Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 147
1.
Adv Med Sci ; 69(1): 190-197, 2024 Mar.
Article En | MEDLINE | ID: mdl-38521459

PURPOSE: Starting in 2019, coronavirus disease 2019 (COVID-19) caused an epidemic that was growing rapidly and has harmed millions of people globally. It has been demonstrated that survivin regulates lymphocyte survival, a main route involved in COVID-19 pathogenesis. Survivin belongs to the inhibitor of apoptosis protein (IAP) family, and its primary functions comprise regulating mitosis and inhibiting apoptosis. Since lower survivin expression has been shown to increase the sensitivity of lymphocytes to apoptotic induction, we looked into the function of survivin and its corresponding pathways in COVID-19 pathogenesis. MATERIALS AND METHODS: The expression of survivin, X-linked inhibitor of apoptosis protein (XIAP), caspases 3, 7, 9, and poly (ADP-ribose) polymerase (PARP) was evaluated at both mRNA and protein levels in peripheral blood mononuclear cells (PBMCs) derived from healthy donors and patients with severe and moderate COVID-19 by qRT-PCR and Western blotting, respectively. Then, we enforced apoptosis to COVID-19 patient-derived lymphocytes, and the percent was assessed by flow cytometry. RESULTS: Survivin and XIAP were less expressed in PBMCs derived from COVID-19 patients as apoptosis inhibitors than PARP, cleaved-PARP, caspase 9, and cleaved caspases 3 and 7, according to the results of real-time PCR and Western blot analysis. Additionally, according to the flow cytometry results, the down-regulation of survivin served as a potential factor in the lymphocyte depletion observed in patients with COVID-19. CONCLUSION: The role of survivin and its related pathway was first discovered in the development of COVID-19 and may serve as a potential prognostic and therapeutic target.


Apoptosis , COVID-19 , Lymphopenia , SARS-CoV-2 , Survivin , Humans , Survivin/metabolism , COVID-19/metabolism , COVID-19/virology , Lymphopenia/metabolism , SARS-CoV-2/pathogenicity , X-Linked Inhibitor of Apoptosis Protein/metabolism , Male , Female , Leukocytes, Mononuclear/metabolism , Middle Aged , Adult , Signal Transduction
2.
J Immunol ; 210(2): 168-179, 2023 01 15.
Article En | MEDLINE | ID: mdl-36480268

Long-lasting sepsis-induced immunoparalysis has been principally studied in primary (1°) memory CD8 T cells; however, the impact of sepsis on memory CD8 T cells with a history of repeated cognate Ag encounters is largely unknown but important in understanding the role of sepsis in shaping the pre-existing memory CD8 T cell compartment. Higher-order memory CD8 T cells are crucial in providing immunity against common pathogens that reinfect the host or are generated by repeated vaccination. In this study, we analyzed peripheral blood from septic patients and show that memory CD8 T cells with defined Ag specificity for recurring CMV infection proliferate less than bulk populations of central memory CD8 T cells. Using TCR-transgenic T cells to generate 1° and higher-order (quaternary [4°]) memory T cells within the same host, we demonstrate that the susceptibility and loss of both memory subsets are similar after sepsis induction, and sepsis diminished Ag-dependent and -independent (bystander) functions of these memory subsets equally. Both the 1° and 4° memory T cell populations proliferated in a sepsis-induced lymphopenic environment; however, due to the intrinsic differences in baseline proliferative capacity, expression of receptors (e.g., CD127/CD122), and responsiveness to homeostatic cytokines, 1° memory T cells become overrepresented over time in sepsis survivors. Finally, IL-7/anti-IL-7 mAb complex treatment early after sepsis induction preferentially rescued the proliferation and accumulation of 1° memory T cells, whereas recovery of 4° memory T cells was less pronounced. Thus, inefficient recovery of repeatedly stimulated memory cells after polymicrobial sepsis induction leads to changes in memory T cell pool composition, a notion with important implications in devising strategies to recover the number and function of pre-existing memory CD8 T cells in sepsis survivors.


Lymphopenia , Sepsis , Humans , Animals , Mice , Memory T Cells , CD8-Positive T-Lymphocytes , Cytokines/metabolism , Lymphopenia/metabolism , Immunologic Memory , Mice, Inbred C57BL
3.
Cells ; 11(21)2022 10 25.
Article En | MEDLINE | ID: mdl-36359755

COVID-19, the infectious disease caused by SARS-CoV-2, has spread on a pandemic scale. The viral infection can evolve asymptomatically or can generate severe symptoms, influenced by the presence of comorbidities. Lymphopenia based on the severity of symptoms in patients affected with COVID-19 is frequent. However, the profiles of CD4+ and CD8+ T cells regarding cytotoxicity and antiviral factor expression have not yet been completely elucidated in acute SARS-CoV-2 infections. The purpose of this study was to evaluate the phenotypic and functional profile of T lymphocytes in patients with moderate and severe/critical COVID-19. During the pandemic period, we analyzed a cohort of 62 confirmed patients with SARS-CoV-2 (22 moderate cases and 40 severe/critical cases). Notwithstanding lymphopenia, we observed an increase in the expression of CD28, a co-stimulator molecule, and activation markers (CD38 and HLA-DR) in T lymphocytes as well as an increase in the frequency of CD4+ T cells, CD8+ T cells, and NK cells that express the immunological checkpoint protein PD-1 in patients with a severe/critical condition compared to healthy controls. Regarding the cytotoxic profile of peripheral blood mononuclear cells, an increase in the response of CD4+ T cells was already observed at the baseline level and scarcely changed upon PMA and Ionomycin stimulation. Meanwhile, CD8+ T lymphocytes decreased the cytotoxic response, evidencing a profile of exhaustion in patients with severe COVID-19. As observed by t-SNE, there were CD4+ T-cytotoxic and CD8+ T with low granzyme production, evidencing their dysfunction in severe/critical conditions. In addition, purified CD8+ T lymphocytes from patients with severe COVID-19 showed increased constitutive expression of differentially expressed genes associated with the caspase pathway, inflammasome, and antiviral factors, and, curiously, had reduced expression of TNF-α. The cytotoxic profile of CD4+ T cells may compensate for the dysfunction/exhaustion of TCD8+ in acute SARS-CoV-2 infection. These findings may provide an understanding of the interplay of cytotoxicity between CD4+ T cells and CD8+ T cells in the severity of acute COVID-19 infection.


COVID-19 , Lymphopenia , Humans , SARS-CoV-2 , Leukocytes, Mononuclear , CD8-Positive T-Lymphocytes , Lymphopenia/metabolism , Antiviral Agents/metabolism
4.
Front Immunol ; 13: 848759, 2022.
Article En | MEDLINE | ID: mdl-36311769

Introduction: In sarcoidosis, peripheral lymphopenia and anergy have been associated with increased inflammation and maladaptive immune activity, likely promoting development of chronic and progressive disease. However, the molecular mechanisms that lead to reduced lymphocyte proportions, particularly CD4+ T-cells, have not been fully elucidated. We posit that paradoxical peripheral lymphopenia is characterized by a dysregulated transcriptomic network associated with cell function and fate that results from altered transcription factor targeting activity. Methods: Messenger RNA-sequencing (mRNA-seq) was performed on peripheral blood mononuclear cells (PBMCs) from ACCESS study subjects with sarcoidosis and matched controls and findings validated on a sarcoidosis case-control cohort and a sarcoidosis case series. Preserved PBMC transcriptomic networks between case-control cohorts were assessed to establish cellular associations with gene modules and define regulatory targeting involved in sarcoidosis immune dysregulation utilizing weighted gene co-expression network analysis and differential transcription factor involvement analysis. Network centrality measures identified master transcriptional regulators of subnetworks related to cell proliferation and death. Predictive models of differential PBMC proportions constructed from ACCESS target gene expression corroborated the relationship between aberrant transcription factor regulatory activity and imputed and clinical PBMC populations in the validation cohorts. Results: We identified two unique and preserved gene modules significantly associated with sarcoidosis immune dysregulation. Strikingly, increased expression of a monocyte-driven, and not a lymphocyte-driven, gene module related to innate immunity and cell death was the best predictor of peripheral CD4+ T-cell proportions. Within the gene network of this monocyte-driven module, TLE3 and CBX8 were determined to be master regulators of the cell death subnetwork. A core gene signature of differentially over-expressed target genes of TLE3 and CBX8 involved in cellular communication and immune response regulation accurately predicted imputed and clinical monocyte expansion and CD4+ T-cell depletion. Conclusions: Altered transcriptional regulation associated with aberrant gene expression of a monocyte-driven transcriptional network likely influences lymphocyte function and survival. Although further investigation is warranted, this indicates that crosstalk between hyperactive monocytes and lymphocytes may instigate peripheral lymphopenia and underlie sarcoidosis immune dysregulation and pathogenesis. Future therapies selectively targeting master regulators, or their targets, may mitigate dysregulated immune processes in sarcoidosis and disease progression.


Lymphopenia , Sarcoidosis , Humans , Leukocytes, Mononuclear , Transcription Factors/genetics , Transcription Factors/metabolism , Immunity, Innate , Lymphopenia/metabolism , Polycomb Repressive Complex 1/metabolism
5.
Viral Immunol ; 35(7): 491-502, 2022 09.
Article En | MEDLINE | ID: mdl-35930238

Lymphocytes are the main orchestrators that regulate the immune response in SARS-COV-2 infection. The exhaustion of T lymphocytes is a contributing factor to lymphopenia, which is responsible for the COVID-19 adverse outcome. However, it is still not demonstrated on a large scale, including cancer patients. Peripheral blood samples were obtained from 83 SARS-CoV2 infected cancer patients, and 29 COVID-19 infected noncancer patients compared to 28 age-matched healthy controls. Lymphocyte subsets were assessed for CD3, CD4, CD8, CD56, PD-1, and CD95 using flow cytometry. The data were correlated to the patients' clinical features, COVID-19 severity and outcomes. Lymphopenia, and decreased CD4+ T cells and CD8+ T cells were significantly observed in COVID-19 cancer and noncancer patients compared to the control group (p < 0.001, for all). There was a significantly increased expression of CD95 and PD-1 on the NK cells, CD4+ T cells, and CD8+ T cells in COVID-19 cancer and noncancer patients in comparison to the control group. The increased expression of CD95 on CD8+ T cells, as well as the increased expression of PD-1 on CD8+ T cells and NK cells are significantly associated with the severity of COVID-19 infection in cancer patients. The increased expression of CD95 and PD-1 on the CD4+ T cells, CD8+ T cells, and NK cells was observed significantly in nonsurviving patients and those who were admitted to the intensive care unit in COVID-19 cancer and noncancer patients. The increased expression of PD-1 and CD95 could be possible prognostic factors for COVID-19 severity and adverse outcomes in COVID-19 cancer and noncancer patients.


COVID-19 , Lymphopenia , Neoplasms , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Humans , Lymphocyte Subsets , Lymphopenia/metabolism , Neoplasms/complications , Neoplasms/metabolism , Programmed Cell Death 1 Receptor , RNA, Viral/metabolism , SARS-CoV-2 , T-Lymphocyte Subsets
6.
Allergy ; 77(8): 2468-2481, 2022 08.
Article En | MEDLINE | ID: mdl-35567391

BACKGROUND: T-cell lymphopenia and functional impairment is a hallmark of severe acute coronavirus disease 2019 (COVID-19). How T-cell numbers and function evolve at later timepoints after clinical recovery remains poorly investigated. METHODS: We prospectively enrolled and longitudinally sampled 173 individuals with asymptomatic to critical COVID-19 and analyzed phenotypic and functional characteristics of T cells using flow cytometry, 40-parameter mass cytometry, targeted proteomics, and functional assays. RESULTS: The extensive T-cell lymphopenia observed particularly in patients with severe COVID-19 during acute infection had recovered 6 months after infection, which was accompanied by a normalization of functional T-cell responses to common viral antigens. We detected persisting CD4+ and CD8+ T-cell activation up to 12 months after infection, in patients with mild and severe COVID-19, as measured by increased HLA-DR and CD38 expression on these cells. Persistent T-cell activation after COVID-19 was independent of administration of a COVID-19 vaccine post-infection. Furthermore, we identified a subgroup of patients with severe COVID-19 that presented with persistently low CD8+ T-cell counts at follow-up and exhibited a distinct phenotype during acute infection consisting of a dysfunctional T-cell response and signs of excessive pro-inflammatory cytokine production. CONCLUSION: Our study suggests that T-cell numbers and function recover in most patients after COVID-19. However, we find evidence of persistent T-cell activation up to 12 months after infection and describe a subgroup of severe COVID-19 patients with persistently low CD8+ T-cell counts exhibiting a dysregulated immune response during acute infection.


COVID-19 , Lymphopenia , CD8-Positive T-Lymphocytes , COVID-19 Vaccines , Humans , Lymphopenia/etiology , Lymphopenia/metabolism , SARS-CoV-2
8.
Cells ; 10(8)2021 08 07.
Article En | MEDLINE | ID: mdl-34440787

Adoptive cell therapy (ACT) using tumor-reactive T cells is a promising form of immunotherapy to specifically target cancer. However, the survival and functional maintenance of adoptively transferred T cells remains a challenge, ultimately limiting their efficacy. Here, we evaluated the use of recombinant IL7-Fc in ACT. In a lymphopenic murine melanoma model, IL7-Fc treatment led to the enhanced inhibition of tumor growth with an increased number of adoptively transferred CD8+ T cells in tumor tissue and tumor-draining lymph nodes. Additionally, IL7-Fc further enhanced anti-tumor responses that were induced by recombinant human IL2 in the same mouse model. In contrast, in an immunocompetent murine melanoma model, IL7-Fc dampened the anti-tumor immunity. Further, IL7-Fc decreased the proliferation of adoptively transferred and immune-activated tumor-reactive CD8+ T cells in immunocompetent mice by inducing the massive expansion of endogenous T cells, thereby limiting the space for adoptively transferred T cells. Our data suggest that IL7-Fc is principally beneficial for enhancing the efficacy of tumor-reactive T-cells in lymphopenic conditions for the ACT.


Immunoglobulin Fc Fragments/immunology , Immunotherapy, Adoptive/methods , Interleukin-7/immunology , Lymphopenia/immunology , Melanoma, Experimental/therapy , Recombinant Fusion Proteins/administration & dosage , Animals , Bone Marrow/drug effects , Bone Marrow/immunology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Cell Differentiation/drug effects , Cell Differentiation/immunology , Humans , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Interleukin-7/genetics , Interleukin-7/metabolism , Leukocyte Count , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Lymphopenia/metabolism , Melanoma, Experimental/genetics , Melanoma, Experimental/immunology , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Myeloid Cells/cytology , Myeloid Cells/drug effects , Myeloid Cells/immunology , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/metabolism
9.
Nucleic Acids Res ; 49(10): 5760-5778, 2021 06 04.
Article En | MEDLINE | ID: mdl-34037780

Alternative pre-mRNA splicing is a critical step to generate multiple transcripts, thereby dramatically enlarging the proteomic diversity. Thus, a common feature of most alternative splicing factor knockout models is lethality. However, little is known about lineage-specific alternative splicing regulators in a physiological setting. Here, we report that NSrp70 is selectively expressed in developing thymocytes, highest at the double-positive (DP) stage. Global splicing and transcriptional profiling revealed that NSrp70 regulates the cell cycle and survival of thymocytes by controlling the alternative processing of various RNA splicing factors, including the oncogenic splicing factor SRSF1. A conditional-knockout of Nsrp1 (NSrp70-cKO) using CD4Cre developed severe defects in T cell maturation to single-positive thymocytes, due to insufficient T cell receptor (TCR) signaling and uncontrolled cell growth and death. Mice displayed severe peripheral lymphopenia and could not optimally control tumor growth. This study establishes a model to address the function of lymphoid-lineage-specific alternative splicing factor NSrp70 in a thymic T cell developmental pathway.


Alternative Splicing/genetics , Carcinogenesis/metabolism , Embryonic Development/genetics , Hematopoiesis/genetics , Melanoma/metabolism , Thymocytes/metabolism , Animals , Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Apoptosis/genetics , Carcinogenesis/genetics , Cell Proliferation/genetics , Genomics , HEK293 Cells , Humans , Lectins, C-Type/metabolism , Lymphopenia/genetics , Lymphopenia/metabolism , Melanoma/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Polymerase Chain Reaction , RNA-Seq , Real-Time Polymerase Chain Reaction , Receptors, Antigen, T-Cell/metabolism , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Thymus Gland/embryology , Thymus Gland/metabolism
10.
Cell Rep ; 34(11): 108863, 2021 03 16.
Article En | MEDLINE | ID: mdl-33691089

It is unclear why some SARS-CoV-2 patients readily resolve infection while others develop severe disease. By interrogating metabolic programs of immune cells in severe and recovered coronavirus disease 2019 (COVID-19) patients compared with other viral infections, we identify a unique population of T cells. These T cells express increased Voltage-Dependent Anion Channel 1 (VDAC1), accompanied by gene programs and functional characteristics linked to mitochondrial dysfunction and apoptosis. The percentage of these cells increases in elderly patients and correlates with lymphopenia. Importantly, T cell apoptosis is inhibited in vitro by targeting the oligomerization of VDAC1 or blocking caspase activity. We also observe an expansion of myeloid-derived suppressor cells with unique metabolic phenotypes specific to COVID-19, and their presence distinguishes severe from mild disease. Overall, the identification of these metabolic phenotypes provides insight into the dysfunctional immune response in acutely ill COVID-19 patients and provides a means to predict and track disease severity and/or design metabolic therapeutic regimens.


COVID-19/immunology , COVID-19/metabolism , Immunity/immunology , Adult , Aged , Aged, 80 and over , Apoptosis/immunology , Caspases/immunology , Caspases/metabolism , Female , Humans , Lymphopenia/immunology , Lymphopenia/metabolism , Male , Middle Aged , Mitochondria/immunology , Mitochondria/metabolism , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , SARS-CoV-2/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Voltage-Dependent Anion Channel 1/metabolism , Young Adult
11.
EMBO J ; 40(9): e104888, 2021 05 03.
Article En | MEDLINE | ID: mdl-33630350

Endoplasmic reticulum (ER) calcium (Ca2+ ) stores are critical to proteostasis, intracellular signaling, and cellular bioenergetics. Through forward genetic screening in mice, we identified two members of a new complex, Pacs1 and Wdr37, which are required for normal ER Ca2+ handling in lymphocytes. Deletion of Pacs1 or Wdr37 caused peripheral lymphopenia that was linked to blunted Ca2+ release from the ER after antigen receptor stimulation. Pacs1-deficient cells showed diminished inositol triphosphate receptor expression together with increased ER and oxidative stress. Mature Pacs1-/- B cells proliferated and died in vivo under lymphocyte replete conditions, indicating spontaneous loss of cellular quiescence. Disruption of Pacs1-Wdr37 did not diminish adaptive immune responses, but potently suppressed lymphoproliferative disease models by forcing loss of quiescence. Thus, Pacs1-Wdr37 plays a critical role in stabilizing lymphocyte populations through ER Ca2+ handling and presents a new target for lymphoproliferative disease therapy.


Endoplasmic Reticulum/metabolism , Gene Deletion , Lymphopenia/genetics , Lymphoproliferative Disorders/genetics , Nuclear Proteins/genetics , Vesicular Transport Proteins/genetics , Animals , B-Lymphocytes/metabolism , Calcium Signaling , Disease Models, Animal , Female , HEK293 Cells , Humans , Lymphopenia/metabolism , Lymphoproliferative Disorders/metabolism , Male , Mice , NIH 3T3 Cells , Nuclear Proteins/metabolism , Vesicular Transport Proteins/metabolism
12.
FASEB J ; 35(2): e21245, 2021 02.
Article En | MEDLINE | ID: mdl-33495994

Lymphopenia is commonly observed in SARS and COVID-19 patients although the lymphocyte count is not always below 0.8 × 109 /L in all the patients. It is suggested that lymphopenia serves as a useful predictor for prognosis in the patients. It is also hypothesized that lymphopenia is related to glucocorticoids and apoptosis. However, the ordering between lymphopenia and apoptosis appears different between SARS and COVID-19 patients, ie, lymphopenia is prior to apoptosis in SARS patients whereas apoptosis is prior to lymphopenia in COVID-19 patients. This paper attempts to figure out this contradiction through three players, lymphopenia, glucocorticoids, and apoptosis. Although the literature does not provide a solid explanation, the level of glucocorticoids could determine the ordering between lymphopenia and apoptosis because the administration of high doses of glucocorticoids could lead to lymphopenia whereas low doses of glucocorticoids could benefit patients. In the meantime, this paper raises several questions, which need to be answered in order to better understand the whole course of COVID-19.


COVID-19 Drug Treatment , COVID-19 , Glucocorticoids , Lymphopenia , SARS-CoV-2/metabolism , Severe Acute Respiratory Syndrome , Severe acute respiratory syndrome-related coronavirus/metabolism , Apoptosis/drug effects , COVID-19/complications , COVID-19/metabolism , Glucocorticoids/adverse effects , Glucocorticoids/therapeutic use , Humans , Lymphopenia/drug therapy , Lymphopenia/etiology , Lymphopenia/metabolism , Severe Acute Respiratory Syndrome/complications , Severe Acute Respiratory Syndrome/drug therapy , Severe Acute Respiratory Syndrome/metabolism
13.
Naunyn Schmiedebergs Arch Pharmacol ; 394(3): 561-567, 2021 03.
Article En | MEDLINE | ID: mdl-33394134

Coronavirus disease 2019 (COVID-19) has been characterized by lymphopenia as well as a proinflammatory cytokine storm, which are responsible for the poor prognosis and multiorgan defects. The transcription factor nuclear factor-κB (NF-κB) modulates the functions of the immune cells and alters the gene expression profile of different cytokines in response to various pathogenic stimuli, while many proinflammatory factors have been known to induce NF-κB signalling cascade. Besides, NF-κB has been known to potentiate the production of reactive oxygen species (ROS) leading to apoptosis in various tissues in many diseases and viral infections. Though the reports on the involvement of the NF-κB signalling pathway in COVID-19 are limited, the therapeutic benefits of NF-κB inhibitors including dexamethasone, a synthetic form of glucocorticoid, have increasingly been realized. Considering the fact, the abnormal activation of the NF-κB resulting from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection might be associated with the pathogenic profile of immune cells, cytokine storm and multiorgan defects. Thus, the pharmacological inactivation of the NF-κB signalling pathway can strongly represent a potential therapeutic target to treat the symptomatology of COVID-19. This article signifies pharmacological blockade of the phosphorylation of inhibitor of nuclear factor kappa B kinase subunit beta (IKKß), a key downstream effector of NF-κB signalling, for a therapeutic consideration to attenuate COVID-19.


COVID-19 Drug Treatment , Drug Delivery Systems/trends , I-kappa B Kinase/antagonists & inhibitors , NF-kappa B/antagonists & inhibitors , Signal Transduction/physiology , Animals , COVID-19/epidemiology , COVID-19/metabolism , Cytokine Release Syndrome/drug therapy , Cytokine Release Syndrome/epidemiology , Cytokine Release Syndrome/metabolism , Heterocyclic Compounds, 3-Ring/administration & dosage , Humans , I-kappa B Kinase/metabolism , Lymphopenia/drug therapy , Lymphopenia/epidemiology , Lymphopenia/metabolism , NF-kappa B/metabolism , Nitriles/administration & dosage , Pyridines/administration & dosage , Signal Transduction/drug effects , Sulfones/administration & dosage
14.
Inflammation ; 44(1): 371-382, 2021 Feb.
Article En | MEDLINE | ID: mdl-32939668

Patients with chronic granulomatous disease (CGD) who have mutated phagocyte NADPH oxidase are susceptible to infections due to reduced reactive oxygen species production and exhibit autoimmune and inflammatory diseases in the absence of evident infection. Neutrophils and macrophages have been extensively studied since phagocyte NADPH oxidase is mainly found only in them, while the impact of its deficiency on lymphocyte cellularity is less well characterized. We showed herein a zymosan-induced systemic inflammation model that CGD mice deficient in the phagocyte NADPH oxidase gp91phox subunit (NOX2) exhibited more severe thymic atrophy associated with peripheral blood and splenic lymphopenia and reduced lymphopoiesis in the bone marrow in comparison with the wild-type mice. Conversely, the zymosan-exposed CGD mice suffered from more remarkable neutrophilic lung inflammation, circulating and splenic neutrophilia, and enhanced granulopoiesis compared with those in zymosan-exposed wild-type mice. Overall, this study provided evidence that NOX2 deficiency exhibits severe thymic atrophy and lymphopenia concomitant with enhanced neutrophilic inflammation in a zymosan-induced systemic inflammation model.


Lymphopenia/metabolism , Lymphopoiesis/physiology , NADPH Oxidase 2/deficiency , Systemic Inflammatory Response Syndrome/metabolism , Thymus Gland/metabolism , Zymosan/toxicity , Animals , Atrophy , Disease Models, Animal , Dose-Response Relationship, Drug , Granulomatous Disease, Chronic/chemically induced , Granulomatous Disease, Chronic/metabolism , Granulomatous Disease, Chronic/pathology , Lymphopenia/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Systemic Inflammatory Response Syndrome/chemically induced , Systemic Inflammatory Response Syndrome/pathology , Thymus Gland/drug effects , Thymus Gland/pathology
15.
Clin Infect Dis ; 71(16): 2150-2157, 2020 11 19.
Article En | MEDLINE | ID: mdl-32442287

BACKGROUND: Thymosin alpha 1 (Tα1) had been used in the treatment of viral infections as an immune response modifier for many years. However, clinical benefits and the mechanism of Tα1 treatment for COVID-19 patients are still unclear. METHODS: We retrospectively reviewed the clinical outcomes of 76 severe COVID-19 cases admitted to 2 hospitals in Wuhan, China, from December 2019 to March 2020. The thymus output in peripheral blood mononuclear cells from COVID-19 patients was measured by T-cell receptor excision circles (TRECs). The levels of T-cell exhaustion markers programmed death-1 (PD-1) and T-cell immunoglobulin and mucin domain protein 3 (Tim-3) on CD8+ T cells were detected by flow cytometry. RESULTS: Compared with the untreated group, Tα1 treatment significantly reduced the mortality of severe COVID-19 patients (11.11% vs 30.00%, P = .044). Tα1 enhanced blood T-cell numbers in COVID-19 patients with severe lymphocytopenia. Under such conditions, Tα1 also successfully restored CD8+ and CD4+ T-cell numbers in elderly patients. Meanwhile, Tα1 reduced PD-1 and Tim-3 expression on CD8+ T cells from severe COVID-19 patients compared with untreated cases. It is of note that restoration of lymphocytopenia and acute exhaustion of T cells were roughly parallel to the rise of TRECs. CONCLUSIONS: Tα1 treatment significantly reduced mortality of severe COVID-19 patients. COVID-19 patients with counts of CD8+ T cells or CD4+ T cells in circulation less than 400/µL or 650/µL, respectively, gained more benefits from Tα1. Tα1 reversed T-cell exhaustion and recovered immune reconstitution through promoting thymus output during severe acute respiratory syndrome-coronavirus 2 infection.


COVID-19/mortality , Lymphopenia/metabolism , SARS-CoV-2/pathogenicity , Thymalfasin/metabolism , Adult , Aged , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , COVID-19/virology , Female , Humans , Male , Middle Aged , Retrospective Studies , Thymalfasin/genetics , Thymus Gland/metabolism
16.
J Immunol ; 204(12): 3227-3235, 2020 06 15.
Article En | MEDLINE | ID: mdl-32393513

Lymphopenia-induced homeostatic proliferation (LIP) is a critical mechanism for restoring T cell immunity upon lymphodepleting insults or infections. LIP is primarily driven by homeostatic cytokines, such as IL-7 and IL-15, but not all T cells respond with the same efficiency to homeostatic proliferative cues. Although CD8 T cells vigorously proliferate under lymphopenic conditions, naive CD4 T cells are substantially impaired in their response to homeostatic cytokines, and they fail to fully expand. In this study, we show that the availability of IL-2Rß (CD122), which is a receptor subunit shared by IL-2 and IL-15, affects both the cytokine responsiveness and the LIP of naive CD4 T cells in the mouse. The enumeration of surface IL-2Rß molecules on murine naive CD4 and naive CD8 T cells revealed a 5-fold difference in IL-2Rß abundance. Notably, it was the limited availability of IL-2Rß that impaired CD4 T cell responsiveness to IL-15 and suppressed their LIP. As such, forced IL-2Rß expression on CD4 T cells by transgenesis bestowed IL-15 responsiveness onto naive CD4 T cells, which thus acquired the ability to undergo robust LIP. Collectively, these results identify IL-2Rß availability as a new regulatory mechanism to control cytokine responsiveness and the homeostatic proliferation of murine CD4 T cells.


CD4-Positive T-Lymphocytes/metabolism , Cell Proliferation/physiology , Homeostasis/physiology , Interleukin-2 Receptor beta Subunit/metabolism , Lymphopenia/metabolism , Animals , CD8-Positive T-Lymphocytes/metabolism , Interleukin-15/metabolism , Interleukin-2/metabolism , Lymphocyte Activation/physiology , Mice , Mice, Inbred C57BL , Receptors, Cytokine/metabolism , Signal Transduction/physiology
17.
Rheumatology (Oxford) ; 59(8): 2146-2155, 2020 08 01.
Article En | MEDLINE | ID: mdl-32206811

OBJECTIVE: Lymphopenia is a frequent clinical manifestation and risk factor for infections in SLE, but the underlying mechanisms are not fully understood. We previously identified novel roles for the RNA-binding protein serine arginine-rich splicing factor 1 (SRSF1) in the control of genes involved in signalling and cytokine production in human T cells. SRSF1 is decreased in T cells from patients with SLE and associates with severe disease. Because SRSF1 controls the expression of apoptosis-related genes, we hypothesized that SRSF1 controls T cell homeostasis and, when reduced, leads to lymphopenia. METHODS: We evaluated SRSF1 expression in T cells from SLE patients by immunoblots and analysed its correlation with clinical parameters. T cell conditional Srsf1 knockout mice were used to evaluate lymphoid cells and apoptosis by flow cytometry. Quantitative PCR and immunoblots were used to assess Bcl-xL mRNA and protein expression. SRSF1 overexpression was performed by transient transfections by electroporation. RESULTS: We found that low SRSF1 levels correlated with lymphopenia in SLE patients. Selective deletion of Srsf1 in T cells in mice led to T cell lymphopenia, with increased apoptosis and decreased expression of the anti-apoptotic Bcl-xL. Lower SRSF1 expression correlated with low Bcl-xL levels in T cells and lower Bcl-xL levels associated with lymphopenia in SLE patients. Importantly, overexpression of SRSF1 rescued survival of T cells from patients with SLE. CONCLUSION: Our studies uncovered a previously unrecognized role for SRSF1 in the control of T cell homeostasis and its reduced expression as a molecular defect that contributes to lymphopenia in systemic autoimmunity.


Homeostasis/physiology , Lupus Erythematosus, Systemic/metabolism , Lymphopenia/metabolism , Serine-Arginine Splicing Factors/metabolism , T-Lymphocytes/metabolism , Adult , Animals , Female , Humans , Lupus Erythematosus, Systemic/blood , Lupus Erythematosus, Systemic/genetics , Lymphocyte Activation/physiology , Lymphopenia/genetics , Male , Mice , Mice, Knockout , Middle Aged , Serine-Arginine Splicing Factors/blood , Serine-Arginine Splicing Factors/genetics , Young Adult , bcl-X Protein/genetics , bcl-X Protein/metabolism
18.
Front Immunol ; 11: 52, 2020.
Article En | MEDLINE | ID: mdl-32047502

Lymphopenic insult has been shown to precipitate the initiation of autoimmune disease in murine models such as the Non-obese diabetic mouse. Similarly, in man lymphopenia induced by mAb therapy, for instance Alemtuzumab as treatment for Multiple Sclerosis, can precipitate development of secondary autoimmune disease in up to 30 % of patients. We asked whether an identified autoimmune susceptibility locus might increase the risk of developing autoimmunity in the context of mAb-induced lymphopenia in a mouse model. A single nucleotide polymorphism (SNP) in the gene encoding the tyrosine phosphatase PTPN22 (R620W) is associated with multiple human autoimmune diseases, and PTPN22 has been shown to modulate T cell responses, particularly to weak antigens. In keeping with this, PTPN22-deficient or PTPN22 R619W mutant murine T cells adoptively transferred into immunodeficient lymphopenic hosts showed a higher lymphopenia-induced proliferation rate than WT cells. We induced lymphopenia by treating wild-type or PTPN22 knock-out mice with T cell depleting antibodies and monitored reconstitution of the T cell pool. We found that PTPN22 deficient T cells acquired a more activated effector phenotype, with significantly more IFNγ producing cells. This resulted from expansion driven by self-peptide MHC, as it was evident when the contribution of IL-7 to lymphopenic expansion was blocked with IL-7R Ab. Interestingly, Foxp3+ Tregs were also considerably expanded in PTPN22-deficient and PTPN22 R619W mice, as was the frequency of both CD25+ and CD25- CD4 T cells that produce IL-10. Using bone marrow chimeric mice, we showed that PTPN22 influenced development of both regulatory and effector T cell functions in a cell-intrinsic manner. Overall the expansion of Tregs is likely to keep the expanded T effector populations in check and sparing Treg during therapeutic mAb depletion may be a useful strategy to prevent occurrence of secondary autoimmunity.


Autoimmune Diseases/immunology , Lymphopenia/immunology , Protein Tyrosine Phosphatase, Non-Receptor Type 22/immunology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Animals , Antibodies , Autoimmunity/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Differentiation , Cell Proliferation , Cells, Cultured , Female , Forkhead Transcription Factors/metabolism , Lymphocyte Depletion , Lymphopenia/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Protein Tyrosine Phosphatase, Non-Receptor Type 22/metabolism
19.
Drug Des Devel Ther ; 13: 3727-3734, 2019.
Article En | MEDLINE | ID: mdl-31754298

PURPOSE: Despite selection based on human epidermal growth factor receptor 2 (HER2) overexpression, not all HER2-positive patients benefit from trastuzumab therapy. Recent reports indicate that trastuzumab treatment failure may be associated with immune system dysfunction. We examined the prognostic relevance of the absolute lymphocyte count (ALC) in patients with HER2-positive metastatic breast cancer (MBC) who received trastuzumab combined with chemotherapy. METHODS: Baseline ALC and neutrophil-to-lymphocyte ratio (NLR) data from trastuzumab-treated patients with MBC were studied retrospectively, and associations between baseline ALC and clinical characteristics evaluated. Kaplan-Meier analysis and the Cox regression hazard model were applied to assess effects on outcomes. RESULTS: Of a total of 68 patients, 19.1% (13/68) had baseline ALCs ≤ 1 G/L. Baseline lymphopenia was correlated with increased lactate dehydrogenase (LDH) and higher NLR. In univariate analysis, higher alkaline phosphatase (ALP) was associated with inferior overall survival (OS) (P = 0.001); higher LDH was associated with inferior progression-free survival (PFS) (P = 0.045) and OS (P = 0.010). We did not observe any differences in objective response rate or disease control rate between patients with lymphopenia and those with normal ALC. Importantly, patients with baseline lymphopenia had inferior PFS (0.60 years vs 1.17 years, P = 0.000009) and OS (1.88 years vs 3.80 years, P = 0.0003). In multivariable analysis, significance of ALCs was retained for lymphopenia (PFS: P = 0.0005; OS: P = 0.016). CONCLUSION: Our data indicate that baseline ALC value of ≤1 G/L is a predictor of poor outcomes, but not of response, in patients with MBC treated with trastuzumab.


Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents, Immunological/therapeutic use , Breast Neoplasms/drug therapy , Lymphopenia/pathology , Receptor, ErbB-2/antagonists & inhibitors , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Adolescent , Adult , Aged , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Female , Humans , Lymphopenia/metabolism , Middle Aged , Prognosis , Receptor, ErbB-2/metabolism , Retrospective Studies , Treatment Outcome , Young Adult
20.
Sci Rep ; 9(1): 12658, 2019 09 02.
Article En | MEDLINE | ID: mdl-31477755

Inflammation and inflammatory cytokines have been shown to exert both positive and negative effects on hematopoietic stem cells (HSCs) and hematopoiesis. While the significance of inflammation driven hematopoiesis has begun to unfold, molecular players that regulate this phenomenon remain largely unknown. In the present study, we identified A20 as a critical regulator of inflammation controlled hematopoietic cell fate decisions of HSCs. A20 deficiency in HSCs leads to increased differentiation of myeloid cells and myeloproliferation. Analysis of erythroid lineage cells of A20 deficient mice indicated a striking reduction of erythrocytes in the bone marrow (BM), but elevated numbers in the spleen. Loss of A20 in HSCs causes a severe blockade of B cell differentiation in the BM and absence of peripheral B cells in the spleen, liver and blood. T cell differentiation studies revealed a reduction of both T cell progenitors and differentiated T cells in the thymus and altered T cell numbers in the spleens of A20 mutant mice. Analysis of lineage committed progenitors of the myeloid, erythroid and lymphoid lineages specified an altered composition in the A20 deficient BM. Genetic studies identified that specific loss of A20 in the myeloid lineage cells results in myeloproliferation. Bone marrow transplantation studies and mixed bone marrow chimera studies suggested an involvement of inflammatory cytokines, particularly interferon (IFN)- γ, in the onset of myeloproliferation and lymphopenia of A20 deficient mice. Finally, ablation of IFNγ signals in A20 deficient mice rescued the hematopoietic defects. In essence, these studies highlight a previously unknown role for A20 in the restriction of inflammation driven pathologic hematopoiesis. We believe that our studies based on A20 mutant mice will be helpful in understanding the pathophysiology and in the treatment of patients with A20 (TNFAIP3) mutations.


Hematopoietic Stem Cells/metabolism , Interferon-gamma/metabolism , Lymphopenia/metabolism , Signal Transduction , Animals , B-Lymphocytes/cytology , Cell Differentiation , Cell Lineage , Cell Proliferation , Erythroid Cells/metabolism , Erythroid Cells/pathology , Mice , T-Lymphocytes/cytology , Tumor Necrosis Factor alpha-Induced Protein 3/deficiency , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism
...