Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 55
1.
Signal Transduct Target Ther ; 9(1): 142, 2024 Jun 03.
Article En | MEDLINE | ID: mdl-38825657

Radiotherapy combined with immune checkpoint blockade holds great promise for synergistic antitumor efficacy. Targeted radionuclide therapy delivers radiation directly to tumor sites. LNC1004 is a fibroblast activation protein (FAP)-targeting radiopharmaceutical, conjugated with the albumin binder Evans Blue, which has demonstrated enhanced tumor uptake and retention in previous preclinical and clinical studies. Herein, we demonstrate that 68Ga/177Lu-labeled LNC1004 exhibits increased uptake and prolonged retention in MC38/NIH3T3-FAP and CT26/NIH3T3-FAP tumor xenografts. Radionuclide therapy with 177Lu-LNC1004 induced a transient upregulation of PD-L1 expression in tumor cells. The combination of 177Lu-LNC1004 and anti-PD-L1 immunotherapy led to complete eradication of all tumors in MC38/NIH3T3-FAP tumor-bearing mice, with mice showing 100% tumor rejection upon rechallenge. Immunohistochemistry, single-cell RNA sequencing (scRNA-seq), and TCR sequencing revealed that combination therapy reprogrammed the tumor microenvironment in mice to foster antitumor immunity by suppressing malignant progression and increasing cell-to-cell communication, CD8+ T-cell activation and expansion, M1 macrophage counts, antitumor activity of neutrophils, and T-cell receptor diversity. A preliminary clinical study demonstrated that 177Lu-LNC1004 was well-tolerated and effective in patients with refractory cancers. Further, scRNA-seq of peripheral blood mononuclear cells underscored the importance of addressing immune evasion through immune checkpoint blockade treatment. This was emphasized by the observed increase in antigen processing and presentation juxtaposed with T cell inactivation. In conclusion, our data supported the efficacy of immunotherapy combined with 177Lu-LNC1004 for cancer patients with FAP-positive tumors.


Immune Checkpoint Inhibitors , Animals , Mice , Immune Checkpoint Inhibitors/pharmacology , Humans , Membrane Proteins/genetics , Membrane Proteins/immunology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Endopeptidases/genetics , NIH 3T3 Cells , Radiopharmaceuticals/therapeutic use , Serine Endopeptidases/genetics , Serine Endopeptidases/immunology , Xenograft Model Antitumor Assays , Immunotherapy , Gelatinases/genetics , Gelatinases/immunology , Lutetium/pharmacology , Cell Line, Tumor
2.
Theranostics ; 14(6): 2560-2572, 2024.
Article En | MEDLINE | ID: mdl-38646643

Management of prostate cancer (PC) might be improved by combining external beam radiotherapy (EBRT) and prostate-specific membrane antigen (PSMA)-targeted radioligand therapy (RLT) with lutetium-177 (177Lu)-labeled PSMA inhibitors. We hypothesized a higher efficacy of the combination due to augmentation of the radiation dose to the tumor and interactions of EBRT with PSMA expression potentially increasing radiopharmaceutical uptake. Therefore, this study analyzed the influence of radiation on PSMA expression levels in vitro. The results were translated to evaluate the efficacy of the combination of photon EBRT and [177Lu]Lu-PSMA-617 in a murine PC xenograft model. Finally, a clinical case report on a combined elective field EBRT with RLT dose escalation illustrates a proof-of-concept. Methods: PSMA gene and protein expression were assessed in human PSMA-overexpressing LNCaP cells after irradiation using reverse transcription quantitative polymerase chain reaction (RT-qPCR), flow cytometry and On-Cell Western assays. In the in vivo therapy study, LNCaP tumor-bearing BALB/c nu/nu mice were irradiated once with 2 Gy X-ray EBRT and injected with 40 MBq [177Lu]Lu-PSMA-617 after 4 h or received single or no treatment (n = 10 each). Tumor-absorbed doses by [177Lu]Lu-PSMA-617 were calculated according to the Medical Internal Radiation Dosimetry (MIRD) formalism after deriving time-activity curves using a gamma probe. An exemplified patient case is demonstrated where fractionated EBRT (54 Gy to prostate; 45 Gy to pelvic lymphatics) and three cycles of [177Lu]Lu-PSMA-617 (3.4-6.0 GBq per cycle) were sequentially combined under concurrent androgen deprivation for treating locally advanced PC. Results: At 4 h following irradiation with 2-8 Gy, LNCaP cells displayed a PSMA protein upregulation by around 18% relative to non-irradiated cells, and a stronger upregulation on mRNA level (up to 2.6-fold). This effect was reversed by 24 h when PSMA protein levels were downregulated by up to 22%. Mice treated with the combination therapy showed significantly improved outcomes regarding tumor control and median survival (p < 0.0001) as compared to single or no treatment. Relative to monotherapy with PSMA-RLT or EBRT, the tumor doubling time was prolonged 1.7- or 2.7-fold and the median survival was extended by 24% or 60% with the combination, respectively. Additionally, tumors treated with EBRT exhibited a 14% higher uptake of the radiopharmaceutical as evident from the calculated tumor-absorbed dose, albeit with high variability in the data. Concerning the patient case, the tri-modality treatment was well tolerated and the patient responded with a long-lasting complete biochemical remission for five years following end of PSMA-RLT. The patient then developed a biochemical relapse with oligo-recurrent disease on follow-up imaging. Conclusion: The present preclinical and clinical data demonstrate that the combination of EBRT with dose escalation by PSMA-RLT improves tumor control and potentially prolongs survival. This may pave the way for further clinical investigations of this approach to explore the curative potential of the combination therapy.


Dipeptides , Heterocyclic Compounds, 1-Ring , Lutetium , Prostate-Specific Antigen , Prostatic Neoplasms , Radioisotopes , Radiopharmaceuticals , Animals , Male , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/metabolism , Humans , Lutetium/therapeutic use , Lutetium/pharmacology , Heterocyclic Compounds, 1-Ring/therapeutic use , Heterocyclic Compounds, 1-Ring/pharmacology , Dipeptides/pharmacology , Dipeptides/therapeutic use , Cell Line, Tumor , Mice , Radiopharmaceuticals/therapeutic use , Radiopharmaceuticals/pharmacology , Radiopharmaceuticals/pharmacokinetics , Radioisotopes/therapeutic use , Radioisotopes/pharmacology , Mice, Inbred BALB C , Mice, Nude , Glutamate Carboxypeptidase II/metabolism , Glutamate Carboxypeptidase II/genetics , Xenograft Model Antitumor Assays , Antigens, Surface/metabolism , Antigens, Surface/genetics
3.
J Biomed Nanotechnol ; 17(11): 2125-2141, 2021 Nov 01.
Article En | MEDLINE | ID: mdl-34906274

Recently, it was demonstrated that doxorubicin (Dox.HCl), a chemotherapeutic agent, could be photoactivated by Cerenkov radiation (CR). The objective of the present work was to develop a multimodal chemotherapy-radiotherapy-photodynamic therapeutic system based on reconstituted high-density lipoprotein (rHDL) loaded with Dox.HCl and 177Lu-DOTA. 177Lu acts as a therapeutic radionuclide and CR source. The system can be visualized by nuclear imaging. Fluorescence microscopy showed that rHDL-Dox specifically recognized cancer cells (T47D) that are positive for SR-B1 receptors. Encapsulated Dox.HCl was released into the cells and produced reactive oxygen species when irradiated with a 450-nm laser (photodynamic effect). The same effect occurred when Dox.HCl was irradiated by 177Lu CR. Through in vitro experiments, it was confirmed that the addition of 177Lu-DOTA to the rHDL-Dox nanosystem did not affect the specific recognition of SR-B1 receptors expressed in cells, or the cellular internalization of 177Lu-DOTA. The toxicity induced by the rHDL-Dox/177Lu nanosystem in cell lines with high (T47D and PC3), poor (H9C2) and almost-zero (human fibroblasts (FB)) expression of SR-B1 was evaluated in vitro and confirmed the synergy of the combined chemotherapy-radiotherapy-photodynamic therapeutic effect; this induced toxicity was proportional to the expression of the SR-B1 receptor on the surface of the cells used. The HDL-Dox/177Lu nanosystem experienced uptake by tumor cells and the liver-both tissues with high expression of SR-B1 receptors-but not by the heart. 177Lu CR offered the possibility of imparting photodynamic therapy where laser light could not reach.


Antineoplastic Agents , Drug Carriers , Photochemotherapy , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Doxorubicin/pharmacology , Humans , Lipoproteins, HDL , Lutetium/pharmacology , Precision Medicine , Radioisotopes/pharmacology
4.
Int J Mol Sci ; 22(22)2021 Nov 11.
Article En | MEDLINE | ID: mdl-34830094

Cancer is one of the leading causes of death in the world. A cancer-targeted multifunctional probe labeled with the radionuclide has been developed to provide multi-modalities for NIR fluorescence and nuclear imaging (PET, SPECT), for photothermal therapy (PTT), and targeted radionuclide therapy of cancer. In this study, synthesis, characterization, in vitro, and in vivo biological evaluation of the cyanine-based probe (DOTA-NIR790) were demonstrated. The use of cyanine dyes for the selective accumulation of cancer cells were used to achieve the characteristics of tumor markers. Therefore, all kinds of organ tumors can be targeted for diagnosis and treatment. The DOTA-NIR790 labeled with lutetium-111 could detect original or metastatic tumors by using SPECT imaging and quantify tumor accumulation. The ß-emission of 177Lu-DOTA-NIR790 can be used for targeted radionuclide therapy of tumors. The DOTA-NIR790 enabled imaging by NIR fluorescence and by nuclear imaging (SPECT) to monitor in real-time the tumor accumulation and the situation of cancer therapy, and to guide the surgery or the photothermal therapy of the tumor. The radionuclide-labeled heptamethine cyanine based probe (DOTA-NIR790) offers multifunctional modalities for imaging and therapies of cancer.


Lutetium , Neoplasms, Experimental , Optical Imaging , Quinolinium Compounds , Single Photon Emission Computed Tomography Computed Tomography , Theranostic Nanomedicine , A549 Cells , Animals , Female , Fluorescent Dyes/chemistry , Fluorescent Dyes/pharmacology , HCT116 Cells , Humans , Lutetium/chemistry , Lutetium/pharmacology , Mice , Mice, Nude , Neoplasms, Experimental/diagnostic imaging , Neoplasms, Experimental/therapy , Quinolinium Compounds/chemistry , Quinolinium Compounds/pharmacology , Radioisotopes/chemistry , Radioisotopes/pharmacology
5.
PLoS One ; 16(11): e0260073, 2021.
Article En | MEDLINE | ID: mdl-34793530

BACKGROUND: Mainly severe (CTCAE grade 3-4) haematotoxicity during peptide receptor radionuclide therapy (PRRT) is reported in literature due to major clinical impact, however moderate (CTCAE grade 2) haematotoxicity is common and could affect therapy management. The aim of this study was to evaluate the haematotoxicity course during PRRT and to compare baseline parameters between haematotoxicity grades. METHODS: In this retrospective study, 100 patients with a neuroendocrine tumour treated with PRRT were included. Patients were treated with an aimed number of four cycles with 7.4 GBq [177Lu]Lu-DOTA-TATE administered every 10 weeks. Haematological assessment was performed at baseline and frequently up to 10 weeks after the fourth cycle. The lowest haematological value was graded according to CTCAE v5.0, and patients were classified using the highest observed grade. Differences in baseline parameters, including [68Ga]Ga-DOTA-TATE positive tumour volume, were evaluated between CTCAE grades. RESULTS: Four cycles were completed by 86/100 of patients, 4/100 patients discontinued due to haematotoxicity, and 10/100 patients due to progressive disease. The treatment course was adjusted due to haematotoxicity in 24/100 patients, including postponed next cycle (n = 17), reduced administered activity (n = 13), and both adjustments (n = 10). The most observed haematotoxicity grade was grade 0-1 in 54/100 patients, grade 2 in 38/100 and grade 3-4 in 8/100. Significant differences in baseline leucocyte, neutrophil and platelet counts were observed between grade 0-1 and grade 2. However, the correlation between baseline and lowest observed values was poor to moderate. No differences between haematotoxicity grades and baseline parameters or somatostatin receptor positive tumour volume was observed. CONCLUSIONS: The incidence of severe haematotoxicity was low with extensive screening and monitoring. The vast majority of patients (96/100) was not restricted in treatment continuation by haematotoxicity; therefore, our selection criteria appeared appropriate for safe PRRT treatment. Baseline parameters showed limited correlation with the degree of decline in haematological values.


Neuroendocrine Tumors/therapy , Radiopharmaceuticals/adverse effects , Aged , Female , Gallium Radioisotopes/pharmacology , Hemolytic Agents/toxicity , Humans , Leukocytes , Lutetium/pharmacology , Male , Middle Aged , Netherlands , Neutrophils , Octreotide/analogs & derivatives , Octreotide/therapeutic use , Organometallic Compounds/therapeutic use , Platelet Count , Radioisotopes/pharmacology , Radiopharmaceuticals/therapeutic use , Receptors, Peptide/metabolism , Retrospective Studies
6.
Theranostics ; 11(17): 8143-8151, 2021.
Article En | MEDLINE | ID: mdl-34373733

Background: [177Lu]-PSMA-617 (Lu-PSMA) therapy is a promising therapeutic option for end-stage prostate cancer patients. Early treatment response at the first restaging after two therapy cycles might correlate with high treatment efficacy and long overall survival (OS). Therefore, the aim of this study was to evaluate whether early reduction in tumor volume is a positive prognosticator for OS. To this end, PSMA PET prior to therapy (baseline) and at first restaging after two therapy cycles (interim; i.e., 12 weeks) were compared. Methods: Patients with metastatic castration-resistant prostate cancer who received Lu-PSMA therapy were reviewed for this analysis. All patients with available baseline and interim [68Ga]-PSMA-11 PET/CT were included in this analysis (n = 33). All PSMA avid metastases in baseline and interim PETs were semi-automatically segmented. The average PSMA expression (mean SUVmax of all metastases), total tumor volume (PSMA-TV) and TLQ (quotients of tumor volume and SUVmean summed over all metastases) were quantified at baseline and interim timepoints. Response in PSMA-TV was assumed when a decline > 30% was present. OS and biochemical response were available for all patients. Results: Baseline PSMA-TV was a statistically significant prognosticator of OS (HR = 1.618 95%CI: 1.117 - 2.343, p = 0.011). Reduction in PSMA-TV was not a statistically significant positive prognosticator of OS in the total cohort (HR = 0.829 95%CI: 0.559 - 1.230, p = 0.352). Likewise, there was no statistical difference in survival time comparing patients with PSMA-TV response to those without (13.2 vs. 15.6 months, p = 0.1). In the subgroup of patients with PSMA-TV response, mean SUVmax was a statistically significant prognosticator of OS (binarized by median; HR = 0.15; 95%CI: 0.03 - 0.83; p < 0.05). If patients with low PSMA expression at baseline were excluded from the analysis, reduction in PSMA-TV became a positive prognosticator of OS in uni- and multivariable Cox regression (HR = 0.290; 95%CI: 0.108 - 0.782; p = 0.015). Conclusion: PSMA-TV reduction was a positive prognosticator of OS only if patients with low PSMA expression were excluded. This might indicate that the PSMA-PETs of patients with low PSMA expression may not be suited for assessing PSMA-TV reduction. Future studies investigating the interplay of PSMA-TV and low PSMA expression response are warranted.


Dipeptides/metabolism , Heterocyclic Compounds, 1-Ring/metabolism , Lutetium/pharmacology , Prostate-Specific Antigen/metabolism , Prostate-Specific Antigen/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy , Tumor Burden/drug effects , Aged , Aged, 80 and over , Humans , Male , Middle Aged , Positron Emission Tomography Computed Tomography , Prognosis , Radiation Oncology , Radiopharmaceuticals/pharmacology , Retrospective Studies , Treatment Outcome
7.
Cancer Biother Radiopharm ; 36(8): 682-692, 2021 Oct.
Article En | MEDLINE | ID: mdl-34402687

Introduction: [177Lu]Lu-prostate-specific membrane antigen (PSMA)-617 has emerged as a promising radiopharmaceutical for targeting PSMA in metastatic castrate-resistant prostate carcinoma (mCRPC). We have optimized the radiolabeling protocol for a multidose formulation (27-28.8 GBq equivalent to 6-7 patient-doses) of [177Lu]Lu-PSMA-617 using [177Lu]Lu3+ produced via 176Lu(n,γ)177Lu route with moderate specific activity (0.66-0.81 GBq/µg). Methods: [177Lu]Lu-PSMA-617 was synthesized using moderate specific activity [177Lu]LuCl3 (0.74 GBq/µg) with PSMA-617 having metal-to-ligand molar ratio ∼1: 2.5 in CH3COONH4 buffer (0.1 M) containing gentisic acid at pH 4.0-4.5. Human prostate carcinoma cell line LNCaP cell (high PSMA expression) was used for in vitro cell-binding studies and generating tumor xenograft models in nude mice for tissue biodistribution studies. Several batches of the present formulation have been clinically administered in mCRPC patients (single patient dose: 4.44-5.55 GBq per cycle). Results: In this study we report a consistent and reproducible protocol for multidose formulations of [177Lu]Lu-PSMA-617 for adopting in a hospital radiopharmacy setting. Although the radiochemical yield of [177Lu]Lu-PSMA-617 was found to be 97.30% ± 1.03%, the radiochemical purity was 98.24% ± 0.50% (n = 19). In vitro and serum stability of [177Lu]Lu-PSMA-617 was retained up to 72 and 120 h after radiolabeling and upon storage at -20°C with a radioactive concentration between 0.37 and 0.74 GBq/mL upon using stabilizer concentration as low as 43-48 µg/mCi. Preclinical cell-binding studies of [177Lu]Lu-PSMA-617 revealed specific binding with LNCaP cells of 17.4% ± 2.4%. The uptake in LnCaP xenografted tumor (nude mice) was 7.5 ± 2.6% ID/g for ∼1.5-2.0 cm3 tumor volume at 24-h post-injection. Post-therapy (24 h) SPECT image of mCRPC patients with prior orchidectomy and various hormone therapy showed specific localization of [177Lu]Lu-PSMA-617 in the tumor region. Conclusions: Formulation of a ready-to-use multidose formulation of [177Lu]Lu-PSMA-617 was successfully achieved and the procedure was optimized for routine preparation at a hospital radiopharmacy set-up. High degree of localization of [177Lu]Lu-PSMA-617 in post-therapy SPECT scan and the post-therapeutic response confirms its therapeutic efficacy. Clinical Trials.gov ID: RPC/51/Minutes/Final dated 16th October, 2019.


Dipeptides/pharmacology , Glutamate Carboxypeptidase II/antagonists & inhibitors , Heterocyclic Compounds, 1-Ring/pharmacology , Lutetium/pharmacology , Neoplasm Metastasis/radiotherapy , Prostate-Specific Antigen/pharmacology , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Radioisotopes/pharmacology , Radiopharmaceuticals/pharmacology , Radiotherapy Dosage , Animals , Antigens, Surface , Cell Line, Tumor , Clinical Protocols , Dose-Response Relationship, Radiation , Humans , Male , Mice , Mice, Nude , Prostatic Neoplasms, Castration-Resistant/pathology , Tissue Distribution , Xenograft Model Antitumor Assays
8.
Molecules ; 26(12)2021 Jun 08.
Article En | MEDLINE | ID: mdl-34201111

Recently, the first squaramide-(SA) containing FAP inhibitor-derived radiotracers were introduced. DATA5m.SA.FAPi and DOTA.SA.FAPi with their non-radioactive complexes showed high affinity and selectivity for FAP. After a successful preclinical study with [68Ga]Ga-DOTA.SA.FAPi, the first patient studies were realized for both compounds. Here, we present a new squaramide-containing compound targeting FAP, based on the AAZTA5 chelator 1,4-bis-(carboxylmethyl)-6-[bis-(carboxymethyl)-amino-6-pentanoic-acid]-perhydro-1,4-diazepine. For this molecule (AAZTA5.SA.FAPi), complexation with radionuclides such as gallium-68, scandium-44, and lutetium-177 was investigated, and the in vitro properties of the complexes were characterized and compared with those of DOTA.SA.FAPi. AAZTA5.SA.FAPi and its derivatives labelled with non-radioactive isotopes demonstrated similar excellent inhibitory potencies compared to the previously published SA.FAPi ligands, i.e., sub-nanomolar IC50 values for FAP and high selectivity indices over the serine proteases PREP and DPPs. Labeling with all three radiometals was easier and faster with AAZTA5.SA.FAPi compared to the corresponding DOTA analogue at ambient temperature. Especially, scandium-44 labeling with the AAZTA derivative resulted in higher specific activities. Both DOTA.SA.FAPi and AAZTA5.SA.FAPi showed sufficiently high stability in different media. Therefore, these FAP inhibitor agents could be promising for theranostic approaches targeting FAP.


Acetates/pharmacology , Azepines/pharmacology , Fibroblasts/drug effects , Heterocyclic Compounds, 1-Ring/pharmacology , Membrane Proteins/antagonists & inhibitors , Quinine/analogs & derivatives , Endopeptidases , Fibroblasts/metabolism , Gallium Radioisotopes/pharmacology , Humans , Ligands , Lutetium/pharmacology , Positron Emission Tomography Computed Tomography/methods , Quinine/pharmacology , Radioisotopes/pharmacology , Radiopharmaceuticals/pharmacology , Scandium/pharmacology , Serine Endopeptidases/metabolism
9.
Target Oncol ; 16(3): 369-380, 2021 05.
Article En | MEDLINE | ID: mdl-33687624

BACKGROUND: Lutetium-177 prostate-specific membrane antigen (177Lu-PSMA) radioligand therapy is emerging as a promising treatment for metastatic castration-resistant prostate cancer refractory to established therapies. While there is an increasing body of survival and other data from retrospective analyses and prospective trials, there is no clear understanding of how best to predict therapy response and survival outcomes. OBJECTIVE: In this retrospective cohort analysis, we aimed to identify features that are associated with response to radioligand therapy and greater survival based on analysis of real-world data. PATIENTS AND METHODS: 191 patients aged 70 ± 8 years with metastatic castration-resistant prostate cancer treated with radioligand therapy from November 2015 to February 2019 were included for analysis. Eligible patients had PSMA-expressing metastatic castration-resistant prostate cancer (confirmed by a 68Ga-PSMA-ligand positron emission tomography (PET)/computed tomography (CT) scan), an Eastern Cooperative Oncology Group performance status score ≤ 2 and no significant kidney, liver or bone marrow dysfunction (as characterised by kidney and liver function tests and a full blood count). Patients received one to five cycles of intravenous 177Lu-PSMA-ligand therapy. Endpoints included biochemical [prostate-specific antigen (PSA)] and radiologic (PSMA PET/CT) response, progression-free survival and overall survival, defined according to the Prostate Cancer Working Group 3 guidelines. Survival analysis was conducted by Kaplan-Meier estimation. RESULTS: Most individuals (89.5%) previously underwent first- and second-line systematic therapy. Of the 191 men treated with 452 cycles with mean injected activity of 6.1 ± 1.0 GBq per cycle, 159 patients were assessed for a biochemical response defined as a PSA decline ≥ 50% from baseline. A ≥ 50% PSA decline was observed in 89 (56%) patients, while any PSA decline occurred in 120 (75%) men. For the entire cohort, median values (interquartile range) of overall survival [n = 191], PSA progression-free survival [n = 132] and PET/CT progression-free survival were 12 (5-18), 4 (3-8) and 6 (3-10) months, respectively. Survival analysis confirmed better outcomes in individuals who had demonstrated therapy response. Predominantly lymph node metastatic disease and chemotherapy-naïve status were significant pre-therapy factors associated with longer survival. Baseline PSA was significantly linked to survival outcomes: lower levels predicted a lower risk of death and disease progression. Treatment-related adverse events included grade 3 or 4 haematological (12%), grade 1 or 2 renal (4.5%), and grade 3 or 4 clinical events (5.7%). CONCLUSIONS: Our findings suggest that 177Lu-PSMA radioligand therapy provides a significant response rate with a low toxicity profile. The evidence promotes greater efficacy of radioligand therapy in predominantly lymph node metastatic castration-resistant prostate cancer, and in individuals with chemotherapy-naïve status and lower levels of baseline PSA.


Lutetium/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Radioisotopes/therapeutic use , Aged , Cohort Studies , Data Analysis , Humans , Ligands , Lutetium/pharmacology , Male , Neoplasm Metastasis , Prostatic Neoplasms, Castration-Resistant/pathology , Radioisotopes/pharmacology , Retrospective Studies , Treatment Outcome
10.
Theranostics ; 11(1): 304-315, 2021.
Article En | MEDLINE | ID: mdl-33391476

Rationale: The low response rate of immunotherapy, such as anti-PD-L1/PD-1 and anti-CTLA4, has limited its application to a wider population of cancer patients. One widely accepted view is that inflammation within the tumor microenvironment is low or ineffective for inducing the sufficient infiltration and/or activation of lymphocytes. Here, a highly tumor-selective anti-PD-L1 (αPD-L1) antibody was developed through PET imaging screening, and it was radiolabeled with Lu-177 for PD-L1-targeted radioimmunotherapy (RIT) and radiation-synergized immunotherapy. Methods: A series of αPD-L1 antibodies were radiolabeled with zirconium-89 for PET imaging to screen the most suitable antibodies for RIT. Mice were divided into an immunotherapy group, a RIT group and a radiation-synergized immunotherapy group to evaluate the therapeutic effect. Alterations in the tumor microenvironment after treatment were assessed using flow cytometry and immunofluorescence microscopy. Results: Radiation-synergistic RIT can achieve a significantly better therapeutic effect than immunotherapy or RIT alone. The dosages of the radiopharmaceuticals and αPD-L1 antibodies were reduced, the infiltration of CD4+ and CD8+ T cells in the tumor microenvironment was increased, and no side effects were observed. This radiation-synergistic RIT strategy successfully showed a strong synergistic effect with αPD-L1 checkpoint blockade therapy, at least in the mouse model. Conclusions: PET imaging of 89Zr-labeled antibodies is an effective method for antibody screening. RIT with a 177Lu-labeled αPD-L1 antibody could successfully upregulate antitumor immunity in the tumor microenvironment and turn "cold" tumors "hot" for immunotherapy.


Antibodies, Neutralizing/pharmacology , B7-H1 Antigen/immunology , Immune Checkpoint Inhibitors/pharmacology , Lutetium/pharmacology , Radioimmunotherapy/methods , Radioisotopes/pharmacology , Tumor Microenvironment/immunology , Adenocarcinoma/immunology , Adenocarcinoma/metabolism , Adenocarcinoma/pathology , Adenocarcinoma/therapy , Animals , B7-H1 Antigen/antagonists & inhibitors , Cell Line, Tumor , Colonic Neoplasms/immunology , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , Colonic Neoplasms/therapy , Drug Screening Assays, Antitumor , Flow Cytometry , Mice , Microscopy, Fluorescence , Positron Emission Tomography Computed Tomography , Tumor Microenvironment/radiation effects , Zirconium
11.
J Cancer Res Ther ; 16(6): 1426-1434, 2020.
Article En | MEDLINE | ID: mdl-33342808

BACKGROUND: Trastuzumab is a Food and Drug Administration-approved humanized monoclonal antibody which targets the extracellular domain of human epidermal growth factor receptor 2 (HER2) receptor overexpressed on HER2-positive breast cancer cells. The combination of Lutetium-177 (177 Lu) (t½= 6.7 days, Eßmax497 keV (78.6%) and trastuzumab makes it a suitable targeting agent for radioimmunotherapy. In preclinical and clinical studies,177 Lu-Trastuzumab has proven to be effective for the treatment of HER2-positive malignancies such as breast and ovarian cancer. OBJECTIVES: In this study, we report the mechanism of action of177 Lu-CHX-A"-diethylenetriaminepentaacetic acid (DTPA)-trastuzumab at the cellular and molecular level by performing various in vitro assays in HER2-positive MDA-MB-453 breast cancer cells. MATERIALS AND METHODS: Trastuzumab was conjugated to the bifunctional chelating agent (BFCA) para-isothiocyanatobenzyl-DTPA and radiolabeled with177 Lu. In vitro cell binding studies were carried out in MDA-MB-453 cells to confirm the specificity of the complex toward the receptor. Cellular toxicity, cell cycle, and cell death analysis were also performed for exploring the potential of the radioimmunoconjugate at cellular and molecular level. RESULTS: In vitro cell binding studies showed a maximum binding of 10.7 ± 0.1% which reduced to 2.9 ± 0.1% on coincubation with unlabeled antibody. Our study revealed that the cellular toxicity was dose dependent, and mode of cell death was predominantly by apoptosis. The radioimmunoconjugate retarded the cell in the S phase of cell cycle with two-fold increase in G2/M arrest which justifies the enhanced apoptosis at higher doses. CONCLUSIONS: The study revealed that the formulation can execute a dose-dependent cellular toxicity through induction of apoptosis.


Breast Neoplasms/drug therapy , Immunoconjugates/pharmacology , Lutetium/pharmacology , Organometallic Compounds/pharmacology , Radioisotopes/pharmacology , Trastuzumab/pharmacology , Apoptosis/drug effects , Breast Neoplasms/pathology , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Immunoconjugates/therapeutic use , Lutetium/therapeutic use , Organometallic Compounds/therapeutic use , Radioisotopes/therapeutic use , Receptor, ErbB-2/metabolism , Trastuzumab/therapeutic use
12.
Q J Nucl Med Mol Imaging ; 64(4): 329-337, 2020 Dec.
Article En | MEDLINE | ID: mdl-33026210

Along with other novel metallic radionuclides, copper-64 (64Cu) is currently being investigated as an alternative option to the gallium-68 (68Ga) and lutetium-177 (177Lu) radiopharmaceuticals widely used for targeting somatostatin receptors, expressed by neuroendocrine tumors (NETs), and recently prostate specific membrane antigen (PSMA), expressed by prostate cancer cells. This interest is mostly driven by the peculiar nuclear properties of 64Cu that make it an almost ideal example of theranostic radionuclide. In fact, 64Cu emits both low-energy positrons, ß- particles and a swarm of Auger electrons. This combination of different emissions may allow to collect high-resolution PET images, but also to use the same radiopharmaceutical for eliciting a therapeutic effect. Another unique behavior of 64Cu originates from the fundamental biological role played in organisms by the ionic forms of the copper element, which is naturally involved in a multitude of cellular processes including cell replication. These intrinsic biological characteristics has led to the discovery that 64Cu, under its simplest dicationic form Cu2+, is able to specifically target a variety of cancerous cells and to detect the onset of a metastatic process in its initial stage. This short review reports an outline of the status of 64Cu radiopharmaceuticals and of the most relevant results that are constantly disclosed by preclinical and investigational clinical studies.


Copper Radioisotopes/pharmacology , Neuroendocrine Tumors/diagnostic imaging , Neuroendocrine Tumors/radiotherapy , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Radiopharmaceuticals/pharmacology , Antigens, Surface/metabolism , Chelating Agents/chemistry , Coordination Complexes/chemistry , Gallium Radioisotopes/chemistry , Gallium Radioisotopes/pharmacology , Glutamate Carboxypeptidase II/metabolism , Humans , Iodine Radioisotopes/chemistry , Lutetium/chemistry , Lutetium/pharmacology , Male , Molecular Imaging/methods , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography , Radioisotopes/chemistry , Radioisotopes/pharmacology , Receptors, Somatostatin/metabolism
13.
J Hematol Oncol ; 13(1): 144, 2020 10 28.
Article En | MEDLINE | ID: mdl-33115529

Metastatic castration-resistant prostate cancer (mCRPC) remains a terminal diagnosis with an aggressive disease course despite currently approved therapeutics. The recent successful development of poly ADP-ribose polymerase (PARP) inhibitors for patients with mCRPC and mutations in DNA damage repair genes has added to the treatment armamentarium and improved personalized treatments for prostate cancer. Other promising therapeutic agents currently in clinical development include the radiotherapeutic 177-lutetium-prostate-specific membrane antigen (PSMA)-617 targeting PSMA-expressing prostate cancer and combinations of immunotherapy with currently effective treatment options for prostate cancer. Herein, we have highlighted the progress in systemic treatments for mCRPC and the promising agents currently in ongoing clinical trials.


Androgen Receptor Antagonists/therapeutic use , Antineoplastic Agents/therapeutic use , Dipeptides/therapeutic use , Heterocyclic Compounds, 1-Ring/therapeutic use , Lutetium/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Prostatic Neoplasms, Castration-Resistant/drug therapy , Radioisotopes/therapeutic use , Androgen Receptor Antagonists/pharmacology , Animals , Antineoplastic Agents/pharmacology , Clinical Trials as Topic , Dipeptides/pharmacology , Heterocyclic Compounds, 1-Ring/pharmacology , Humans , Lutetium/pharmacology , Male , Neoplasm Metastasis/drug therapy , Neoplasm Metastasis/pathology , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Prostate-Specific Antigen , Prostatic Neoplasms, Castration-Resistant/pathology , Radioisotopes/pharmacology
14.
Nuklearmedizin ; 59(6): 409-414, 2020 Dec.
Article En | MEDLINE | ID: mdl-32823294

INTRODUCTION: To evaluate the clinical therapeutic response of PSMA targeted radioligand therapy with 177Lu-PSMA-617 in patients with metastatic castration-resistant prostate cancer. The current study analyzed disease-related quality of life (QoL) in patients undergoing PSMA therapy with a special focus on the association with simultaneous PSA response. METHODS: Thirty patients (age range 50-87 years, median 73.5 years) undergoing 177Lu-PSMA-617 therapy from 2014 to 2016 at our institution were included in this pilot study. Health-related QoL was assessed by EORTC QLQ-C30 questionnaire filled in at baseline and two months after initializing the PSMA-therapy. The treatment response was evaluated under three categories with regard to changes in (a) global health status and other functional scales, (b) disease-related symptoms, and (c) effects of PSA values. RESULTS: Most patients underwent three treatment cycles (n = 12); at least 2 cycles (n = 6) or at most 8 cycles (n = 1) were performed. Out of 30 cases, PSA response after the first cycle was observed in 73 % (n = 22). Compared to baseline, QoL was significantly improved at 2-month follow-up revealing increase in global health status (p = 0.025), role functioning (p = 0.017) and emotional functioning (0.010), and decrease in pain (p = 0.033). Global health status variation can be explained up to 20.5 % by response in PSA (p = 0.012), this improved with PSA reduction. CONCLUSION: PSMA radioligand therapy seems to be an effective treatment option of metastatic castration-resistant prostate cancer patients as it improves their QoL in terms of increasing global health and mitigation of disease-related pain.


Lutetium/pharmacology , Neoplasm Metastasis/radiotherapy , Prostate-Specific Antigen/pharmacology , Prostatic Neoplasms/radiotherapy , Radiopharmaceuticals/pharmacology , Aged , Aged, 80 and over , Bone Neoplasms/radiotherapy , Bone Neoplasms/secondary , Humans , Liver Neoplasms/radiotherapy , Liver Neoplasms/secondary , Lung Neoplasms/radiotherapy , Lung Neoplasms/secondary , Lymphatic Metastasis/radiotherapy , Male , Middle Aged , Neoplasm Recurrence, Local/radiotherapy , Pilot Projects , Quality of Life , Retrospective Studies , Treatment Outcome
15.
Biomed Res Int ; 2020: 9514357, 2020.
Article En | MEDLINE | ID: mdl-32775454

OBJECTIVE: A DNA intercalating agent reversibly stacks between the adjacent base pairs of DNA and thus is expected to exhibit preferential localization in the tumorous lesions as tumors are associated with enhanced DNA replication. Therefore, radiolabeled DNA intercalators are supposed to have potential to be used in targeted tumor therapy. Working in this direction, an attempt was made to radiolabel 9-aminoacridine, a DNA intercalator, with 177Lu, one of the most useful therapeutic radionuclides, and study the potential of 177Lu-acridine in targeted tumor therapy. Experiments. 9-Aminoacridine was coupled with p-NCS-benzyl-DOTA to facilitate radiolabeling, and the conjugate was radiolabeled with 177Lu. Different reaction parameters were optimized in order to obtain 177Lu-acridine complex with maximum radiochemical purity. In vitro stability of the radiolabeled complex was studied in normal saline and human blood serum. Biological behavior of the radiolabeled agent was studied both in vitro and in vivo using the Raji cell line and fibrosarcoma tumor-bearing Swiss mice, respectively. RESULTS: 177Lu-acridine complex was obtained with ~100% radiochemical purity under the optimized reaction conditions involving incubation of 1.5 mg/mL of ligand with 177Lu (1 mCi, 37 MBq) at 100°C at pH ~5 for 45 minutes. The complex maintained a radiochemical purity of >85% in saline at 6 d and >70% in human serum at 2 d postpreparation. In vitro cellular study showed uptake of the radiotracer (5.3 ± 0.13%) in the Raji cells along with significant cytotoxicity (78.06 ± 2.31% after 6 d). Biodistribution study revealed considerable accumulation of the radiotracer in tumor 9.98 ± 0.13 %ID/g within 1 h postadministration and retention therein till 6 d postadministration 4.00 ± 0.16 %ID/g with encouraging tumor to nontarget organ uptake ratios. CONCLUSIONS: The present study, although preliminary, indicates the potential of 177Lu-acridine and thus radiolabeled DNA intercalators in targeted tumor therapy. However, further detailed evaluation is required to explore the actual potential of such agents in targeted tumor therapy.


Acridines , Intercalating Agents , Lutetium , Neoplasms , Radioisotopes , Radiopharmaceuticals , Acridines/chemistry , Acridines/pharmacokinetics , Acridines/pharmacology , Animals , Cell Line, Tumor , Humans , Intercalating Agents/chemistry , Intercalating Agents/pharmacokinetics , Intercalating Agents/pharmacology , Lutetium/chemistry , Lutetium/pharmacokinetics , Lutetium/pharmacology , Mice , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/radiotherapy , Radioisotopes/chemistry , Radioisotopes/pharmacokinetics , Radioisotopes/pharmacology , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacokinetics , Radiopharmaceuticals/pharmacology , Tissue Distribution
16.
Mol Imaging Biol ; 22(2): 274-284, 2020 04.
Article En | MEDLINE | ID: mdl-31321650

PURPOSE: Prostate-specific membrane antigen (PSMA) continues to be the hallmark biomarker for prostate cancer as it is expressed on nearly all prostatic tumors. In addition, increased PSMA expression correlates with castration resistance and progression to the metastatic stage of the disease. Recently, we combined both an albumin-binding motif and an irreversible PSMA inhibitor to develop the novel PSMA-targeted radiotherapeutic agent, CTT1403. This molecule was novel in the field of PSMA-targeted agents as its key motifs resulted in extended blood circulation time and tumor uptake, rapid and extensive internalization into PSMA+ cells, and promising therapeutic efficacy. The objective of this study was to perform IND-enabling translational studies on CTT1403 in rodent models. PROCEDURES: A dose optimization study was performed in PC3-PIP (PSMA+) tumor-bearing mice. Treatment groups were randomly selected to receive one to three 14-MBq injections of CTT1403. Control groups included (1) saline, (2) non-radioactive [175Lu]CTT1403, or (3) two injections of 14 MBq CTT1751, a Lu-177-labeled non-targeted albumin-binding moiety. Tumor growth was monitored up to 120 days. Small-animal single photon emission tomography/X-ray computed tomography imaging was performed with CTT1403 and CTT1751 in PC3-PIP tumor-bearing mice to visualize infiltration of the Lu-177-labeled agent into the tumor. In preparation for a first-in-human study, human absorbed doses were estimated based on rat biodistribution out to 5 weeks to determine a safe CTT1403 therapy dose in humans. RESULTS: Two to 3 injections of 14 MBq CTT1403 yielded significant tumor growth inhibition and increased survival compared with all control groups and mice receiving 1 injection of 14 MBq CTT1403. Five of 12 mice receiving 2 or 3 injections of CTT1403 survived to the 120-day post-treatment study endpoint. Dosimetry identified the kidneys as the dose-limiting organ, with an equivalent dose of 5.18 mSv/MBq, resulting in a planned maximum dose of 4.4 GBq for phase 1 clinical trials. CONCLUSIONS: The preclinical efficacy and dosimetry of CTT1403 suggest that this agent has significant potential to be safe and effective in humans.


Lutetium/pharmacology , Radioisotopes/pharmacology , Radiometry/methods , Radiopharmaceuticals/pharmacology , Animals , Antigens, Surface/chemistry , Drug Screening Assays, Antitumor , Glutamate Carboxypeptidase II/chemistry , Humans , Male , Mice , Mice, Nude , Neoplasm Transplantation , Neoplasms/drug therapy , Radioisotopes/chemistry , Rats , Rats, Sprague-Dawley , Single Photon Emission Computed Tomography Computed Tomography , Tissue Distribution , Xenograft Model Antitumor Assays
17.
S Afr J Surg ; 57(4): 45-51, 2019 Dec.
Article En | MEDLINE | ID: mdl-31773936

BACKGROUND: Prostate cancer is an important cause of morbidity and mortality in South Africa, as it is in the rest of the world. In African men, however, prostate cancer tends to follow a more aggressive course when compared to their European counterparts. This is attributed to a plethora of diverse factors of which an underlying genetic component has been shown to be an important aspect. Such differences highlight the need for individualised therapy and for local guidelines. The aim of this guideline is to aid nuclear physicians and other clinicians who manage patients with prostate cancer in the correct identification and treatment of patients who are likely to benefit from receptor radioligand therapy. RECOMMENDATIONS: There are a multitude of treatment modalities available for the treatment of prostate cancer and these therapies may be required at various time points during the course of the disease in any individual patient. A multidisciplinary approach is crucial in deciding which therapy, or combination of therapies, would be most advantageous at particular time points. The multidisciplinary team should include a urologist, oncologist and nuclear medicine physician as a minimum, and should ideally also involve a palliative/pain specialist, a dietician and a psychologist. CONCLUSION: Treatment with 177Lu-PSMA has emerged as a promising systemic modality, which involves the delivery of targeted radiation therapy in the form of ß-particles to sites of tumour tissue. Therapy is provided on an outpatient basis, is well tolerated with relatively few side effects and has a positive effect on overall survival and quality of life. At present, it is used mostly in the setting of advanced, castrate-resistant cancer. Patients are selected (amongst other criteria) based on the prior PSMA-based SPECT/PET/CT imaging (99mTc-,68Ga- or 18F-PSMA), which should demonstrate sufficient receptor expression in order to consider PSMA-based targeted radionuclide therapy. Such imaging of an intended target prior to its therapeutic targeting is known as a theranostic approach.


Brachytherapy/methods , Lutetium/pharmacology , Practice Guidelines as Topic , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/radiotherapy , Radioisotopes/pharmacology , Aged , Disease-Free Survival , Humans , Male , Middle Aged , Prognosis , Prostate-Specific Antigen/radiation effects , Prostatic Neoplasms, Castration-Resistant/diagnosis , Prostatic Neoplasms, Castration-Resistant/mortality , Radiotherapy/methods , Risk Assessment , South Africa , Survival Analysis , Treatment Outcome
18.
Mater Sci Eng C Mater Biol Appl ; 103: 109766, 2019 Oct.
Article En | MEDLINE | ID: mdl-31349410

Radiosynovectomy is a technique used to decrease inflammation of the synovial tissue by intraarticular injection of a ß-emitting radionuclide, such as 177Lu, which is suitable for radiotherapy due to its decay characteristics. Drug-encapsulating nanoparticles based on poly lactic­co­glycolic acid (PLGA) polymer are a suitable option to treat several arthritic diseases, used as anti-inflammatory drugs transporters of such as methotrexate (MTX), which has been widely used in the arthritis treatment (RA), and hyaluronic acid (HA), which specifically binds the CD44 and hyaluronan receptors overexpressed on the inflamed synovial tissue cells. The 1,4,7,10­Tetraazacyclododecane­1,4,7,10­tetraacetic acid (DOTA) was used as complexing agent of Lutetium-177 for radiotherapy porpoises. The aim of this research was to synthesize 177Lu-DOTA-HA-PLGA(MTX) as a novel, smart drug delivery system with target-specific recognition, potentially useful in radiosynovectomy for local treatment of rheumatoid arthritis. The polymeric nanoparticle system was prepared and chemically characterized. The MTX encapsulation and radiolabelling were performed with suitable characteristics for its in vitro evaluation. The HA-PLGA(MTX) nanoparticle mean diameter was 167.6 nm ±â€¯57.4 with a monomodal and narrow distribution. Spectroscopic techniques demonstrated the effective conjugation of HA and chelating agent DOTA to the polymeric nanosystem. The MTX encapsulation was 95.2% and the loading efficiency was 6%. The radiochemical purity was 96 ±â€¯2%, determined by ITLC. Conclusion: 177Lu-DOTA-HA-PLGA(MTX) was prepared as a biocompatible polymeric PLGA nanoparticle conjugated to HA for specific targeting. The therapeutic nanosystem is based on bi-modal mechanisms using MTX as a disease-modifying antirheumatic drug (DMARD) and 177Lu as a radiotherapeutic component. The 177Lu-DOTA-HA-PLGA(MTX) nanoparticles showed properties suitable for radiosynovectomy and further specific targeted anti-rheumatic therapy.


Arthritis, Rheumatoid/therapy , Hyaluronic Acid , Lutetium , Methotrexate , Polylactic Acid-Polyglycolic Acid Copolymer , Radiopharmaceuticals , Animals , Arthritis, Rheumatoid/metabolism , Arthritis, Rheumatoid/pathology , Drug Evaluation, Preclinical , Hyaluronic Acid/chemistry , Hyaluronic Acid/pharmacology , Isotope Labeling , Lutetium/chemistry , Lutetium/pharmacology , Methotrexate/chemistry , Methotrexate/pharmacology , Mice , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , RAW 264.7 Cells , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacology
19.
Theranostics ; 9(8): 2129-2142, 2019.
Article En | MEDLINE | ID: mdl-31149033

Androgen ablating drugs increase life expectancy in men with metastatic prostate cancer, but resistance inevitably develops. In a majority of these recurrent tumors, the androgen axis is reactivated in the form of increased androgen receptor (AR) expression. Targeting proteins that are expressed as a down-stream effect of AR activity is a promising rationale for management of this disease. The humanized IgG1 antibody hu11B6 internalizes into prostate and prostate cancer (PCa) cells by binding to the catalytic cleft of human kallikrein 2 (hK2), a prostate specific enzyme governed by the AR-pathway. In a previous study, hu11B6 conjugated with Actinium-225 (225Ac), a high linear energy transfer (LET) radionuclide, was shown to generate an AR-upregulation driven feed-forward mechanism that is believed to enhance therapeutic efficacy. We assessed the efficacy of hu11B6 labeled with a low LET beta-emitter, Lutetium-177 (177Lu) and investigated whether similar tumor killing and AR-enhancement is produced. Moreover, single-photon emission computed tomography (SPECT) imaging of 177Lu is quantitatively accurate and can be used to perform treatment planning. [177Lu]hu11B6 therefore has significant potential as a theranostic agent. Materials and Methods: Subcutaneous PCa xenografts (LNCaP s.c.) were grown in male mice. Biokinetics at 4-336 h post injection and uptake as a function of the amount of hu11B6 injected at 72 h were studied. Over a 30 to 120-day treatment period the therapeutic efficacy of different activities of [177Lu]hu11B6 were assessed by volumetric tumor measurements, blood cell counts, molecular analysis of the tumor as well as SPECT/CT imaging. Organ specific mean absorbed doses were calculated, using a MIRD-scheme, based on biokinetic data and rodent specific S-factors from a modified MOBY phantom. Tumor tissues of treated xenografts were immunohistochemically (IHC) stained for Ki-67 (proliferation) and AR, SA-ß-gal activity (senescence) and analyzed by digital autoradiography (DAR). Results: Organ-to-blood and tumor-to-blood ratios were independent of hu11B6 specific activity except for the highest amount of antibody (150 µg). Tumor accumulation of [177Lu]hu11B6 peaked at 168 h with a specific uptake of 29 ± 9.1 percent injected activity per gram (%IA/g) and low accumulation in normal organs except in the submandibular gland (15 ± 4.5 %IA/g), attributed to a cross-reaction with mice kallikreins in this organ, was seen. However, SPECT imaging with therapeutic amounts of [177Lu]hu11B6 revealed no peak in tumor accumulation at 7 d, probably due to cellular retention of 177Lu and decreasing tumor volumes. For [177Lu]hu11B6 treated mice, tumor decrements of up to 4/5 of the initial tumor volume and reversible myelotoxicity with a nadir at 12 d were observed after a single injection. Tumor volume reduction correlated with injected activity and the absorbed dose. IHC revealed retained expression of AR throughout treatment and that Ki-67 staining reached a nadir at 9-14 d which coincided with high SA- ß-gal activity (14 d). Quantification of nuclei staining showed that Ki-67 expression correlated negatively with activity uptake. AR expression levels in cells surviving therapy compared to previous timepoints and to controls at 30 d were significantly increased (p = 0.017). Conclusions: This study shows that hu11B6 labeled with the low LET beta-emitting radionuclide 177Lu can deliver therapeutic absorbed doses to prostate cancer xenografts with transient hematological side-effects. The tumor response correlated with the absorbed dose both on a macro and a small scale dosimetric level. Analysis of AR staining showed that AR protein levels increased late in the study suggesting a therapeutic mechanism, a feed forward mechanism coupled to AR driven response to DNA damage or clonal lineage selection, similar to that reported in high LET alpha-particle therapy using 225Ac labeled hu11B6, however emerging at a later timepoint.


Antibodies, Monoclonal, Humanized/metabolism , Lutetium/pharmacology , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/therapy , Radioimmunotherapy/methods , Radioisotopes/pharmacology , Single Photon Emission Computed Tomography Computed Tomography/methods , Tissue Kallikreins/metabolism , Animals , Antibodies, Monoclonal, Humanized/administration & dosage , Antibodies, Monoclonal, Humanized/immunology , Autoradiography , Cell Line, Tumor , Disease Models, Animal , Humans , Immunohistochemistry , Lutetium/administration & dosage , Male , Mice, Inbred BALB C , Neoplasm Transplantation , Protein Binding , Radioisotopes/administration & dosage , Theranostic Nanomedicine/methods , Tissue Kallikreins/immunology , Transplantation, Heterologous , Treatment Outcome
20.
Cancer Biother Radiopharm ; 34(5): 306-315, 2019 Jun.
Article En | MEDLINE | ID: mdl-31188652

Background: Transarterial radioembolization (TARE) represents an effective targeted therapeutic option for hepatocellular carcinoma (HCC), a cancer with high mortality and poor prognosis. The aim of this study was the preparation and preliminary biological evaluation of 177Lu-labeled polyhydroxamic acid (PHA) microparticles toward possible use in the therapy of HCC. Materials and Methods: PHA microparticles were synthesized starting from polyacrylamide. They were characterized by Fourier-transform infrared spectroscopy (FT-IR), visual color test, and laser diffraction particle size analysis. Experimental variables such as reaction pH, amount of PHA microparticles, carrier Lu content, and incubation time were optimized for maximum uptake of 177Lu on PHA microparticles. Stability of 177Lu-PHA microparticles was tested in the presence of competing Fe(III) ions in solution. In vitro stability of 177Lu-PHA microparticles was evaluated in 0.05 M sodium phosphate solution (pH 7.5), saline, and serum. Bioevaluation studies were performed in normal Wistar rats by intrahepatic artery injection of the 177Lu-PHA microparticles. Results: Successful synthesis of PHA microparticles could be confirmed from the results of FT-IR analysis and visual color test. Laser diffraction-based particle size analysis confirmed median particle size to be 54 µm, suitable for TARE. Under the optimized conditions, >99% loading of 177Lu on PHA microparticles could be achieved. Even in the presence of high concentration of Fe(III) ions, 177Lu binding to PHA microparticles was stable. 177Lu-PHA microparticles exhibited excellent in vitro stability in sodium phosphate solution, saline, and serum up to 5 d at 37°C. In the bioevaluation studies performed in normal Wistar rats, 92.8% ± 3.1% of 177Lu-PHA microparticles were retained in the liver at 96 h postinjection without any significant leakage to other organs. Conclusion: This preliminary study demonstrates the potential of synthesized PHA microparticles as carriers of therapeutic radioisotopes such as 177Lu for treatment of HCC.


Carcinoma, Hepatocellular/radiotherapy , Hydroxamic Acids/chemistry , Liver Neoplasms/radiotherapy , Lutetium/pharmacology , Radioisotopes/pharmacology , Radiopharmaceuticals/chemistry , Radiopharmaceuticals/pharmacology , Animals , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Rats , Rats, Wistar
...