Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.253
2.
Sheng Li Xue Bao ; 76(2): 346-352, 2024 Apr 25.
Article Zh | MEDLINE | ID: mdl-38658383

Programmed death-ligand 1 (PD-L1) is important in maintaining central and peripheral immune tolerance in normal tissues, mediating tumor immune escape and keeping the balance between anti- and pro-inflammatory responses. Inflammation plays an important role in inflammatory lung diseases. This article reviews the research progress and potential clinical value of PD-L1 in inflammatory lung diseases, including acute lung injury, chronic obstructive pulmonary disease, asthma and idiopathic pulmonary fibrosis.


Asthma , B7-H1 Antigen , Pulmonary Disease, Chronic Obstructive , Humans , B7-H1 Antigen/metabolism , B7-H1 Antigen/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Asthma/immunology , Acute Lung Injury/immunology , Inflammation/immunology , Idiopathic Pulmonary Fibrosis/immunology , Idiopathic Pulmonary Fibrosis/metabolism , Lung Diseases/immunology , Lung Diseases/metabolism , Animals
3.
Arch. bronconeumol. (Ed. impr.) ; 60(3): 161-170, Mar. 2024. tab, ilus
Article En | IBECS | ID: ibc-231100

Respiratory syncytial virus (RSV) is a major cause of respiratory tract infections in adults, particularly older adults and those with underlying medical conditions. Vaccination has emerged as a potential key strategy to prevent RSV-related morbidity and mortality. This Neumoexperts Prevention (NEP) Group scientific paper aims to provide an evidence-based positioning and RSV vaccination recommendations for adult patients. We review the current literature on RSV burden and vaccine development and availability, emphasising the importance of vaccination in the adult population. According to our interpretation of the data, RSV vaccines should be part of the adult immunisation programme, and an age-based strategy should be preferred over targeting high-risk groups. The effectiveness and efficiency of this practice will depend on the duration of protection and the need for annual or more spaced doses. Our recommendations should help healthcare professionals formulate guidelines and implement effective vaccination programmes for adult patients at risk of RSV infection now that specific vaccines are available.(AU)


Humans , Male , Female , Middle Aged , Aged , Respiratory Syncytial Viruses/immunology , Vaccination , Disease Prevention , Lung Diseases/prevention & control , Lung Diseases/immunology , Immunization Programs
4.
Allergy ; 79(5): 1089-1122, 2024 May.
Article En | MEDLINE | ID: mdl-38108546

The accumulation of senescent cells drives inflammaging and increases morbidity of chronic inflammatory lung diseases. Immune responses are built upon dynamic changes in cell metabolism that supply energy and substrates for cell proliferation, differentiation, and activation. Metabolic changes imposed by environmental stress and inflammation on immune cells and tissue microenvironment are thus chiefly involved in the pathophysiology of allergic and other immune-driven diseases. Altered cell metabolism is also a hallmark of cell senescence, a condition characterized by loss of proliferative activity in cells that remain metabolically active. Accelerated senescence can be triggered by acute or chronic stress and inflammatory responses. In contrast, replicative senescence occurs as part of the physiological aging process and has protective roles in cancer surveillance and wound healing. Importantly, cell senescence can also change or hamper response to diverse therapeutic treatments. Understanding the metabolic pathways of senescence in immune and structural cells is therefore critical to detect, prevent, or revert detrimental aspects of senescence-related immunopathology, by developing specific diagnostics and targeted therapies. In this paper, we review the main changes and metabolic alterations occurring in senescent immune cells (macrophages, B cells, T cells). Subsequently, we present the metabolic footprints described in translational studies in patients with chronic asthma and chronic obstructive pulmonary disease (COPD), and review the ongoing preclinical studies and clinical trials of therapeutic approaches aiming at targeting metabolic pathways to antagonize pathological senescence. Because this is a recently emerging field in allergy and clinical immunology, a better understanding of the metabolic profile of the complex landscape of cell senescence is needed. The progress achieved so far is already providing opportunities for new therapies, as well as for strategies aimed at disease prevention and supporting healthy aging.


Cellular Senescence , Metabolic Networks and Pathways , Humans , Cellular Senescence/drug effects , Animals , Chronic Disease , Inflammation/metabolism , Inflammation/immunology , Lung Diseases/etiology , Lung Diseases/drug therapy , Lung Diseases/metabolism , Lung Diseases/immunology , Pulmonary Disease, Chronic Obstructive/metabolism , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/immunology , Aging/immunology , Aging/metabolism
5.
Int J Mol Sci ; 24(23)2023 Nov 21.
Article En | MEDLINE | ID: mdl-38068879

Inflammation and inflammasomes have been proposed as important regulators of the host-microorganism interaction, playing a key role in morbidity and mortality due to the coronavirus disease 2019 (COVID-19) in subjects with chronic conditions and compromised immune system. The inflammasome consists of a multiprotein complex that finely regulates the activation of caspase-1 and the production and secretion of potent pro-inflammatory cytokines such as IL-1ß and IL-18. The pyrin containing NOD (nucleotide-binding oligomerization domain) like receptor (NLRP) is a family of intracellular receptors, sensing patterns associated to pathogens or danger signals and NLRP3 inflammasome is the most deeply analyzed for its involvement in the innate and adaptive immune system as well as its contribution to several autoinflammatory and autoimmune diseases. It is highly expressed in leukocytes and up-regulated in sentinel cells upon inflammatory stimuli. NLRP3 expression has also been reported in B and T lymphocytes, in epithelial cells of oral and genital mucosa, in specific parenchymal cells as cardiomyocytes, and keratinocytes, and chondrocytes. It is well known that a dysregulated activation of the inflammasome is involved in the pathogenesis of different disorders that share the common red line of inflammation in their pathogenetic fingerprint. Here, we review the potential roles of the NLRP3 inflammasome in cardiovascular events, liver damage, pulmonary diseases, and in that wide range of systemic inflammatory syndromes named as a cytokine storm.


Cytokine Release Syndrome , Heart Diseases , Inflammasomes , Liver Diseases , Lung Diseases , NLR Family, Pyrin Domain-Containing 3 Protein , Humans , Carrier Proteins/metabolism , Cytokine Release Syndrome/immunology , Inflammasomes/metabolism , Inflammation/metabolism , Interleukin-1beta/metabolism , Lung Diseases/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Heart Diseases/immunology , Liver Diseases/immunology
6.
J Biol Chem ; 299(12): 105365, 2023 Dec.
Article En | MEDLINE | ID: mdl-37865317

Glycan structure is often modulated in disease or predisease states, suggesting that such changes might serve as biomarkers. Here, we generated a monoclonal antibody (mAb) against the core fucose of the N-glycan in human IgG. Notably, this mAb can be used in Western blotting and ELISA. ELISA using this mAb revealed a low level of the core fucose of the N-glycan in IgG, suggesting that the level of acore fucosylated (noncore fucosylated) IgG was increased in the sera of the patients with lung cancer, chronic obstructive pulmonary disease, and interstitial pneumonia compared to healthy subjects. In a coculture analysis using human lung adenocarcinoma A549 cells and antibody-secreting B cells, the downregulation of the FUT8 (α1,6 fucosyltransferase) gene and a low level of core fucose of the N-glycan in IgG in antibody-secreting B cells were observed after coculture. A dramatic alteration in gene expression profiles for cytokines, chemokines, and their receptors were also observed after coculturing, and we found that the identified C-C motif chemokine 2 was partially involved in the downregulation of the FUT8 gene and the low level of core fucose of the N-glycan in IgG in antibody-secreting B cells. We also developed a latex turbidimetric immunoassay using this mAb. These results suggest that communication with C-C motif chemokine 2 between lung cells and antibody-secreting B cells downregulate the level of core fucose of the N-glycan in IgG, i.e., the increased level of acore fucosylated (noncore fucosylated) IgG, which would be a novel biomarker for the diagnosis of patients with pulmonary diseases.


Antibodies, Monoclonal , Fucose , Immunoglobulin G , Lung Diseases , Polysaccharides , Humans , A549 Cells , Antibodies, Monoclonal/metabolism , Antibody Specificity , B-Lymphocytes/immunology , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Chemokines/genetics , Chemokines/metabolism , Fucose/blood , Fucose/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Gene Expression Profiling , Gene Expression Regulation/immunology , Gene Knockout Techniques , Immunoassay/standards , Immunoglobulin G/blood , Immunoglobulin G/immunology , Lung Diseases/diagnosis , Lung Diseases/immunology , Polysaccharides/metabolism , Animals , Mice , CHO Cells , HEK293 Cells , Cricetulus
7.
Toxicol Lett ; 383: 141-151, 2023 Jul 01.
Article En | MEDLINE | ID: mdl-37394155

Long-term inhalation of silica nanoparticles (SiNPs) can induce pulmonary fibrosis (PF), nevertheless, the potential mechanisms remain elusive. Herein, we constructed a three-dimensional (3D) co-culture model by using Matrigel to investigate the interaction among different cells and potential regulatory mechanisms after SiNPs exposure. Methodologically, we dynamically observed the changes in cell morphology and migration after exposure to SiNPs by co-culturing mouse monocytic macrophages (RAW264.7), human non-small cell lung cancer cells (A549), and medical research council cell strain-5 (MRC-5) in Matrigel for 24 h. Subsequently, we detected the expression of nuclear factor kappa B (NF-κB), inflammatory factor and epithelial-mesenchymal transition (EMT) markers. The results showed that SiNPs produced toxic effects on cells. In the 3D co-culture state, the cell's movement velocity and displacement increased, and the cell migration ability was enhanced. Meanwhile, the expression of inflammatory factor tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) were upregulated, the epithelial marker E-cadherin (E-cad) was downregulated, the mesenchymal marker N-cadherin (N-cad) and myofibroblast marker alpha-smooth muscle actin (α-SMA) expression were upregulated, while NF-κB expression was also upregulated after SiNPs exposure. We further found that cells were more prone to transdifferentiate into myofibroblasts in the 3D co-culture state. Conversely, utilizing the NF-κB-specific inhibitor BAY 11-7082 effectively downregulated the expression of TNF-α, IL-6, interleukin-1ß (IL-1ß), N-cad, α-SMA, collagen-I (COL I), and fibronectin (FN), the expression of E-cad was upregulated. These findings suggest that NF-κB is involved in regulating SiNPs-induced inflammatory, EMT, and fibrosis in the 3D co-culture state.


Epithelial-Mesenchymal Transition , Fibrosis , Lung Diseases , Nanoparticles , Silicon Dioxide , Animals , Humans , Mice , Carcinoma, Non-Small-Cell Lung , Coculture Techniques , Epithelial-Mesenchymal Transition/immunology , Fibrosis/etiology , Fibrosis/immunology , Interleukin-6 , Lung Neoplasms , Nanoparticles/toxicity , NF-kappa B/metabolism , Silicon Dioxide/toxicity , Tumor Necrosis Factor-alpha/metabolism , Lung Diseases/etiology , Lung Diseases/immunology
8.
Microbiol Spectr ; 10(6): e0311022, 2022 12 21.
Article En | MEDLINE | ID: mdl-36255321

Nontuberculous mycobacteria (NTM) cause pulmonary disease in individuals without obvious immunodeficiency. This study was initiated to gain insight into the immunological factors that predispose persons to NTM pulmonary disease (NTMPD). Blood was obtained from 15 pairs of NTMPD patients and their healthy household contacts. Peripheral blood mononuclear cells (PBMCs) were stimulated with the Mycobacterium avium complex (MAC). A total of 34 cytokines and chemokines were evaluated in plasma and PBMC culture supernatants using multiplex immunoassays, and gene expression in the PBMCs was determined using real-time PCR. PBMCs from NTMPD patients produced significantly less interleukin-1ß (IL-1ß), IL-18, IL-1α, and IL-10 than PBMCs from their healthy household contacts in response to MAC. Although plasma RANTES levels were high in NTMPD patients, they had no effect on IL-1ß production by macrophages infected with MAC. Toll-like receptor 2 (TLR2) and TWIK2 (a two-pore domain K+ channel) were impaired in response to MAC in PBMCs of NTMPD patients. A TLR2 inhibitor decreased all four cytokines, whereas a two-pore domain K+ channel inhibitor decreased the production of IL-1ß, IL-18, and IL-1α, but not IL-10, by MAC-stimulated PBMCs and monocytes. The ratio of monocytes was reduced in whole blood of NTMPD patients compared with that of healthy household contacts. A reduced monocyte ratio might contribute to the attenuated production of IL-1 family cytokines by PBMCs of NTMPD patients in response to MAC stimulations. Collectively, our findings suggest that the attenuated IL-1 response may increase susceptibility to NTM pulmonary infection through multiple factors, including impaired expression of the TLR2 and TWIK2 and reduced monocyte ratio. IMPORTANCE Upon MAC stimulation, the production of IL-1 family cytokines and IL-10 by PBMCs of NTMPD patients was attenuated compared with that of healthy household contacts. Upon MAC stimulation, the expression of TLR2 and TWIK2 (one of the two-pore domain K+ channels) was attenuated in PBMCs of NTMPD patients compared with that of healthy household contacts. The production of IL-1 family cytokines by MAC-stimulated PBMCs and MAC-infected monocytes of healthy donors was reduced by a TLR2 inhibitor and two-pore domain K+ channel inhibitor. The ratio of monocytes was reduced in whole blood of NTMPD patients compared with that of healthy household contacts. Collectively, our data suggest that defects in the expression of TLR2 and TWIK2 in human PBMCs or monocytes and reduced monocyte ratio are involved in the reduced production of IL-1 family cytokines, and it may increase susceptibility to NTM pulmonary infection.


Cytokines , Lung Diseases , Mycobacterium Infections, Nontuberculous , Pneumonia, Bacterial , Humans , Interleukin-18/immunology , Leukocytes, Mononuclear , Lung Diseases/immunology , Monocytes/immunology , Mycobacterium avium Complex , Mycobacterium Infections, Nontuberculous/immunology , Toll-Like Receptor 2/immunology , Pneumonia, Bacterial/immunology , Cytokines/immunology
9.
J Immunol ; 208(5): 1180-1188, 2022 03 01.
Article En | MEDLINE | ID: mdl-35149529

Pulmonary infections elicit a combination of tissue-resident and circulating T cell responses. Understanding the contribution of these anatomically distinct cellular pools in protective immune responses is critical for vaccine development. Francisella tularensis is a highly virulent bacterium capable of causing lethal systemic disease following pulmonary infection for which there is no currently licensed vaccine. Although T cells are required for survival of F. tularensis infection, the relative contribution of tissue-resident and circulating T cells is not completely understood, hampering design of effective, long-lasting vaccines directed against this bacterium. We have previously shown that resident T cells were not sufficient to protect against F. tularensis, suggesting circulating cells may serve a critical role in host defense. To elucidate the role of circulating T cells, we used a model of vaccination and challenge of parabiotic mice. Intranasally infected naive mice conjoined to immune animals had increased numbers of circulating memory T cells and similar splenic bacterial burdens as vaccinated-vaccinated pairs. However, bacterial loads in the lungs of naive parabionts were significantly greater than those observed in vaccinated-vaccinated pairs, but despite early control of F. tularensis replication, all naive-vaccinated pairs succumbed to infection. Together, these data define the specific roles of circulating and resident T cells in defense against infection that is initiated in the pulmonary compartment but ultimately causes disseminated disease. These data also provide evidence for employing vaccination strategies that elicit both pools of T cells for immunity against F. tularensis and may be a common theme for other disseminating bacterial infections.


Bacterial Vaccines/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Francisella tularensis/immunology , Memory T Cells/immunology , Animals , Antibodies, Bacterial/blood , Bacterial Load/immunology , Female , Leukocyte Common Antigens/genetics , Leukocyte Common Antigens/metabolism , Lung Diseases/immunology , Lung Diseases/microbiology , Lung Diseases/pathology , Mice , Mice, Inbred C57BL , Tularemia/immunology , Tularemia/pathology , Vaccination
10.
J Heart Lung Transplant ; 41(1): 24-33, 2022 01.
Article En | MEDLINE | ID: mdl-34602310

BACKGROUND: Chronic lung allograft dysfunction in lung transplant recipients (LTxRs) has 2 phenotypes: obstructive bronchiolitis obliterans syndrome (BOS) and restrictive allograft syndrome (RAS). Our goal was to define distinct immunologic markers of exosomes from LTxRs with BOS or RAS. METHODS: Plasma was collected from LTxRs with BOS (n = 18), RAS (n = 13), and from stable LTxRs (n = 5). Antibodies to lung self-antigens (SAgs) were determined by ELISA. Exosomes were isolated by ultracentrifugation. Donor specific antibodies to HLA were quantified using Luminex. Exosomes were characterized for lung SAgs, transcription factors, 20S proteasome, HLA class I and II, and polymeric immunoglobulin receptor protein using western blot. Exosome miRNA was analyzed using NanoString. The exosome-induced immune response was determined in mice. RESULTS: LTxRs with RAS, but not BOS, had donor specific antibodies at diagnosis. CIITA, NFkB, polymeric immunoglobulin receptor protein, 20S proteasome, HLA-DQ, and HLA-DR were significantly higher in RAS exosomes than in BOS exosomes. RAS plasma had high levels of proinflammatory cytokines and distinct exosomal miRNA. Immunization of C57BL/6 mice with RAS exosomes showed severe inflammation and peribronchial fibrosis, whereas BOS exosomes induced patchy inflammation and fibrosis. CONCLUSION: LTxRs with BOS or RAS had exosomes with distinct molecular and immunologic profiles. RAS samples had a higher concentration of proinflammatory factors, HLA class II, lung SAgs, and antibodies to HLA class II molecules, indicating severe allograft injury. Mice immunized with RAS exosomes developed lesions in airways, pleura, interlobular septum, and alveoli, whereas BOS exosomes induced mild to patchy inflammation with lung fibrosis.


Bronchiolitis Obliterans/diagnosis , Exosomes , Lung Diseases/diagnosis , Lung Transplantation , Postoperative Complications/diagnosis , Animals , Bronchiolitis Obliterans/blood , Bronchiolitis Obliterans/immunology , Humans , Lung Diseases/blood , Lung Diseases/immunology , Mice , Postoperative Complications/blood , Postoperative Complications/immunology , Retrospective Studies , Syndrome
11.
Front Immunol ; 12: 754702, 2021.
Article En | MEDLINE | ID: mdl-34887860

The IL-36 family of cytokines were identified in the early 2000's as a new subfamily of the IL-1 cytokine family, and since then, the role of IL-36 cytokines during various inflammatory processes has been characterized. While most of the research has focused on the role of these cytokines in autoimmune skin diseases such as psoriasis and dermatitis, recent studies have also shown the importance of IL-36 cytokines in the lung inflammatory response during infectious and non-infectious diseases. In this review, we discuss the biology of IL-36 cytokines in terms of how they are produced and activated, as well as their effects on myeloid and lymphoid cells during inflammation. We also discuss the role of these cytokines during lung infectious diseases caused by bacteria and influenza virus, as well as other inflammatory conditions in the lungs such as allergic asthma, lung fibrosis, chronic obstructive pulmonary disease, cystic fibrosis and cancer. Finally, we discuss the current therapeutic advances that target the IL-36 pathway and the possibility to extend these tools to treat lung inflammatory diseases.


Inflammation/immunology , Interleukin-1/immunology , Lung Diseases/immunology , Animals , Humans
12.
PLoS Negl Trop Dis ; 15(12): e0010050, 2021 12.
Article En | MEDLINE | ID: mdl-34914687

Ascariasis is one of the most common infections in the world and associated with significant global morbidity. Ascaris larval migration through the host's lungs is essential for larval development but leads to an exaggerated type-2 host immune response manifesting clinically as acute allergic airway disease. However, whether Ascaris larval migration can subsequently lead to chronic lung diseases remains unknown. Here, we demonstrate that a single episode of Ascaris larval migration through the host lungs induces a chronic pulmonary syndrome of type-2 inflammatory pathology and emphysema accompanied by pulmonary hemorrhage and chronic anemia in a mouse model. Our results reveal that a single episode of Ascaris larval migration through the host lungs leads to permanent lung damage with systemic effects. Remote episodes of ascariasis may drive non-communicable lung diseases such as asthma, chronic obstructive pulmonary disease (COPD), and chronic anemia in parasite endemic regions.


Anemia/parasitology , Ascariasis/parasitology , Ascaris suum/physiology , Lung Diseases/parasitology , Anemia/genetics , Anemia/immunology , Anemia/pathology , Animals , Ascariasis/genetics , Ascariasis/immunology , Ascariasis/pathology , Ascaris suum/genetics , Chronic Disease , Cytokines/genetics , Cytokines/immunology , Female , Humans , Larva/genetics , Larva/physiology , Lung/immunology , Lung/parasitology , Lung/pathology , Lung Diseases/genetics , Lung Diseases/immunology , Lung Diseases/pathology , Mice , Mice, Inbred BALB C
13.
Commun Biol ; 4(1): 1256, 2021 11 03.
Article En | MEDLINE | ID: mdl-34732811

In vitro phagocytosis of Mycobacterium tuberculosis (Mtb) aggregates (Mtb-AG), rather than similar numbers of single bacilli (Mtb-SC), induces host macrophage death and favors bacterial growth. Here, we examined whether aggregation contributes to enhanced Mtb pathogenicity in vivo in rabbit lungs. Rabbits were exposed to infectious aerosols containing mainly Mtb-AG or Mtb-SC. The lung bacterial load, systemic immune response, histology, and immune cell composition were investigated over time. Genome-wide transcriptome analysis, cellular and tissue-level assays, and immunofluorescent imaging were performed on lung tissue to define and compare immune activation and pathogenesis between Mtb-AG and Mtb-SC infection. Lung bacillary loads, disease scores, lesion size, and structure were significantly higher in Mtb-AG than Mtb-SC infected animals. Differences in immune cell distribution and activation were noted in the lungs of the two groups of infected animals. Consistently larger lung granulomas with large aggregates of Mtb, extensive necrotic foci, and elevated matrix metalloproteases expression were observed in Mtb-AG infected rabbits. Our findings suggest that bacillary aggregation increases Mtb fitness for improved growth and accelerates lung inflammation and infected host cell death, thereby exacerbating disease pathology in the lungs.


Adaptive Immunity , Host-Pathogen Interactions , Immunity, Innate , Lung Diseases/immunology , Mycobacterium tuberculosis/physiology , Phagocytosis , Animals , Female , Lung Diseases/microbiology , Rabbits
14.
mSphere ; 6(5): e0069921, 2021 10 27.
Article En | MEDLINE | ID: mdl-34612675

Along with surging threats and antibiotic resistance of Pseudomonas aeruginosa in health care settings, it is imperative to develop effective vaccines against P. aeruginosa infection. In this study, we used an Asd (aspartate-semialdehyde dehydrogenase)-based balanced-lethal host-vector system of a recombinant Yersinia pseudotuberculosis mutant to produce self-adjuvanting outer membrane vesicles (OMVs). The OMVs were used as a carrier to deliver the heterologous PcrV-HitAT (PH) fusion antigen of P. aeruginosa for vaccine evaluation. Intramuscular vaccination with OMVs carrying the PH antigen (referred to rOMV-PH) afforded 73% protection against intranasal challenge with 5 × 106 (25 50% lethal doses) of the cytotoxic PA103 strain and complete protection against a noncytotoxic PAO1 strain. In contrast, vaccination with the PH-deficient OMVs or PH antigen alone failed to offer effective protection against the same challenge. Immune analysis showed that the rOMV-PH vaccination induced potent humoral and Th1/Th17 responses compared to the PH vaccination. The rOMV-PH vaccination rapidly cleared P. aeruginosa burdens with coordinated production of proinflammatory cytokines in mice. Moreover, antigen-specific CD4+ and CD8+ T cells and their producing cytokines (tumor necrosis factor alpha and interleukin-17A), rather than antibodies, were essential for protection against pneumonic P. aeruginosa infection. Our studies demonstrated that the recombinant Y. pseudotuberculosis OMVs delivering heterologous P. aeruginosa antigens could be a new promising vaccine candidate for preventing the spread of drug-resistant P. aeruginosa. IMPORTANCE Hospital- and community-acquired infections with Pseudomonas aeruginosa cause a high rate of morbidity and mortality in patients who have underlying medical conditions. The spread of multidrug-resistant P. aeruginosa strains is becoming a great challenge for treatment using antibiotics. Thus, a vaccine as one of the alternative strategies is urgently required to prevent P. aeruginosa infection.


Antigens, Bacterial/immunology , Bacterial Toxins/immunology , Bacterial Vaccines/immunology , Pore Forming Cytotoxic Proteins/immunology , Pseudomonas Infections/prevention & control , Pseudomonas aeruginosa/immunology , Adjuvants, Immunologic/chemistry , Adjuvants, Immunologic/therapeutic use , Animals , Antibodies, Bacterial/blood , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytokines/blood , Female , Immunization , Lung Diseases/immunology , Lung Diseases/prevention & control , Male , Mice , Mice, Inbred BALB C , Pseudomonas Infections/immunology
15.
Int J Mol Sci ; 22(20)2021 Oct 13.
Article En | MEDLINE | ID: mdl-34681679

Sarcoidosis is a chronic disease with unknown etiology and pathophysiology, characterized by granuloma formation. Matrix Metalloproteinase-12 (MMP12) is an elastase implicated in active granulomatous sarcoidosis. Previously, we reported that oropharyngeal instillation of multiwall carbon nanotubes (MWCNT) into C57Bl/6 mice induced sarcoid-like granulomas and upregulation of MMP12. When Mmp12 knock-out (KO) mice were instilled with MWCNT, granuloma formation occurred 10 days post-instillation but subsequently resolved at 60 days. Thus, we concluded that MMP12 was essential to granuloma persistence. The aim of the current study was to identify potential mechanisms of granuloma resolution in Mmp12KO mice. Strikingly, an M2 macrophage phenotype was present in Mmp12KO but not in C57Bl/6 mice. Between 10 and 60 days, macrophage populations in MWCNT-instilled Mmp12KO mice demonstrated an M2c to M2a phenotypic shift, with elevations in levels of IL-13, an M2 subtype-regulating factor. Furthermore, the M2 inducer, Apolipoprotein E (ApoE), and Matrix Metalloproteinase-14 (MMP14), a promoter of collagen degradation, were upregulated in 60-day MWCNT-instilled Mmp12KO mice. In conclusion, alveolar macrophages express two M2 phenotypes in Mmp12KO mice: M2c at 10 days when granulomas form, and M2a at 60 days when granulomas are resolving. Findings suggest that granuloma resolution in 60-day Mmp12KO mice requires an M2a macrophage phenotype.


Granuloma/immunology , Lung Diseases/immunology , Macrophages, Alveolar/immunology , Matrix Metalloproteinase 12/genetics , Animals , Granuloma/metabolism , Lung Diseases/metabolism , Mice , Mice, Knockout , Nanotubes, Carbon
16.
Front Immunol ; 12: 753940, 2021.
Article En | MEDLINE | ID: mdl-34630433

Lung macrophages play important roles in the maintenance of homeostasis, pathogen clearance and immune regulation. The different types of pulmonary macrophages and their roles in lung diseases have attracted attention in recent years. Alveolar macrophages (AMs), including tissue-resident alveolar macrophages (TR-AMs) and monocyte-derived alveolar macrophages (Mo-AMs), as well as interstitial macrophages (IMs) are the major macrophage populations in the lung and have unique characteristics in both steady-state conditions and disease states. The different characteristics of these three types of macrophages determine the different roles they play in the development of disease. Therefore, it is important to fully understand the similarities and differences among these three types of macrophages for the study of lung diseases. In this review, we will discuss the physiological characteristics and unique functions of these three types of macrophages in acute and chronic lung diseases. We will also discuss possible methods to target macrophages in lung diseases.


COVID-19/immunology , Lung Diseases/immunology , Lung/immunology , Macrophages/immunology , SARS-CoV-2/physiology , Animals , Homeostasis , Humans , Inflammation
17.
Front Immunol ; 12: 710375, 2021.
Article En | MEDLINE | ID: mdl-34707601

The unique environment of the lungs is protected by complex immune interactions. Human lung tissue-resident memory T cells (TRM) have been shown to position at the pathogen entry points and play an essential role in fighting against viral and bacterial pathogens at the frontline through direct mechanisms and also by orchestrating the adaptive immune system through crosstalk. Recent evidence suggests that TRM cells also play a vital part in slowing down carcinogenesis and preventing the spread of solid tumors. Less beneficially, lung TRM cells can promote pathologic inflammation, causing chronic airway inflammatory changes such as asthma and fibrosis. TRM cells from infiltrating recipient T cells may also mediate allograft immunopathology, hence lung damage in patients after lung transplantations. Several therapeutic strategies targeting TRM cells have been developed. This review will summarize recent advances in understanding the establishment and maintenance of TRM cells in the lung, describe their roles in different lung diseases, and discuss how the TRM cells may guide future immunotherapies targeting infectious diseases, cancers and pathologic immune responses.


Lung Diseases/immunology , Lung/immunology , Memory T Cells/immunology , Animals , Humans , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Neoadjuvant Therapy , Vaccines/immunology
18.
PLoS Pathog ; 17(9): e1009887, 2021 09.
Article En | MEDLINE | ID: mdl-34525130

Brucellosis is one of the most widespread bacterial zoonoses worldwide. Here, our aim was to identify the effector mechanisms controlling the early stages of intranasal infection with Brucella in C57BL/6 mice. During the first 48 hours of infection, alveolar macrophages (AMs) are the main cells infected in the lungs. Using RNA sequencing, we identified the aconitate decarboxylase 1 gene (Acod1; also known as Immune responsive gene 1), as one of the genes most upregulated in murine AMs in response to B. melitensis infection at 24 hours post-infection. Upregulation of Acod1 was confirmed by RT-qPCR in lungs infected with B. melitensis and B. abortus. We observed that Acod1-/- C57BL/6 mice display a higher bacterial load in their lungs than wild-type (wt) mice following B. melitensis or B. abortus infection, demonstrating that Acod1 participates in the control of pulmonary Brucella infection. The ACOD1 enzyme is mostly produced in mitochondria of macrophages, and converts cis-aconitate, a metabolite in the Krebs cycle, into itaconate. Dimethyl itaconate (DMI), a chemically-modified membrane permeable form of itaconate, has a dose-dependent inhibitory effect on Brucella growth in vitro. Interestingly, structural analysis suggests the binding of itaconate into the binding site of B. abortus isocitrate lyase. DMI does not inhibit multiplication of the isocitrate lyase deletion mutant ΔaceA B. abortus in vitro. Finally, we observed that, unlike the wt strain, the ΔaceA B. abortus strain multiplies similarly in wt and Acod1-/- C57BL/6 mice. These data suggest that bacterial isocitrate lyase might be a target of itaconate in AMs.


Brucellosis/immunology , Carboxy-Lyases/immunology , Lung Diseases/immunology , Macrophages, Alveolar/immunology , Animals , Isocitrate Lyase/metabolism , Mice , Mice, Inbred C57BL
19.
Front Immunol ; 12: 711102, 2021.
Article En | MEDLINE | ID: mdl-34456920

Lung transplant patients have the lowest long-term survival rates compared to other solid organ transplants. The complications after lung transplantation such as primary graft dysfunction (PGD) and ultimately chronic lung allograft dysfunction (CLAD) are the main reasons for this limited survival. In recent years, lung-specific autoantibodies that recognize non-HLA antigens have been hypothesized to contribute to graft injury and have been correlated with PGD, CLAD, and survival. Mounting evidence suggests that autoantibodies can develop during pulmonary disease progression before lung transplant, termed pre-existing autoantibodies, and may participate in allograft injury after transplantation. In this review, we summarize what is known about pulmonary disease autoantibodies, the relationship between pre-existing autoantibodies and lung transplantation, and potential mechanisms through which pre-existing autoantibodies contribute to graft injury and rejection.


Autoantibodies/immunology , Lung Transplantation/adverse effects , Postoperative Complications/etiology , Bronchiolitis Obliterans/immunology , Glycosylation , Humans , Lung Diseases/etiology , Lung Diseases/immunology , Lung Diseases, Interstitial/immunology , Postoperative Complications/immunology , Pulmonary Disease, Chronic Obstructive/immunology , Receptor, Angiotensin, Type 1/immunology , Receptor, Endothelin A/immunology , Transplantation, Homologous
20.
Life Sci ; 283: 119871, 2021 Oct 15.
Article En | MEDLINE | ID: mdl-34352260

Non-communicable, chronic respiratory diseases (CRDs) affect millions of individuals worldwide. The course of these CRDs (asthma, chronic obstructive pulmonary disease, and cystic fibrosis) are often punctuated by microbial infections that may result in hospitalization and are associated with increased risk of morbidity and mortality, as well as reduced quality of life. Interleukin-13 (IL-13) is a key protein that regulates airway inflammation and mucus hypersecretion. There has been much interest in IL-13 from the last two decades. This cytokine is believed to play a decisive role in the exacerbation of inflammation during the course of viral infections, especially, in those with pre-existing CRDs. Here, we discuss the common viral infections in CRDs, as well as the potential role that IL-13 plays in the virus-induced disease pathogenesis of CRDs. We also discuss, in detail, the immune-modulation potential of IL-13 that could be translated to in-depth studies to develop IL-13-based therapeutic entities.


Influenza, Human/immunology , Interleukin-13/immunology , Lung Diseases/immunology , Chronic Disease , Humans , Inflammation/immunology , Inflammation/pathology , Influenza, Human/pathology , Lung Diseases/pathology , Mucus/immunology
...