against DPP homolog 7 (SMAD7) and yes-associated protein 1 (YAP1). SMAD7 promoter methylation was examined with methylation-specific PCR. In addition, we established an AS mouse model to determine the in vivo effects of UHRF1 on AS progression. RESULTS: UHRF1 was upregulated in atherosclerotic plaque tissues and ox-LDL-treated HUVECs. UHRF1 knockdown mitigated ox-LDL-induced proliferation and migration inhibition, apoptosis and the production of TNF-α, IL-6, VCAM-1, and ICAM-1 in HUVECs. Mechanistically, UHRF1 promoted DNMT1-mediated SMAD7 promoter methylation and inhibited its expression. SMAD7 knockdown abolished the protective effects of UHRF1 knockdown on ox-LDL-induced HUVEC injury. Moreover, SMAD7 interacted with YAP1 and inhibited YAP1 expression by promoting YAP1 protein ubiquitination-independent degradation in HUVECs. YAP1 overexpression abrogated SMAD7 overexpression-mediated protective effects on ox-LDL-induced HUVEC injury. Finally, UHRF1 knockdown alleviated atherosclerotic plaque deposition and arterial lesions in AS mice. CONCLUSION: UHRF1 inhibition mitigates vascular endothelial cell injury and ameliorates AS progression in mice by regulating the SMAD7/YAP1 axis.


Atherosclerosis , Human Umbilical Vein Endothelial Cells , Smad7 Protein , Ubiquitin-Protein Ligases , YAP-Signaling Proteins , Animals , Atherosclerosis/metabolism , YAP-Signaling Proteins/metabolism , Humans , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mice , Smad7 Protein/metabolism , Male , CCAAT-Enhancer-Binding Proteins/metabolism , Mice, Inbred C57BL , Adaptor Proteins, Signal Transducing/metabolism , Lipoproteins, LDL/metabolism , Cell Proliferation , Signal Transduction , Apoptosis/drug effects , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology
10.
Am J Physiol Cell Physiol ; 326(6): C1563-C1572, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38586879

Atherosclerosis is an inflammatory disease of blood vessels involving the immune system. Natural killer T (NKT) cells, as crucial components of the innate and acquired immune systems, play critical roles in the development of atherosclerosis. However, the mechanism and clinical relevance of NKT cells in early atherosclerosis are largely unclear. The study investigated the mechanism influencing NKT cell function in apoE deficiency-induced early atherosclerosis. Our findings demonstrated that there were higher populations of NKT cells and interferon-gamma (IFN-γ)-producing NKT cells in the peripheral blood of patients with hyperlipidemia and in the aorta, blood, spleen, and bone marrow of early atherosclerotic mice compared with the control groups. Moreover, we discovered that the infiltration of CD80+ macrophages and CD1d expression on CD80+ macrophages in atherosclerotic mice climbed remarkably. CD1d expression increased in CD80+ macrophages stimulated by oxidized low-density lipoprotein (ox-LDL) ex vivo and in vitro. Ex vivo coculture of macrophages with NKT cells revealed that ox-LDL-induced CD80+ macrophages presented lipid antigen α-Galcer (alpha-galactosylceramide) to NKT cells via CD1d, enabling NKT cells to express more IFN-γ. Furthermore, a greater proportion of CD1d+ monocytes and CD1d+CD80+ monocytes were found in peripheral blood of hyperlipidemic patients compared with that of healthy donors. Positive correlations were found between CD1d+CD80+ monocytes and NKT cells or IFN-γ+ NKT cells in hyperlipidemic patients. Our findings illustrated that CD80+ macrophages stimulated NKT cells to secrete IFN-γ via CD1d-presenting α-Galcer, which may accelerate the progression of early atherosclerosis. Inhibiting lipid antigen presentation by CD80+ macrophages to NKT cells may be a promising immune target for the treatment of early atherosclerosis.NEW & NOTEWORTHY This work proposed the ox-LDL-CD80+ monocyte/macrophage-CD1d-NKT cell-IFN-γ axis in the progression of atherosclerosis. The proinflammatory IFN-γ+ NKT cells are closely related to CD1d+CD80+ monocytes in hyperlipidemic patients. Inhibiting CD80+ macrophages to present lipid antigens to NKT cells through CD1d blocking may be a new therapeutic target for atherosclerosis.


Antigens, CD1d , Atherosclerosis , B7-1 Antigen , Hyperlipidemias , Lipoproteins, LDL , Macrophages , Natural Killer T-Cells , Animals , Humans , Natural Killer T-Cells/immunology , Natural Killer T-Cells/metabolism , Antigens, CD1d/metabolism , Antigens, CD1d/immunology , Antigens, CD1d/genetics , Atherosclerosis/immunology , Atherosclerosis/metabolism , Atherosclerosis/pathology , Hyperlipidemias/immunology , Hyperlipidemias/metabolism , Lipoproteins, LDL/immunology , Lipoproteins, LDL/metabolism , Macrophages/immunology , Macrophages/metabolism , Male , Mice , B7-1 Antigen/metabolism , B7-1 Antigen/immunology , Interferon-gamma/metabolism , Interferon-gamma/immunology , Mice, Inbred C57BL , Female , Middle Aged
11.
Scand J Immunol ; 99(5): e13362, 2024 May.
Article En | MEDLINE | ID: mdl-38605563

T cells contribute to the pathogenesis of atherosclerosis. However, the presence and function of granulocyte-macrophage-colony-stimulating factor (GM-CSF)-producing T helper (ThGM) cells in atherosclerosis development is unknown. This study aims to characterize the phenotype and function of ThGM cells in experimental atherosclerosis. Atherosclerosis was induced by feeding apolipoprotein E knockout (ApoE-/-) mice with a high-fat diet. Aortic ThGM cells were detected and sorted by flow cytometry. The effect of oxidized low-density lipoprotein (oxLDL) on ThGM cells and the impact of ThGM cells on macrophages were evaluated by flow cytometry, quantitative RT-PCR, oxLDL binding/uptake assay, immunoblotting and foam cell formation assay. We found that GM-CSF+IFN-γ- ThGM cells existed in atherosclerotic aortas. Live ThGM cells were enriched in aortic CD4+CCR6-CCR8-CXCR3-CCR10+ T cells. Aortic ThGM cells triggered the expression of interleukin-1ß (IL-1ß), tumour necrosis factor (TNF), interleukin-6 (IL-6) and C-C motif chemokine ligand 2 (CCL2) in macrophages. Besides, aortic ThGM cells expressed higher CD69 than other T cells and bound to oxLDL. oxLDL suppressed the cytokine expression in ThGM cells probably via inhibiting the signal transducer and activator of transcription 5 (STAT5) signalling. Furthermore, oxLDL alleviated the effect of ThGM cells on inducing macrophages to produce pro-inflammatory cytokines and generate foam cells. The nuclear receptor subfamily 4 group A (NR4A) members NR4A1 and NR4A2 were involved in the suppressive effect of oxLDL on ThGM cells. Collectively, oxLDL suppressed the supportive effect of ThGM cells on pro-atherosclerotic macrophages.


Atherosclerosis , Granulocyte-Macrophage Colony-Stimulating Factor , Lipoproteins, LDL , Macrophages , T-Lymphocytes, Helper-Inducer , Animals , Mice , Atherosclerosis/genetics , Cytokines/metabolism , Foam Cells/pathology , Granulocyte-Macrophage Colony-Stimulating Factor/metabolism , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Interleukin-6/metabolism , Lipoproteins, LDL/metabolism , Macrophages/metabolism , T-Lymphocytes, Helper-Inducer/metabolism
12.
Sci Rep ; 14(1): 9471, 2024 04 24.
Article En | MEDLINE | ID: mdl-38658568

Most metastases in breast cancer occur via the dissemination of tumor cells through the bloodstream. How tumor cells enter the blood (intravasation) is, however, a poorly understood mechanism at the cellular and molecular levels. Particularly uncharacterized is how intravasation is affected by systemic nutrients. High levels of systemic LDL-cholesterol have been shown to contribute to breast cancer progression and metastasis in various models, but the cellular and molecular mechanisms involved are still undisclosed. Here we show that a high- cholesterol diet promotes intravasation in two mouse models of breast cancer and that this could be reverted by blocking LDL binding to LDLR in tumor cells. Moreover, we show that LDL promotes vascular invasion in vitro and the intercalation of tumor cells with endothelial cells, a phenotypic change resembling vascular mimicry (VM). At the molecular level, LDL increases the expression of SERPINE2, previously shown to be required for both VM and intravasation. Overall, our manuscript unravels novel mechanisms by which systemic hypercholesterolemia may affect the onset of metastatic breast cancer by favouring phenotypic changes in breast cancer cells and increasing intravasation.


Breast Neoplasms , Receptors, LDL , Animals , Receptors, LDL/metabolism , Receptors, LDL/genetics , Female , Mice , Humans , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Cell Line, Tumor , Neoplasm Invasiveness , Cholesterol, Dietary/adverse effects , Cholesterol, LDL/metabolism , Cholesterol, LDL/blood , Lipoproteins, LDL/metabolism , Cholesterol/metabolism , Cholesterol/blood
13.
Cell Biol Int ; 48(6): 848-860, 2024 Jun.
Article En | MEDLINE | ID: mdl-38444077

Oxidized low-density lipoprotein (oxLDL), a key component in atherosclerosis and hyperlipidemia, is a risk factor for atherothrombosis in dyslipidemia, yet its mechanism is poorly understood. In this study, we used oxLDL-induced human aortic endothelial cells (HAECs) and high-fat diet (HFD)-fed mice as a hyperlipidemia model. Phosphatidylserine (PS) exposure, cytosolic Ca2+, reactive oxygen species (ROS), and lipid peroxidation were measured by flow cytometer. TMEM16F expression was detected by immunofluorescence, western blot, and reverse transcription polymerase chain reaction. Procoagulant activity (PCA) was measured by coagulation time, intrinsic/extrinsic factor Xase, and thrombin generation. We found that oxLDL-induced PS exposure and the corresponding PCA of HAECs were increased significantly compared with control, which could be inhibited over 90% by lactadherin. Importantly, TMEM16F expression in oxLDL-induced HAECs was upregulated by enhanced intracellular Ca2+ concentration, ROS, and lipid peroxidation, which led to PS exposure. Meanwhile, the knockdown of TMEM16F by short hairpin RNA significantly inhibited PS exposure in oxLDL-induced HAECs. Moreover, we observed that HFD-fed mice dramatically increased the progress of thrombus formation and accompanied upregulated TMEM16F expression by thromboelastography analysis, FeCl3-induced carotid artery thrombosis model, and western blot. Collectively, these results demonstrate that TMEM16F-mediated PS exposure may contribute to prothrombotic status under hyperlipidemic conditions, which may serve as a novel therapeutic target for the prevention of thrombosis in hyperlipidemia.


Anoctamins , Endothelial Cells , Lipoproteins, LDL , Phosphatidylserines , Reactive Oxygen Species , Lipoproteins, LDL/pharmacology , Lipoproteins, LDL/metabolism , Animals , Humans , Phosphatidylserines/metabolism , Endothelial Cells/metabolism , Endothelial Cells/drug effects , Mice , Anoctamins/metabolism , Reactive Oxygen Species/metabolism , Mice, Inbred C57BL , Male , Hyperlipidemias/metabolism , Calcium/metabolism , Diet, High-Fat , Thrombosis/metabolism , Lipid Peroxidation/drug effects , Cells, Cultured , Blood Coagulation/drug effects
14.
Cell Rep ; 43(4): 114008, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38536819

The metabolic syndrome is accompanied by vascular complications. Human in vitro disease models are hence required to better understand vascular dysfunctions and guide clinical therapies. Here, we engineered an open microfluidic vessel-on-chip platform that integrates human pluripotent stem cell-derived endothelial cells (SC-ECs). The open microfluidic design enables seamless integration with state-of-the-art analytical technologies, including single-cell RNA sequencing, proteomics by mass spectrometry, and high-resolution imaging. Beyond previous systems, we report SC-EC maturation by means of barrier formation, arterial toning, and high nitric oxide synthesis levels under gravity-driven flow. Functionally, we corroborate the hallmarks of early-onset atherosclerosis with low sample volumes and cell numbers under flow conditions by determining proteome and secretome changes in SC-ECs stimulated with oxidized low-density lipoprotein and free fatty acids. More broadly, our organ-on-chip platform enables the modeling of patient-specific human endothelial tissue and has the potential to become a general tool for animal-free vascular research.


Endothelial Cells , Lab-On-A-Chip Devices , Humans , Endothelial Cells/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/pathology , Lipoproteins, LDL/metabolism , Cell Differentiation , Pluripotent Stem Cells/metabolism
15.
Free Radic Biol Med ; 216: 106-117, 2024 Apr.
Article En | MEDLINE | ID: mdl-38461872

Oxidized low density lipoprotein (oxLDL)-induced endothelial oxidative damage promotes the development of atherosclerosis. Caveolae play an essential role in maintaining the survival and function of vascular endothelial cell (VEC). It is reported that the long coiled-coil protein NECC2 is localized in caveolae and is associated with neural cell differentiation and adipocyte formation, but its role in VECs needs to be clarified. Our results showed NECC2 expression increased in the endothelium of plaque-loaded aortas and oxLDL-treated HUVECs. Down-regulation of NECC2 by NECC2 siRNA or compound YF-307 significantly inhibited oxLDL-induced VEC apoptosis and the adhesion factors expression. Remarkably, inhibition of NECC2 expression in the endothelium of apoE-/- mice by adeno-associated virus (AAV)-carrying NECC2 shRNA or compound YF-307 alleviated endothelium injury and restricted atherosclerosis development. The immunoprecipitation results confirmed that NECC2 interacted with Tyk2 and caveolin-1(Cav-1) in VECs, and NECC2 further promoted the phosphorylation of Cav-1 at Tyr14 b y activating Tyk2 phosphorylation. On the other hand, inhibiting NECC2 levels suppressed oxLDL-induced phosphorylation of Cav-1, uptake of oxLDL by VECs, accumulation of intracellular reactive oxygen species and activation of NF-κB. Our findings suggest that NECC2 may contribute to oxLDL-induced VEC injury and atherosclerosis via modulating Cav-1 phosphorylation through Tyk2. This work provides a new concept and drug target for treating atherosclerosis.


Atherosclerosis , Animals , Mice , Apolipoproteins/adverse effects , Apolipoproteins/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Atherosclerosis/metabolism , Endothelium/metabolism , Lipoproteins, LDL/metabolism , Oxidative Stress
16.
J Ethnopharmacol ; 327: 118006, 2024 Jun 12.
Article En | MEDLINE | ID: mdl-38442806

ETHNOPHARMACOLOGICAL RELEVANCE: Hawthorn leaves are a combination of the dried leaves of the Rosaceae plants, i.e., Crataegus pinnatifida Bge. or Crataegus pinnatifida Bge. var. major N. E. Br., is primarily cultivated in East Asia, North America, and Europe. hawthorn leaf flavonoids (HLF) are the main part of extraction. The HLF have demonstrated potential in preventing hypertension, inflammation, hyperlipidemia, and atherosclerosis. However, the potential pharmacological mechanism behind its anti-atherosclerotic effect has yet to be explored. AIM OF THE STUDY: The in vivo and in vitro effects of HLF on lipid-mediated foam cell formation were investigated, with a specific focus on the levels of secreted phospholipase A2 type IIA (sPLA2-II A) in macrophage cells. MATERIALS AND METHODS: The primary constituents of HLF were analyzed using ultra-high performance liquid chromatography and liquid chromatography-tandem mass spectrometry. In vivo, HLF, at concentrations of 5 mg/kg, 20 mg/kg, and 40 mg/kg, were administered to apolipoprotein E knockout mice (ApoE-/-) fed by high-fat diet (HFD) for 16 weeks. Aorta and serum samples were collected to identify lesion areas and lipids through mass spectrometry analysis to dissect the pathological process. RAW264.7 cells were incubated with oxidized low-density lipoprotein (ox-LDL) alone, or ox-LDL combined with different doses of HLF (100, 50, and 25 µg/ml), or ox-LDL plus 24-h sPLA2-IIA inhibitors, for cell biology analysis. Lipids and inflammatory cytokines were detected using biochemical analyzers and ELISA, while plaque size and collagen content of plaque were assessed by HE and the Masson staining of the aorta. The lipid deposition in macrophages was observed by Oil Red O staining. The expression of sPLA2-IIA and SCAP-SREBP2-LDLR was determined by RT-qPCR and Western blot analysis. RESULTS: The chemical profile of HLF was studied using UPLC-Q-TOF-MS/MS, allowing the tentative identification of 20 compounds, comprising 1 phenolic acid, 9 flavonols and 10 flavones, including isovitexin, vitexin-4″-O-glucoside, quercetin-3-O-robibioside, rutin, vitexin-2″-O-rhamnoside, quercetin, etc. HLF decreased total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and non-high-density lipoprotein cholesterol (non-HDL-C) levels in ApoE-/- mice (P < 0.05), reduced ox-LDL uptake, inhibited level of inflammatory factors, such as IL-6, IL-8, TNF-α, and IL-1ꞵ (P < 0.001), and alleviated aortic plaques with a thicker fibrous cap. HLF effectively attenuated foam cell formation in ox-LDL-treated RAW264.7 macrophages, and reduced levels of intracellular TC, free cholesterol (FC), cholesteryl ester (CE), IL-6, TNF-α, and IL-1ß (P < 0.001). In both in vivo and in vitro experiments, HLF significantly downregulated the expression of sPLA2-IIA, SCAP, SREBP2, LDLR, HMGCR, and LOX-1 (P < 0.05). Furthermore, sPLA2-IIA inhibitor effectively mitigated inflammatory release in RAW264.7 macrophages and regulated SCAP-SREBP2-LDLR signaling pathway by inhibiting sPLA2-IIA secretion (P < 0.05). CONCLUSION: HLF exerted a protective effect against atherosclerosis through inhibiting sPLA2-IIA to diminish SCAP-SREBP2-LDLR signaling pathway, to reduce LDL uptake caused foam cell formation, and to slow down the progression of atherosclerosis in mice.


Atherosclerosis , Crataegus , Phospholipases A2, Secretory , Plaque, Atherosclerotic , Mice , Animals , Crataegus/chemistry , Quercetin/therapeutic use , Phospholipases A2, Secretory/metabolism , Interleukin-6/metabolism , Tumor Necrosis Factor-alpha/metabolism , Tandem Mass Spectrometry , Atherosclerosis/metabolism , Plaque, Atherosclerotic/drug therapy , Plaque, Atherosclerotic/metabolism , Macrophages/metabolism , Flavonoids/therapeutic use , Lipoproteins, LDL/metabolism , Signal Transduction , Cholesterol/metabolism , Mice, Knockout , Apolipoproteins E/genetics
17.
Phytomedicine ; 128: 155341, 2024 Jun.
Article En | MEDLINE | ID: mdl-38518636

BACKGROUND: Atherosclerosis (AS) is a chronic disease characterized by lipid accumulation in the aortic wall and the formation of foam cells overloaded with large lipids inclusions. Currently, Western medicine is primarily used to improve lipid metabolism disorders and reduce inflammatory reactions to delay AS progression, but these medicines come with serious side effects and drug resistance. Gualou-Xiebai (GLXB) is a renowned herb pair that has been proven effective against AS. However, the potential molecular mechanism through which GLXB exerts the anti-atherosclerotic effects of increasing lipophagy in vascular smooth muscle cells (VSMCs) remains unknown. PURPOSE: This study aims to explore the role of lipophagy and the therapeutic mechanism of GLXB in AS. METHODS: UPLC-Q-TOF-MS for the determination of the main components of GLXB-containing serum. An AS mouse model was established by feeding a high-fat diet (HFD) to ApoE-/- mice for 12 weeks. Ultrasonography monitoring was used to confirm the successful establishment of the AS model. Plaque areas and lipid deposition were evaluated using HE staining and aorta imagingafter GLXB treatment. Immunofluorescence staining and Western blotting were utilized to observe the P2RY12 and lipophagy levels in AS mice. VSMCs were stimulated with oxidized low-density lipoprotein (ox-LDL) to induce foam cell formation. The degree of lipophagy and the related molecular mechanisms were assessed after treating the VSMCs with GLXB-containing serum or si-P2RY12 transfection. The active components of GLXB-containing serum that act on P2RY12 were screened and verified by molecular docking and dual-luciferase reporter assays. RESULTS: Seventeen components of GLXB were identified in rat serum by UPLC-Q-TOF-MS. GLXB significantly reduced lipid deposition in HFD-fed ApoE-/- mice and ox-LDL-induced VSMCs. GLXB strikingly increased lipophagy levels by downregulating P2RY12, p62, and plin2, upregulating LC3Ⅱ protein expression, and increasing the number of autophagosomes. Notably, the lipophagy inhibitor CQ and the P2RY12 receptor agonist ADPß abolished the GLXB-induced increase in lipophagy. Last, we confirmed that albiflorin, apigenin, luteolin, kaempferol, 7,8-dihydroxyflavone, and hesperetin from GLXB significantly inhibited P2RY12. CONCLUSION: GLXB activates lipophagy and inhibits lipid accumulation-associated VSMC-derived foam cell formation through suppressing P2RY12 activation, resulting in anti-atherosclerotic effects. The GLXB components albiflorin, apigenin, luteolin, kaempferol, 7,8-dihydroxyflavone, and hesperetin are the potential active effectors against P2RY12.


Atherosclerosis , Drugs, Chinese Herbal , Foam Cells , Muscle, Smooth, Vascular , Receptors, Purinergic P2Y12 , Animals , Atherosclerosis/drug therapy , Foam Cells/drug effects , Foam Cells/metabolism , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Male , Mice , Drugs, Chinese Herbal/pharmacology , Receptors, Purinergic P2Y12/metabolism , Diet, High-Fat , Mice, Inbred C57BL , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Rats , Disease Models, Animal , Autophagy/drug effects , Rats, Sprague-Dawley , Lipid Metabolism/drug effects , Aorta/drug effects , Lipoproteins, LDL/metabolism
18.
J Lipid Res ; 65(4): 100530, 2024 Apr.
Article En | MEDLINE | ID: mdl-38479648

Atherosclerosis results from the deposition and oxidation of LDL and immune cell infiltration in the sub-arterial space leading to arterial occlusion. Studies have shown that transcytosis transports circulating LDL across endothelial cells lining blood vessels. LDL transcytosis is initiated by binding to either scavenger receptor B1 (SR-B1) or activin A receptor-like kinase 1 on the apical side of endothelial cells leading to its transit and release on the basolateral side. HDL is thought to partly protect individuals from atherosclerosis due to its ability to remove excess cholesterol and act as an antioxidant. Apolipoprotein A1 (APOA1), an HDL constituent, can bind to SR-B1, raising the possibility that APOA1/HDL can compete with LDL for SR-B1 binding, thereby limiting LDL deposition in the sub-arterial space. To examine this possibility, we used in vitro approaches to quantify the internalization and transcytosis of fluorescent LDL in coronary endothelial cells. Using microscale thermophoresis and affinity capture, we find that SR-B1 and APOA1 interact and that binding is enhanced when using the cardioprotective variant of APOA1 termed Milano (APOA1-Milano). In male mice, transiently increasing the levels of HDL reduced the acute deposition of fluorescently labeled LDL in the atheroprone inner curvature of the aorta. Reduced LDL deposition was also observed when increasing circulating wild-type APOA1 or the APOA1-Milano variant, with a more robust inhibition from the APOA1-Milano. The results suggest that HDL may limit SR-B1-mediated LDL transcytosis and deposition, adding to the mechanisms by which it can act as an atheroprotective particle.


Apolipoprotein A-I , Lipoproteins, HDL , Lipoproteins, LDL , Transcytosis , Animals , Humans , Male , Mice , Apolipoprotein A-I/metabolism , Atherosclerosis/metabolism , Endothelial Cells/metabolism , Lipoproteins, HDL/metabolism , Lipoproteins, LDL/metabolism , Protein Binding , Scavenger Receptors, Class B/metabolism
19.
Discov Med ; 36(182): 571-580, 2024 Mar.
Article En | MEDLINE | ID: mdl-38531797

BACKGROUND: The apoptosis of vascular smooth muscle cells (VSMCs) contributes to the progression of atherosclerosis (AS). Long intergenic non-protein coding RNA 1128 (LINC01128) has been implicated in AS, and this study aims to uncover the role and mechanism of LINC01128 in regulating oxidized low-density lipoprotein (oxLDL)-induced VSMCs. METHODS: The position of LINC01128 in cells and its target genes were predicted using bioinformatics. The localization of LINC01128 in human VSMCs was determined through fluorescence in situ hybridization. VSMCs were transfected, and the interaction between LINC01128 and fucosyltransferase 8 (FUT8) was validated by chromatin immunoprecipitation assay. The apoptotic VSMC model was established using oxLDL. LINC01128 expression in VSMCs was analyzed by quantitative real-time polymerase chain reaction (qRT-PCR), and FUT8 expression was detected by qRT-PCR and western blot. VSMC viability, migration, invasion abilities, and apoptosis were assessed using cell counting kit-8, transwell assay, and flow cytometry, respectively. RESULTS: OxLDL (200 µg/mL) upregulated the expression of LINC01128 and FUT8 mRNA, as well as FUT8 protein, in VSMCs. LINC01128 was expressed in the nucleus of VSMCs and bound to FUT8. Knockdown of LINC01128 alleviated the inhibitory effects of oxLDL (200 µg/mL) on viability, migration, and invasion, and mitigated the promotion of apoptosis and FUT8 expression in VSMCs. On the other hand, FUT8 overexpression enhanced the suppressive effects of oxLDL (200 µg/mL) on viability, migration, and invasion activities, and amplified the facilitating effect of oxLDL on apoptosis in VSMCs. Moreover, FUT8 overexpression reversed the impact of LINC01128 silencing on viability, migration, invasion, and apoptosis in oxLDL-stimulated VSMCs. CONCLUSION: The knockdown of LINC01128 downregulates FUT8, inhibiting the progression of VSMCs in AS.


Atherosclerosis , MicroRNAs , Humans , Muscle, Smooth, Vascular/metabolism , In Situ Hybridization, Fluorescence , Atherosclerosis/metabolism , Lipoproteins, LDL/genetics , Lipoproteins, LDL/metabolism , Lipoproteins, LDL/pharmacology , Apoptosis , Cell Proliferation , MicroRNAs/metabolism , Cell Movement , Cells, Cultured
20.
Prostaglandins Other Lipid Mediat ; 172: 106832, 2024 Jun.
Article En | MEDLINE | ID: mdl-38460759

Atherosclerosis (AS) represents a prevalent initiating factor for cardiovascular events. Insulin-like growth factor 2 mRNA binding protein 3 (IGF2BP3) is an oncofetal RNA-binding protein that participates in cardiovascular diseases. This work aimed to elaborate the effects of IGF2BP3 on AS and the probable mechanism by using an oxidized low-density lipoprotein (ox-LDL)-induced human umbilical vein endothelial cells (HUVECs) model. Results indicated that IGF2BP3 expression was declined in the blood of AS patients and ox-LDL-induced HUVECs. IGF2BP3 elevation alleviated ox-LDL-provoked viability loss, apoptosis, oxidative DNA damage and endothelial dysfunction in HUVECs. Moreover, IGF2BP3 bound SESN1 and stabilized SESN1 mRNA. Furthermore, SESN1 interference reversed the impacts of IGF2BP3 overexpression on the apoptosis, oxidative DNA damage and endothelial dysfunction of ox-LDL-challenged HUVECs. Additionally, the activation of Nrf2 signaling mediated by IGF2BP3 up-regulation in ox-LDL-treated HUVECs was blocked by SESN1 absence. Collectively, SESN1 stabilized by IGF2BP3 might protect against AS by activating Nrf2 signaling.


Human Umbilical Vein Endothelial Cells , Lipoproteins, LDL , NF-E2-Related Factor 2 , Oxidative Stress , RNA, Messenger , RNA-Binding Proteins , Signal Transduction , Humans , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/drug effects , Lipoproteins, LDL/pharmacology , Lipoproteins, LDL/metabolism , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Oxidative Stress/drug effects , Signal Transduction/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Apoptosis/drug effects , Atherosclerosis/metabolism , Atherosclerosis/genetics , Atherosclerosis/pathology , RNA Stability/drug effects , DNA Damage , Sestrins
...