Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 183
1.
Cell Rep ; 43(5): 114200, 2024 May 28.
Article En | MEDLINE | ID: mdl-38717905

Innate lymphoid cells (ILCs), strategically positioned throughout the body, undergo population declines over time. A solution to counteract this problem is timely mobilization of multipotential progenitors from the bone marrow. It remains unknown what triggers the mobilization of bone marrow ILC progenitors (ILCPs). We report that ILCPs are regulated by the circadian clock to emigrate and generate mature ILCs in the periphery. We found that circadian-clock-defective ILCPs fail to normally emigrate and generate ILCs. We identified circadian-clock-controlled endocrine and cytokine cues that, respectively, regulate the retention and emigration of ILCPs at distinct times of each day. Activation of the stress-hormone-sensing glucocorticoid receptor upregulates CXCR4 on ILCPs for their retention in the bone marrow, while the interleukin-18 (IL-18) and RORα signals upregulate S1PR1 on ILCPs for their mobilization to the periphery. Our findings establish important roles of circadian signals for the homeostatic efflux of bone marrow ILCPs.


Circadian Clocks , Animals , Mice , Cytokines/metabolism , Mice, Inbred C57BL , Bone Marrow/metabolism , Signal Transduction , Receptors, CXCR4/metabolism , Bone Marrow Cells/metabolism , Bone Marrow Cells/cytology , Lymphoid Progenitor Cells/metabolism , Lymphoid Progenitor Cells/cytology , Immunity, Innate , Cell Movement , Nuclear Receptor Subfamily 1, Group F, Member 1/metabolism , Nuclear Receptor Subfamily 1, Group F, Member 1/genetics , Receptors, Glucocorticoid/metabolism , Lymphocytes/metabolism , Lymphocytes/immunology
2.
Methods Mol Biol ; 2580: 211-232, 2023.
Article En | MEDLINE | ID: mdl-36374460

T cells and innate lymphoid cells (ILCs) share expression of many key transcription factors during development and at mature stage, resulting in striking functional similarities between these lineages. Taking into account ILC contribution is thus necessary to appreciate T cell functions during immune responses. Furthermore, understanding ILC development and functions helps to understand T cells. Here we provide methods and protocols to isolate pure populations of multipotent precursors to T cells and innate lymphoid cells (ILCs) from adult mouse bone marrow, using flow cytometric sorting. These include precursors to all lymphocytes (viz., LMPPs and ALPs) and multipotent precursors to ILCs that have been recently refined (viz., specified EILPs, committed EILPs, and ILCPs).


Lymphocytes , T-Lymphocytes , Mice , Animals , Immunity, Innate , Bone Marrow , Lymphoid Progenitor Cells/metabolism , Cell Differentiation
3.
Cell Rep ; 41(5): 111569, 2022 11 01.
Article En | MEDLINE | ID: mdl-36323259

Innate lymphoid cells (ILCs) play important roles in regulating tissue homeostasis and innate immune responses. Generation of ILCs after engraftment of pluripotent stem cell (PSC)-derived hematopoietic progenitors (iHPCs) has not yet been reported. Here, we document that ILCs exist in Rag2-/-Il2rg-/- recipients engrafted with PSC-derived iHPCs guided by Runx1 and Hoxa9 expression. Upon transplantation, iHPCs immediately give rise to ILC-related progenitors containing common helper ILC progenitors in the bone marrow, followed by a more restricted population named ILC progenitors, which are able to further differentiate into mature ILCs in the primary and secondary immunodeficient recipients. The PSC-derived ILCs exhibit multiple tissue distributions and normal immunological functions. Single-cell transcriptomics illustrates the developmental trajectory of PSC-derived ILCs in vivo, which is consistent with that of natural ILCs. Our study provides insights into the generation of ILCs in animals transplanted with PSC-derived iHPCs as a cell source.


Immunity, Innate , Pluripotent Stem Cells , Animals , Lymphocytes/metabolism , Cell Differentiation , Lymphoid Progenitor Cells/metabolism
4.
Front Immunol ; 13: 880668, 2022.
Article En | MEDLINE | ID: mdl-35603175

The development of B cells relies on an intricate network of transcription factors critical for developmental progression and lineage commitment. In the B cell developmental trajectory, a temporal switch from predominant Foxo3 to Foxo1 expression occurs at the CLP stage. Utilizing VAV-iCre mediated conditional deletion, we found that the loss of FOXO3 impaired B cell development from LMPP down to B cell precursors, while the loss of FOXO1 impaired B cell commitment and resulted in a complete developmental block at the CD25 negative proB cell stage. Strikingly, the combined loss of FOXO1 and FOXO3 resulted in the failure to restrict the myeloid potential of CLPs and the complete loss of the B cell lineage. This is underpinned by the failure to enforce the early B-lineage gene regulatory circuitry upon a predominantly pre-established open chromatin landscape. Altogether, this demonstrates that FOXO3 and FOXO1 cooperatively govern early lineage restriction and initiation of B-lineage commitment in CLPs.


Hematopoiesis , Lymphoid Progenitor Cells , B-Lymphocytes/metabolism , Forkhead Box Protein O1/genetics , Forkhead Box Protein O1/metabolism , Hematopoiesis/genetics , Lymphoid Progenitor Cells/metabolism , Precursor Cells, B-Lymphoid/metabolism
5.
J Exp Med ; 219(2)2022 02 07.
Article En | MEDLINE | ID: mdl-34958351

During dendritic cell (DC) development, Myc expression in progenitors is replaced by Mycl in mature DCs, but when and how this transition occurs is unknown. We evaluated DC development using reporters for MYC, MYCL, and cell cycle proteins Geminin and CDT1 in wild-type and various mutant mice. For classical type 1 dendritic cells (cDC1s) and plasmacytoid DCs (pDCs), the transition occurred upon their initial specification from common dendritic cell progenitors (CDPs) or common lymphoid progenitors (CLPs), respectively. This transition required high levels of IRF8 and interaction with PU.1, suggesting the use of EICEs within Mycl enhancers. In pDCs, maximal MYCL induction also required the +41kb Irf8 enhancer that controls pDC IRF8 expression. IRF8 also contributed to repression of MYC. While MYC is expressed only in rapidly dividing DC progenitors, MYCL is most highly expressed in DCs that have exited the cell cycle. Thus, IRF8 levels coordinate the Myc-Mycl transition during DC development.


Cell Differentiation/genetics , Dendritic Cells/cytology , Dendritic Cells/metabolism , Gene Expression Regulation , Genes, myc , Interferon Regulatory Factors/genetics , Animals , Cell Cycle Proteins/genetics , Enhancer Elements, Genetic , Genes, Reporter , Immunophenotyping , Interferon Regulatory Factors/metabolism , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/immunology , Lymphoid Progenitor Cells/metabolism , Mice , Mice, Knockout , Protein Binding , Proto-Oncogene Proteins/metabolism , Trans-Activators/metabolism
6.
J Exp Med ; 219(3)2022 03 07.
Article En | MEDLINE | ID: mdl-34928315

In the mouse, the first hematopoietic cells are generated in the yolk sac from the primitive, erythro-myeloid progenitor (EMP) and lymphoid programs that are specified before the emergence of hematopoietic stem cells. While many of the yolk sac-derived populations are transient, specific immune cell progeny seed developing tissues, where they function into adult life. To access the human equivalent of these lineages, we modeled yolk sac hematopoietic development using pluripotent stem cell differentiation. Here, we show that the combination of Activin A, BMP4, and FGF2 induces a population of KDR+CD235a/b+ mesoderm that gives rise to the spectrum of erythroid, myeloid, and T lymphoid lineages characteristic of the mouse yolk sac hematopoietic programs, including the Vδ2+ subset of γ/δ T cells that develops early in the human embryo. Through clonal analyses, we identified a multipotent hematopoietic progenitor with erythroid, myeloid, and T lymphoid potential, suggesting that the yolk sac EMP and lymphoid lineages may develop from a common progenitor.


Hematopoiesis , Models, Biological , Pluripotent Stem Cells/cytology , Pluripotent Stem Cells/metabolism , Yolk Sac/cytology , Animals , Biomarkers , Cell Differentiation/genetics , Hematopoiesis/physiology , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Immunophenotyping , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/metabolism , Lymphopoiesis/genetics , Mice , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism
7.
Science ; 371(6536)2021 03 26.
Article En | MEDLINE | ID: mdl-33766856

The pathways that lead to the development of tissue-resident lymphocytes, including liver type 1 innate lymphoid cells (ILC1s), remain unclear. We show here that the adult mouse liver contains Lin-Sca-1+Mac-1+ hematopoietic stem cells derived from the fetal liver. This population includes Lin-CD122+CD49a+ progenitors that can generate liver ILC1s but not conventional natural killer cells. Interferon-γ (IFN-γ) production by the liver ILC1s themselves promotes the development of these cells in situ, through effects on their IFN-γR+ liver progenitors. Thus, an IFN-γ-dependent loop drives liver ILC1 development in situ, highlighting the contribution of extramedullary hematopoiesis to regional immune composition within the liver.


Interferon-gamma/metabolism , Liver/cytology , Liver/immunology , Lymphocytes/cytology , Lymphocytes/immunology , Animals , Hematopoiesis, Extramedullary , Immunity, Innate , Interferon-gamma/genetics , Killer Cells, Natural/cytology , Killer Cells, Natural/immunology , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/metabolism , Lymphopoiesis , Mice , Receptors, Interferon/genetics , Receptors, Interferon/metabolism , Signal Transduction , T-Box Domain Proteins/metabolism , Interferon gamma Receptor
8.
Cell Rep ; 34(12): 108894, 2021 03 23.
Article En | MEDLINE | ID: mdl-33761361

The process of hematopoiesis is subject to substantial ontogenic remodeling that is accompanied by alterations in cellular fate during both development and disease. We combine state-of-the-art mass spectrometry with extensive functional assays to gain insight into ontogeny-specific proteomic mechanisms regulating hematopoiesis. Through deep coverage of the cellular proteome of fetal and adult lympho-myeloid multipotent progenitors (LMPPs), common lymphoid progenitors (CLPs), and granulocyte-monocyte progenitors (GMPs), we establish that features traditionally attributed to adult hematopoiesis are conserved across lymphoid and myeloid lineages, whereas generic fetal features are suppressed in GMPs. We reveal molecular and functional evidence for a diminished granulocyte differentiation capacity in fetal LMPPs and GMPs relative to their adult counterparts. Our data indicate an ontogeny-specific requirement of myosin activity for myelopoiesis in LMPPs. Finally, we uncover an ontogenic shift in the monocytic differentiation capacity of GMPs, partially driven by a differential expression of Irf8 during fetal and adult life.


Cell Lineage , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Proteomics , Adult Stem Cells/cytology , Adult Stem Cells/metabolism , Animals , Cell Differentiation , Fetus/cytology , Granulocytes/cytology , HEK293 Cells , Humans , Immunophenotyping , Interferon Regulatory Factors/metabolism , Kinetics , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/metabolism , Mice, Inbred C57BL , Monocytes/cytology , Monocytes/metabolism , Myeloid Progenitor Cells/cytology , Myeloid Progenitor Cells/metabolism , Proteome/metabolism , rho-Associated Kinases/antagonists & inhibitors , rho-Associated Kinases/metabolism
9.
Blood ; 137(8): 1024-1036, 2021 02 25.
Article En | MEDLINE | ID: mdl-33025012

During embryonic development, multiple waves of hematopoietic progenitors with distinct lineage potential are differentially regulated in time and space. Two different waves of thymic progenitors colonize the fetal thymus where they contribute to thymic organogenesis and homeostasis. The origin, the lineage differentiation potential of the first wave, and their relative contribution in shaping the thymus architecture, remained, however, unclear. Here, we show that the first wave of thymic progenitors comprises a unique population of bipotent T and innatel lymphoid cells (T/ILC), generating a lymphoid tissue inducer cells (LTi's), in addition to invariant Vγ5+ T cells. Transcriptional analysis revealed that innate lymphoid gene signatures and, more precisely, the LTi-associated transcripts were expressed in the first, but not in the second, wave of thymic progenitors. Depletion of early thymic progenitors in a temporally controlled manner showed that the progeny of the first wave is indispensable for the differentiation of autoimmune regulator-expressing medullary thymic epithelial cells (mTECs). We further show that these progenitors are of strict hematopoietic stem cell origin, despite the overlap between lymphopoiesis initiation and the transient expression of lymphoid-associated transcripts in yolk sac (YS) erythromyeloid-restricted precursors. Our work highlights the relevance of the developmental timing on the emergence of different lymphoid subsets, required for the establishment of a functionally diverse immune system.


Lymphoid Progenitor Cells/cytology , T-Lymphocytes/cytology , Thymus Gland/cytology , Thymus Gland/embryology , Animals , Cells, Cultured , Female , Gene Expression Regulation, Developmental , Lymphoid Progenitor Cells/metabolism , Lymphopoiesis , Mice, Inbred C57BL , T-Lymphocytes/metabolism , Thymus Gland/metabolism , Transcriptome
10.
Front Immunol ; 12: 825813, 2021.
Article En | MEDLINE | ID: mdl-35095929

Protection against pathogen re-infection is mediated, in large part, by two humoral cellular compartments, namely, long-lived plasma cells and memory B cells. Recent data have reinforced the importance of memory B cells, particularly in response to re-infection of different viral subtypes or in response with viral escape mutants. In regard to memory B cell generation, considerable advancements have been made in recent years in elucidating its basic mechanism, which seems to well explain why the memory B cells pool can deal with variant viruses. Despite such progress, efforts to develop vaccines that induce broadly protective memory B cells to fight against rapidly mutating pathogens such as influenza virus and HIV have not yet been successful. Here, we discuss recent advances regarding the key signals and factors regulating germinal center-derived memory B cell development and activation and highlight the challenges for successful vaccine development.


Immunologic Memory , Memory B Cells/immunology , Memory B Cells/metabolism , Antibodies, Neutralizing/immunology , Antibody Formation/genetics , Antibody Formation/immunology , Cell Communication/immunology , Cell Differentiation/genetics , Cell Differentiation/immunology , Clonal Selection, Antigen-Mediated , Female , Germinal Center/cytology , Germinal Center/immunology , Germinal Center/metabolism , Host-Pathogen Interactions/immunology , Humans , Lymphocyte Activation/genetics , Lymphocyte Activation/immunology , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/immunology , Lymphoid Progenitor Cells/metabolism , Male , Memory B Cells/cytology , Receptors, Antigen, B-Cell/genetics , Receptors, Antigen, B-Cell/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism
11.
PLoS One ; 15(12): e0244161, 2020.
Article En | MEDLINE | ID: mdl-33332417

C/EBPα is required for formation of granulocyte-monocyte progenitors (GMP) and also participates in B lymphopoiesis. The common lymphoid progenitor (CLP) and preproB populations but not proB cells express Cebpa, and pan-hematopoietic deletion of the +37 kb Cebpa enhancer using Mx1-Cre leads not only to reduced GMP but also to 2-fold reduced marrow preproB and >15-fold reduced proB and preB cells. We now show that IL7Rα-Cre-mediated deletion of the +37 kb Cebpa enhancer, which occurs in 89% of Ly6D+ and 65% of upstream Ly6D- CLP, leads to a 2-fold reduction of both preproB and proB cells, and a 3-fold reduction in preB cells, with no impact on GMP numbers. These data support a direct role for C/EBPα during B lineage development, with reduced enhancer deletion in Ly6D- CLP mediated by IL7Rα-Cre diminishing the effect on B lymphopoiesis compared to that seen with Mx1-Cre. Amongst mRNAs encoding key transcriptional regulators that initiate B lymphoid specification (PU.1, E2A, IKAROS, EBF1, FOXO1, and BACH2), only Ebf1 levels are altered in CLP upon Mx1-Cre-mediated Cebpa enhancer deletion, with Ebf1 reduced ~40-fold in Flt3+Sca-1intc-kitintIL7Rα+ CLP. In addition, Cebpa and Ebf1 RNAs were 4- and 14-fold higher in hCD4+ versus hCD4- CLP from Cebpa-hCD4 transgenic mice. Histone modification ChIP-Seq data for CLP indicate the presence of active, intronic Ebf1 enhancers located 270 and 280 kb upstream of the transcription start sites. We identified a cis element in this region that strongly binds C/EBPα using the electrophoretic mobility shift assay. Mutation of this C/EBPα-binding site in an Ebf1 enhancer-TK-luciferase reporter leads to a 4-fold reduction in C/EBPα-mediated trans-activation. These findings support a model of B lymphopoiesis in which induction of Ebf1 by C/EBPα in a subset of CLP contributes to initiation of B lymphopoiesis.


CCAAT-Enhancer-Binding Proteins/genetics , Lymphoid Progenitor Cells/metabolism , Trans-Activators/genetics , Animals , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Lineage , Cells, Cultured , Enhancer Elements, Genetic , Female , HEK293 Cells , Humans , Lymphoid Progenitor Cells/cytology , Lymphopoiesis , Male , Mice , Mice, Inbred C57BL , Trans-Activators/metabolism
12.
Sci Immunol ; 5(54)2020 12 04.
Article En | MEDLINE | ID: mdl-33277375

Early hematopoietic progenitors undergo sophisticated developmental processes to become committed innate lymphoid cell (ILC) progenitors and ultimately mature ILC subsets in the periphery. Basic leucine zipper ATF-like transcription factor (Batf) plays important roles in lymphocyte biology. We report here that Batf regulates the production of bone marrow ILC progenitors and maintenance of peripheral ILCs. The expression of Batf is induced during ILC development at the α-lymphoid progenitor stage in response to the cytokine IL-7. As a potential mechanism, up-regulated Batf binds and activates transcription of the Nfil3 gene to promote ILC hematopoiesis. Batf is necessary to maintain normal numbers of early and late ILC progenitors in the bone marrow and mature ILC1, ILC2, ILC3, and NK cells in most peripheral tissues. Batf deficiency causes ILC lymphopenia, leading to defective ILC responses to inflammatory cytokines and defective immunity to enteric bacterial infections. Thus, Batf plays critical roles in bone marrow hematopoiesis, peripheral homeostasis, and effector functions of ILCs.


Basic-Leucine Zipper Transcription Factors/genetics , Hematopoiesis/physiology , Homeostasis , Immunity, Innate , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Animals , Basic-Leucine Zipper Transcription Factors/metabolism , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , Immunophenotyping , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/metabolism , Mice , Mice, Knockout , Organ Specificity , Signal Transduction
13.
Nat Immunol ; 21(12): 1574-1584, 2020 12.
Article En | MEDLINE | ID: mdl-33077975

A classical view of blood cell development is that multipotent hematopoietic stem and progenitor cells (HSPCs) become lineage-restricted at defined stages. Lin-c-Kit+Sca-1+Flt3+ cells, termed lymphoid-primed multipotent progenitors (LMPPs), have lost megakaryocyte and erythroid potential but are heterogeneous in their fate. Here, through single-cell RNA sequencing, we identify the expression of Dach1 and associated genes in this fraction as being coexpressed with myeloid/stem genes but inversely correlated with lymphoid genes. Through generation of Dach1-GFP reporter mice, we identify a transcriptionally and functionally unique Dach1-GFP- subpopulation within LMPPs with lymphoid potential with low to negligible classic myeloid potential. We term these 'lymphoid-primed progenitors' (LPPs). These findings define an early definitive branch point of lymphoid development in hematopoiesis and a means for prospective isolation of LPPs.


Biomarkers , Eye Proteins/metabolism , Genomics , Lymphoid Progenitor Cells/metabolism , Single-Cell Analysis , Animals , Cells, Cultured , Computational Biology/methods , Eye Proteins/genetics , Gene Expression Profiling , Genomics/methods , Hematopoiesis/genetics , High-Throughput Nucleotide Sequencing , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/immunology , Mice , Mice, Knockout , Mice, Transgenic , Proteomics , Single-Cell Analysis/methods
14.
Nat Immunol ; 21(12): 1552-1562, 2020 12.
Article En | MEDLINE | ID: mdl-33046887

T cell memory relies on the generation of antigen-specific progenitors with stem-like properties. However, the identity of these progenitors has remained unclear, precluding a full understanding of the differentiation trajectories that underpin the heterogeneity of antigen-experienced T cells. We used a systematic approach guided by single-cell RNA-sequencing data to map the organizational structure of the human CD8+ memory T cell pool under physiological conditions. We identified two previously unrecognized subsets of clonally, epigenetically, functionally, phenotypically and transcriptionally distinct stem-like CD8+ memory T cells. Progenitors lacking the inhibitory receptors programmed death-1 (PD-1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT) were committed to a functional lineage, whereas progenitors expressing PD-1 and TIGIT were committed to a dysfunctional, exhausted-like lineage. Collectively, these data reveal the existence of parallel differentiation programs in the human CD8+ memory T cell pool, with potentially broad implications for the development of immunotherapies and vaccines.


CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Immunologic Memory , Lymphoid Progenitor Cells/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Animals , Biomarkers , Cell Differentiation/immunology , Computational Biology/methods , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Immunophenotyping , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/immunology , Mice , Telomere Homeostasis
15.
Immunity ; 52(6): 1088-1104.e6, 2020 06 16.
Article En | MEDLINE | ID: mdl-32304633

During postnatal life, thymopoiesis depends on the continuous colonization of the thymus by bone-marrow-derived hematopoietic progenitors that migrate through the bloodstream. The current understanding of the nature of thymic immigrants is largely based on data from pre-clinical models. Here, we employed single-cell RNA sequencing (scRNA-seq) to examine the immature postnatal thymocyte population in humans. Integration of bone marrow and peripheral blood precursor datasets identified two putative thymus seeding progenitors that varied in expression of CD7; CD10; and the homing receptors CCR7, CCR9, and ITGB7. Whereas both precursors supported T cell development, only one contributed to intrathymic dendritic cell (DC) differentiation, predominantly of plasmacytoid dendritic cells. Trajectory inference delineated the transcriptional dynamics underlying early human T lineage development, enabling prediction of transcription factor (TF) modules that drive stage-specific steps of human T cell development. This comprehensive dataset defines the expression signature of immature human thymocytes and provides a resource for the further study of human thymopoiesis.


Cell Differentiation , Gene Expression Regulation, Developmental , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/metabolism , RNA, Small Cytoplasmic/genetics , Thymocytes/cytology , Thymocytes/metabolism , Biomarkers , Cell Differentiation/genetics , Cell Differentiation/immunology , Cell Lineage/genetics , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Humans , Immunophenotyping , Single-Cell Analysis , Thymocytes/immunology , Transcriptome
16.
J Immunol ; 204(9): 2447-2454, 2020 05 01.
Article En | MEDLINE | ID: mdl-32198141

The caudal hematopoietic tissue in zebrafish, the equivalent to the fetal liver in mammals, is an intermediate hematopoietic niche for the maintenance and differentiation of hematopoietic stem and progenitor cells before homing to the thymus and kidney marrow. As one of the ultimate hematopoietic organs, the thymus sustains T lymphopoiesis, which is essential for adaptive immune system. However, the mechanism of prethymic T lymphoid progenitors migrating to the thymus remains elusive. In this study, we identify an Rho GTPase Rac2 as a modulator of T lymphoid progenitor homing to the thymus in zebrafish. rac2-Deficient embryos show the inability of T lymphoid progenitors homing to the thymus because of defective cell-autonomous motility. Mechanistically, we demonstrate that Rac2 regulates homing of T lymphoid progenitor through Pak1-mediated AKT pathway. Taken together, our work reveals an important function of Rac2 in directing T lymphoid progenitor migration to the thymus during zebrafish embryogenesis.


Cell Movement/immunology , Embryonic Development/immunology , Lymphoid Progenitor Cells/metabolism , Thymus Gland/metabolism , Zebrafish Proteins/metabolism , Zebrafish/metabolism , rac GTP-Binding Proteins/metabolism , Animals , Animals, Genetically Modified/immunology , Animals, Genetically Modified/metabolism , Bone Marrow/immunology , Bone Marrow/metabolism , Cell Differentiation/immunology , Lymphoid Progenitor Cells/immunology , Lymphopoiesis/immunology , Proto-Oncogene Proteins c-akt/immunology , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/immunology , Thymus Gland/immunology , Zebrafish/immunology , Zebrafish Proteins/immunology , p21-Activated Kinases/immunology , p21-Activated Kinases/metabolism , rac GTP-Binding Proteins/immunology , rho GTP-Binding Proteins/immunology , rho GTP-Binding Proteins/metabolism
17.
Methods Mol Biol ; 2121: 7-22, 2020.
Article En | MEDLINE | ID: mdl-32147782

Understanding the origins and developmental trajectory of innate lymphoid cell (ILC) progenitors has been of substantial interest to the fields of ILC biology and immunology. While mature ILC are rare lymphocytes, ILC progenitors represent an even smaller fraction of cells, providing additional challenges in studying them. Moreover, though the approaches to studying these cells are conceptually straightforward, the technical nuances that underlie them can substantially affect the quality of the data. Herein, we provide a detailed protocol for assessing the frequency of ILC progenitors in the bone marrow, their phenotype, and their potential to develop into mature ILC. These methods make up the foundation of in vivo investigations into ILC development, and we hope these thorough protocols and associated notes facilitate additional, high-quality inquiries into this fascinating field.


Adoptive Transfer/methods , Bone Marrow Cells , Killer Cells, Natural/cytology , Liver/cytology , Lymphocytes/cytology , Lymphoid Progenitor Cells/cytology , Lymphopoiesis/immunology , Animals , Bone Marrow , Bone Marrow Cells/cytology , Cell Lineage , Female , Flow Cytometry , Killer Cells, Natural/immunology , Liver/immunology , Lymphocytes/immunology , Lymphoid Progenitor Cells/immunology , Lymphoid Progenitor Cells/metabolism , Mice , Mice, Inbred BALB C
18.
Int J Mol Sci ; 21(3)2020 Jan 25.
Article En | MEDLINE | ID: mdl-31991829

Abstract: The crosstalk between hematopoietic stem cells (HSC) and bone marrow (BM) microenvironment is critical for homeostasis and hematopoietic regeneration in response to blood formation emergencies after injury, and has been associated with leukemia transformation and progression. Intercellular signals by the BM stromal cells in the form of cell-bound or secreted factors, or by physical interaction, regulate HSC localization, maintenance, and differentiation within increasingly defined BM HSC niches. Gap junctions (GJ) are comprised of arrays of membrane embedded channels formed by connexin proteins, and control crucial signaling functions, including the transfer of ions, small metabolites, and organelles to adjacent cells which affect intracellular mechanisms of signaling and autophagy. This review will discuss the role of GJ in both normal and leukemic hematopoiesis, and highlight some of the most novel approaches that may improve the efficacy of cytotoxic drugs. Connexin GJ channels exert both cell-intrinsic and cell-extrinsic effects on HSC and BM stromal cells, involved in regenerative hematopoiesis after myelosuppression, and represent an alternative system of cell communication through a combination of electrical and metabolic coupling as well as organelle transfer in the HSC niche. GJ intercellular communication (GJIC) in the HSC niche improves cellular bioenergetics, and rejuvenates damaged recipient cells. Unfortunately, they can also support leukemia proliferation and survival by creating leukemic niches that provide GJIC dependent energy sources and facilitate chemoresistance and relapse. The emergence of new strategies to disrupt self-reinforcing malignant niches and intercellular organelle exchange in leukemic niches, while at the same time conserving normal hematopoietic GJIC function, could synergize the effect of chemotherapy drugs in eradicating minimal residual disease. An improved understanding of the molecular basis of connexin regulation in normal and leukemic hematopoiesis is warranted for the re-establishment of normal hematopoiesis after chemotherapy.


Cell Transformation, Neoplastic , Gap Junctions/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/metabolism , Stem Cell Niche , Animals , Antineoplastic Agents/pharmacology , Cell Differentiation , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Hematopoiesis/genetics , Humans , Mesenchymal Stem Cells , Mitochondria/drug effects , Mitochondria/genetics , Mitochondria/metabolism , Models, Biological , Reactive Oxygen Species/metabolism
19.
Annu Rev Immunol ; 38: 229-247, 2020 04 26.
Article En | MEDLINE | ID: mdl-31928469

Neonatal CD4+ and CD8+ T cells have historically been characterized as immature or defective. However, recent studies prompt a reinterpretation of the functions of neonatal T cells. Rather than a population of cells always falling short of expectations set by their adult counterparts, neonatal T cells are gaining recognition as a distinct population of lymphocytes well suited for the rapidly changing environment in early life. In this review, I will highlight new evidence indicating that neonatal T cells are not inert or less potent versions of adult T cells but instead are a broadly reactive layer of T cells poised to quickly develop into regulatory or effector cells, depending on the needs of the host. In this way, neonatal T cells are well adapted to provide fast-acting immune protection against foreign pathogens, while also sustaining tolerance to self-antigens.


T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Adaptive Immunity , Animals , Biomarkers , Cell Differentiation/immunology , Host-Pathogen Interactions , Humans , Immunologic Memory , Lymphocyte Activation/immunology , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/immunology , Lymphoid Progenitor Cells/metabolism , Phenotype , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Signal Transduction , T-Lymphocyte Subsets/cytology
20.
Hum Gene Ther ; 31(3-4): 183-198, 2020 02.
Article En | MEDLINE | ID: mdl-31760808

Conditional immortalization of hematopoietic progenitors through lentiviral expression of selected transcription factors in hematopoietic stem and progenitor cells provides a promising tool to study stem cell and leukemia biology. In this study, to generate conditionally immortalized lymphoid progenitor (ciLP) cell lines, murine hematopoietic progenitor cells were transduced with an inducible lentiviral "all-in-one" vector expressing LMO2 under doxycycline (DOX) stimulation and the reverse tetracycline-regulated transactivator (rtTA3). For selection of LMO2-expressing ciLPs (LMO2-ciLPs) and longitudinal manipulation in T cell differentiation lymphoid conditions, we developed a robust approach based on coculture with OP9-DL1 stromal cells and improved cytokine conditions allowing a controlled balance between cell proliferation and differentiation in vitro. LMO2-ciLP cell lines with the highest proliferation, vector copy number, and similar insertion pattern were selected for LMO2 "on/off" in vitro study. LMO2 expression under DOX induction resulted in a double negative (DN) 2 differentiation arrest and a propagation of CD44+CD25- myeloid cell population characterized by lymphoid and myeloid phenotypes, respectively. Both DN2 and CD44+CD25- myeloid cell subpopulations expressed c-KIT, suggesting that LMO2-ciLPs were similar to uncommitted progenitors under DOX supplementation. DOX removal resulted in cessation of ectopic LMO2 expression and LMO2-ciLPs continued T cell lymphoid differentiation accompanied by c-KIT downregulation and interleukin 7 receptor expression. Switching off LMO2 expression was accompanied by increased Notch signaling and significant reduction of the CD44+CD25- myeloid cell population under T cell differentiation lymphoid conditions. Although vector insertions in cooperation with LMO2 expression could influence the fate of LMO2-ciLPs and additional experiments are required to evaluate it, our approach provides a promising tool to investigate mechanisms underlying stem cell, leukemia, and lymphocyte biology, leading to novel approaches for disease modeling and therapy evaluation.


Adaptor Proteins, Signal Transducing/genetics , Cell Transformation, Neoplastic/genetics , Gene Expression Regulation/drug effects , LIM Domain Proteins/genetics , Lymphoid Progenitor Cells/metabolism , Plasmids/genetics , Proto-Oncogene Proteins/genetics , Tetracyclines/pharmacology , Transgenes , Animals , Biomarkers , Cell Differentiation/genetics , Cell Line , Cell Lineage/genetics , Hematopoietic Stem Cells/metabolism , Humans , Immunophenotyping , Lymphoid Progenitor Cells/pathology , Mice , Mice, Transgenic , Transduction, Genetic
...