Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Neuropharmacology ; 171: 107851, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31734384

RESUMEN

Most lysosomal storage disorders (LSDs) cause progressive neurodegeneration leading to early death. While the genetic defects that cause these disorders impact all cells of the body, neurons are particularly affected. This vulnerability may be explained by neuronal cells' critical dependence on the lysosomal degradative capacity, as they cannot use division to eliminate their waste. However, mounting evidence supports the extension of storage beyond lysosomes to other cellular compartments (mitochondria, plasma membrane and synapses) as a key event in pathogenesis. Impaired energy supply, oxidative stress, calcium imbalance, synaptic failure and glial alterations may all contribute to neuronal death and thus could be suitable therapeutic targets for these disorders. Here we review the pathological mechanisms underlying neurodegeneration in Niemann Pick diseases and therapeutic strategies developed in animal models and patients suffering from these devastating disorders. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/patología , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/terapia , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/terapia , Enfermedades de Niemann-Pick/patología , Enfermedades de Niemann-Pick/terapia , Animales , Humanos , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedades de Niemann-Pick/metabolismo
2.
Biochem Biophys Res Commun ; 504(3): 623-628, 2018 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-29524416

RESUMEN

Cholesterol, sphingolipids and glycerophospholipids are critical constituents of the brain, subserving neuronal membrane architecture and providing a platform for biochemical processes essential for proper neurodevelopment and function. When lysosomal defects arise in a lipid metabolic pathway, it is therefore easy to imagine that neurological decline will transpire, however for deficits in non-lipid pathways, this becomes harder to envisage. Here we suggest the working hypothesis that neurodegenerative lysosomal storage disorders might manifest as primary and/or secondary disorders of lipid metabolism. Evidence suggests that the mere process of lysosomal substrate accumulation, ubiquitous in all lysosomal storage disorders, impairs lysosome integrity resulting in secondary lipid accumulation. Impaired lysosomal degradation of a specific lipid defines a primary disorder of lipid metabolism and as these lysosomal storage disorders additionally show secondary lipid alterations, all primary disorders can also be considered secondary disorders of lipid metabolism. The outcome is a generalized cellular lipid dyshomeostasis and consequently, the physiological architecture of the lipid-enriched plasma membrane is perturbed, including the lipid composition of specialized membrane microdomains, often termed lipid rafts. Neurotoxicity results from the complex interplay of malfunctioning signaling and vesicular trafficking important for neuronal communication and synaptic plasticity-induced by the imbalance in physiological membrane lipid composition - together with compensatory mechanisms aimed at restoring lipid homeostasis.


Asunto(s)
Encéfalo/metabolismo , Metabolismo de los Lípidos , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Animales , Encéfalo/patología , Homeostasis , Humanos , Lípidos de la Membrana/metabolismo , Modelos Biológicos , Neuronas/metabolismo
3.
Neurobiol Dis ; 98: 77-87, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27913291

RESUMEN

Saposin deficiency is a childhood neurodegenerative lysosomal storage disorder (LSD) that can cause premature death within three months of life. Saposins are activator proteins that promote the function of lysosomal hydrolases that mediate the degradation of sphingolipids. There are four saposin proteins in humans, which are encoded by the prosaposin gene. Mutations causing an absence or impaired function of individual saposins or the whole prosaposin gene lead to distinct LSDs due to the storage of different classes of sphingolipids. The pathological events leading to neuronal dysfunction induced by lysosomal storage of sphingolipids are as yet poorly defined. We have generated and characterised a Drosophila model of saposin deficiency that shows striking similarities to the human diseases. Drosophila saposin-related (dSap-r) mutants show a reduced longevity, progressive neurodegeneration, lysosomal storage, dramatic swelling of neuronal soma, perturbations in sphingolipid catabolism, and sensory physiological deterioration. Our data suggests a genetic interaction with a calcium exchanger (Calx) pointing to a possible calcium homeostasis deficit in dSap-r mutants. Together these findings support the use of dSap-r mutants in advancing our understanding of the cellular pathology implicated in saposin deficiency and related LSDs.


Asunto(s)
Modelos Animales de Enfermedad , Proteínas de Drosophila/deficiencia , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Saposinas/deficiencia , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Animales Modificados Genéticamente , Antiportadores/genética , Antiportadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Calcio/metabolismo , Ceramidas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Homeostasis/fisiología , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/patología , Enfermedades Neurodegenerativas/patología , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Saposinas/genética , Esfingosina/metabolismo , Análisis de Supervivencia
4.
Brain ; 139(Pt 2): 317-37, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26715604

RESUMEN

Single gene disorders of the autophagy pathway are an emerging, novel and diverse group of multisystem diseases in children. Clinically, these disorders prominently affect the central nervous system at various stages of development, leading to brain malformations, developmental delay, intellectual disability, epilepsy, movement disorders, and neurodegeneration, among others. Frequent early and severe involvement of the central nervous system puts the paediatric neurologist, neurogeneticist, and neurometabolic specialist at the forefront of recognizing and treating these rare conditions. On a molecular level, mutations in key autophagy genes map to different stages of this highly conserved pathway and thus lead to impairment in isolation membrane (or phagophore) and autophagosome formation, maturation, or autophagosome-lysosome fusion. Here we discuss 'congenital disorders of autophagy' as an emerging subclass of inborn errors of metabolism by using the examples of six recently identified monogenic diseases: EPG5-related Vici syndrome, beta-propeller protein-associated neurodegeneration due to mutations in WDR45, SNX14-associated autosomal-recessive cerebellar ataxia and intellectual disability syndrome, and three forms of hereditary spastic paraplegia, SPG11, SPG15 and SPG49 caused by SPG11, ZFYVE26 and TECPR2 mutations, respectively. We also highlight associations between defective autophagy and other inborn errors of metabolism such as lysosomal storage diseases and neurodevelopmental diseases associated with the mTOR pathway, which may be included in the wider spectrum of autophagy-related diseases from a pathobiological point of view. By exploring these emerging themes in disease pathogenesis and underlying pathophysiological mechanisms, we discuss how congenital disorders of autophagy inform our understanding of the importance of this fascinating cellular pathway for central nervous system biology and disease. Finally, we review the concept of modulating autophagy as a therapeutic target and argue that congenital disorders of autophagy provide a unique genetic perspective on the possibilities and challenges of pathway-specific drug development.


Asunto(s)
Autofagia/fisiología , Encefalopatías Metabólicas Innatas/genética , Encefalopatías Metabólicas Innatas/metabolismo , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/genética , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/metabolismo , Agenesia del Cuerpo Calloso/diagnóstico , Agenesia del Cuerpo Calloso/genética , Agenesia del Cuerpo Calloso/metabolismo , Encefalopatías Metabólicas Innatas/diagnóstico , Catarata/diagnóstico , Catarata/genética , Catarata/metabolismo , Humanos , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/diagnóstico , Lisosomas/genética , Lisosomas/metabolismo , Paraplejía Espástica Hereditaria/diagnóstico , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/metabolismo
5.
Cell Rep ; 12(12): 2009-20, 2015 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-26387958

RESUMEN

Here, we evaluate the mechanisms underlying the neurodevelopmental deficits in Drosophila and mouse models of lysosomal storage diseases (LSDs). We find that lysosomes promote the growth of neuromuscular junctions (NMJs) via Rag GTPases and mechanistic target of rapamycin complex 1 (MTORC1). However, rather than employing S6K/4E-BP1, MTORC1 stimulates NMJ growth via JNK, a determinant of axonal growth in Drosophila and mammals. This role of lysosomal function in regulating JNK phosphorylation is conserved in mammals. Despite requiring the amino-acid-responsive kinase MTORC1, NMJ development is insensitive to dietary protein. We attribute this paradox to anaplastic lymphoma kinase (ALK), which restricts neuronal amino acid uptake, and the administration of an ALK inhibitor couples NMJ development to dietary protein. Our findings provide an explanation for the neurodevelopmental deficits in LSDs and suggest an actionable target for treatment.


Asunto(s)
Drosophila melanogaster/genética , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/genética , Lisosomas/metabolismo , MAP Quinasa Quinasa 4/genética , Complejos Multiproteicos/genética , Unión Neuromuscular/genética , Serina-Treonina Quinasas TOR/genética , Quinasa de Linfoma Anaplásico , Animales , Proteínas de Unión al Calcio , Proteínas en la Dieta/administración & dosificación , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/metabolismo , Regulación de la Expresión Génica , Humanos , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/metabolismo , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/patología , Lisosomas/efectos de los fármacos , Lisosomas/patología , MAP Quinasa Quinasa 4/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Complejos Multiproteicos/metabolismo , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/patología , Serina-Treonina Quinasas TOR/metabolismo
6.
Best Pract Res Clin Endocrinol Metab ; 29(2): 159-71, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25987170

RESUMEN

Pharmacological research has always focused on developing new therapeutic strategies capable of modifying a disease's natural history and improving patients' quality of life. Despite recent advances within the fields of medicine and biology, some diseases still represent a major challenge for successful therapy. Neuronopathic lysosomal storage disorders, in particular, have high rates of morbidity and mortality and a devastating socio-economic effect. Many of the available therapies, such as enzyme replacement therapy, can reverse the natural history of the disease in peripheral organs but, unfortunately, are still unable to reach the central nervous system effectively because they cannot cross the blood-brain barrier that surrounds and protects the brain. Moreover, many lysosomal storage disorders are characterized by a number of blood-brain barrier dysfunctions, which may further contribute to disease neuropathology and accelerate neuronal cell death. These issues, and their context in the development of new therapeutic strategies, will be discussed in detail in this chapter.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Terapia de Reemplazo Enzimático/métodos , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Humanos , Infusiones Intraventriculares , Infusión Espinal , Inyecciones Intraventriculares , Inyecciones Espinales , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/metabolismo , Chaperonas Moleculares/uso terapéutico , Nanopartículas/uso terapéutico , Proteínas Recombinantes
7.
Swiss Med Wkly ; 144: w14001, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25144910

RESUMEN

The endoplasmic reticulum (ER) is an intracellular compartment dedicated to the synthesis and maturation of secretory and membrane proteins, totalling about 30% of the total eukaryotic cells proteome. The capacity to produce correctly folded polypeptides and to transport them to their correct intra- or extracellular destinations relies on proteostasis networks that regulate and balance the activity of protein folding, quality control, transport and degradation machineries. Nutrient and environmental changes, pathogen infection aging and, more relevant for the topics discussed in this review, mutations that impair attainment of the correct 3D structure of nascent polypeptide chains may compromise the activity of the proteostasis networks with devastating consequences on cells, organs and organisms' homeostasis. Here we present a review of mechanisms regulating folding and quality control of proteins expressed in the ER, and we describe the protein degradation and the ER stress pathways activated by the expression of misfolded proteins in the ER lumen. Finally, we highlight select examples of proteopathies (also known as conformational disorders or protein misfolding diseases) caused by protein misfolding in the ER and/or affecting cellular proteostasis and therapeutic interventions that might alleviate or cure the disease symptoms.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Pliegue de Proteína , Deficiencias en la Proteostasis/metabolismo , Deficiencias en la Proteostasis/terapia , Factor de Transcripción Activador 6/metabolismo , Fibrosis Quística/genética , Fibrosis Quística/metabolismo , Endorribonucleasas/metabolismo , Terapia de Reemplazo Enzimático , Factor 2 Eucariótico de Iniciación/metabolismo , Hemofilia A/genética , Hemofilia A/metabolismo , Humanos , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/genética , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/metabolismo , Chaperonas Moleculares/uso terapéutico , Enfermedades Neurodegenerativas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Deficiencias en la Proteostasis/genética , Transducción de Señal , Respuesta de Proteína Desplegada/efectos de los fármacos , eIF-2 Quinasa/metabolismo
8.
Metab Brain Dis ; 29(1): 1-8, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24307179

RESUMEN

Lysosomal storage diseases are inherited metabolic disorders caused by genetic defects causing deficiency of various lysosomal proteins, and resultant accumulation of non-degraded compounds. They are multisystemic diseases, and in most of them (>70%) severe brain dysfunctions are evident. However, expression of various phenotypes in particular diseases is extremely variable, from non-neuronopathic to severely neurodegenerative in the deficiency of the same enzyme. Although all lysosomal storage diseases are monogenic, clear genotype-phenotype correlations occur only in some cases. In this article, we present an overview on various factors and processes, both general and specific for certain disorders, that can significantly modulate expression of phenotypes in these diseases. On the basis of recent reports describing studies on both animal models and clinical data, we propose a hypothesis that efficiency of production of compounds that cannot be degraded due to enzyme deficiency might be especially important in modulation of phenotypes of patients suffering from lysosomal storage diseases.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/patología , Animales , Conducta/fisiología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Enzimas/genética , Enzimas/fisiología , Interacción Gen-Ambiente , Genotipo , Humanos , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/genética , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/metabolismo , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/psicología , Lisosomas/enzimología , Redes y Vías Metabólicas/genética , Redes y Vías Metabólicas/fisiología , Ratones , Ratones Noqueados , Modelos Biológicos , Neuronas/metabolismo , Penetrancia , Fenotipo
9.
Dev Disabil Res Rev ; 17(3): 226-46, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23798011

RESUMEN

BACKGROUND: The lysosomal-autophagocytic system diseases (LASDs) affect multiple body systems including the central nervous system (CNS). The progressive CNS pathology has its onset at different ages, leading to neurodegeneration and early death. METHODS: Literature review provided insight into the current clinical neurological findings, phenotypic spectrum, and pathogenic mechanisms of LASDs with primary neurological involvement. CONCLUSIONS: CNS signs and symptoms are variable and related to the disease-specific underlying pathogenesis. LAS dysfunction leads to diverse global cellular consequences in the CNS ranging from specific axonal and dendritic abnormalities to neuronal death. Pathogenic mechanisms for disease progression vary from impaired autophagy, massive storage, regional involvement, to end-stage inflammation. Some of these features are also found in adult neurodegenerative disorders, for example, Parkinson's and Alzheimer's diseases. Lack of effective therapies is a significant unmet medical need.


Asunto(s)
Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Trastornos Heredodegenerativos del Sistema Nervioso , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso , Animales , Progresión de la Enfermedad , Trastornos Heredodegenerativos del Sistema Nervioso/diagnóstico , Trastornos Heredodegenerativos del Sistema Nervioso/metabolismo , Trastornos Heredodegenerativos del Sistema Nervioso/patología , Humanos , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/diagnóstico , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/metabolismo , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/patología
10.
Dev Disabil Res Rev ; 17(3): 269-82, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23798015

RESUMEN

Lipid storage diseases, also known as the lipidoses, are a group of inherited metabolic disorders in which there is lipid accumulation in various cell types, including the central nervous system, because of the deficiency of a variety of enzymes. Over time, excessive storage can cause permanent cellular and tissue damage. The brain is particularly sensitive to lipid storage as the contents of the central nervous system must occupy uniform volume, and any increases in fluids or deposits will lead to pressure changes and interference with normal neurological function. In addition to primary lipid storage diseases, lysosomal storage diseases include the mucolipidoses (in which excessive amounts of lipids and carbohydrates are stored in the cells and tissues) and the mucopolysaccharidoses (in which abnormal glycosylated proteins cannot be broken down because of enzyme deficiency). Neurological dysfunction can be a manifestation of these conditions due to substrate deposition as well. This review will explore the modalities of neuroimaging that may have particular relevance to the study of the lipid storage disorder and their impact on elucidating aspects of brain function. First, the techniques will be reviewed. Next, the neuropathology of a few selected lipid storage disorders will be reviewed and the use of neuroimaging to define disease characteristics discussed in further detail. Examples of studies using these techniques will be discussed in the text.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso , Imagen por Resonancia Magnética , Neuroimagen , Encéfalo/fisiopatología , Imagen de Difusión Tensora , Humanos , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/diagnóstico , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/metabolismo , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/patología , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/fisiopatología , Espectroscopía de Resonancia Magnética/métodos , Lipofuscinosis Ceroideas Neuronales/diagnóstico , Trastorno Peroxisomal/diagnóstico , Protones
11.
Handb Clin Neurol ; 113: 1695-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23622390

RESUMEN

This chapter summarizes our current knowledge of lysosomes and lysosomal proteins referring to recent reviews, general schemes for degradation of substrates, and various causes of lysosomal storage diseases (LSDs). It then discusses the main principles for laboratory diagnosis. Initial screening by study of accumulated substrates in urine is helpful for mucopolysaccharidoses and oligosaccharidoses. A majority of LSDs result from the deficient activity of one acid hydrolase (in some diseases, several). Establishment of the diagnosis in this group of disorders is based on the measurement of the particular enzymic activity. Pseudodeficiencies are a possible source of error. For defects in lysosomal membrane transporters such as cystinosin or sialin, study of substrate accumulation in readily available cells/fluids is still the method of choice. Demonstration of a metabolic block in living cells is rarely used today, except for Niemann-Pick C disease. For primary diagnosis of patients, molecular genetic testing is necessary when no functional tests exist (e.g., many ceroid lipofuscinoses, Danon disease) and it is the preferred strategy when functional tests are too elaborate. Genotyping patients already diagnosed by biochemical methods is, however, essential for genetic counseling in the family; it may also be useful for optimal management.


Asunto(s)
Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/diagnóstico , Lisosomas/genética , Asesoramiento Genético , Pruebas Genéticas , Genotipo , Humanos , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/genética , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/metabolismo , Lisosomas/metabolismo
12.
J Inherit Metab Dis ; 36(3): 437-49, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23609350

RESUMEN

The neurons of the central nervous system (CNS) require precise control of their bathing microenvironment for optimal function, and an important element in this control is the blood-brain barrier (BBB). The BBB is formed by the endothelial cells lining the brain microvessels, under the inductive influence of neighbouring cell types within the 'neurovascular unit' (NVU) including astrocytes and pericytes. The endothelium forms the major interface between the blood and the CNS, and by a combination of low passive permeability and presence of specific transport systems, enzymes and receptors regulates molecular and cellular traffic across the barrier layer. A number of methods and models are available for examining BBB permeation in vivo and in vitro, and can give valuable information on the mechanisms by which therapeutic agents and constructs permeate, ways to optimize permeation, and implications for drug discovery, delivery and toxicity. For treating lysosomal storage diseases (LSDs), models can be included that mimic aspects of the disease, including genetically-modified animals, and in vitro models can be used to examine the effects of cells of the NVU on the BBB under pathological conditions. For testing CNS drug delivery, several in vitro models now provide reliable prediction of penetration of drugs including large molecules and artificial constructs with promising potential in treating LSDs. For many of these diseases it is still not clear how best to deliver appropriate drugs to the CNS, and a concerted approach using a variety of models and methods can give critical insights and indicate practical solutions.


Asunto(s)
Barrera Hematoencefálica/anatomía & histología , Barrera Hematoencefálica/fisiología , Fármacos del Sistema Nervioso Central/administración & dosificación , Sistema Nervioso Central/metabolismo , Animales , Transporte Biológico/fisiología , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/metabolismo , Permeabilidad de la Membrana Celular/fisiología , Sistema Nervioso Central/efectos de los fármacos , Sistemas de Liberación de Medicamentos , Descubrimiento de Drogas/métodos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales/fisiología , Homeostasis/fisiología , Humanos , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/tratamiento farmacológico , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/metabolismo , Modelos Biológicos
13.
Biochim Biophys Acta ; 1831(3): 602-11, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22960355

RESUMEN

There is a strong association between lysosome enzyme deficiencies and monogenic disorders resulting in lysosomal storage disease. Of the more than 75 characterized lysosomal proteins, two thirds are directly linked to inherited diseases of metabolism. Only one lysosomal storage disease, Niemann-Pick disease, is associated with impaired phospholipid metabolism. However, other phospholipases are found in the lysosome but remain poorly characterized. A recent exception is lysosomal phospholipase A2 (group XV phospholipase A2). Although no inherited disorder of lysosomal phospholipid metabolism has yet been associated with a loss of function of this lipase, this enzyme may be a target for an acquired form of lysosomal storage, drug induced phospholipidosis. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.


Asunto(s)
Aciltransferasas/metabolismo , Lipólisis/efectos de los fármacos , Lisofosfolípidos/metabolismo , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/metabolismo , Monoglicéridos/metabolismo , Fosfolipasas A2/metabolismo , Proteínas/metabolismo , Xenobióticos/efectos adversos , Secuencia de Aminoácidos , Animales , Humanos , Cinética , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/etiología , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/patología , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones , Datos de Secuencia Molecular , Enfermedades de Niemann-Pick/metabolismo , Enfermedades de Niemann-Pick/patología , Proteínas/agonistas
14.
Proc Natl Acad Sci U S A ; 108(42): 17521-6, 2011 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-21987827

RESUMEN

Synaptic terminals are known to expand and contract throughout an animal's life. The physiological constraints and demands that regulate appropriate synaptic growth and connectivity are currently poorly understood. In previous work, we identified a Drosophila model of lysosomal storage disease (LSD), spinster (spin), with larval neuromuscular synapse overgrowth. Here we identify a reactive oxygen species (ROS) burden in spin that may be attributable to previously identified lipofuscin deposition and lysosomal dysfunction, a cellular hallmark of LSD. Reducing ROS in spin mutants rescues synaptic overgrowth and electrophysiological deficits. Synapse overgrowth was also observed in mutants defective for protection from ROS and animals subjected to excessive ROS. ROS are known to stimulate JNK and fos signaling. Furthermore, JNK and fos in turn are known potent activators of synapse growth and function. Inhibiting JNK and fos activity in spin rescues synapse overgrowth and electrophysiological deficits. Similarly, inhibiting JNK, fos, and jun activity in animals with excessive oxidative stress rescues the overgrowth phenotype. These data suggest that ROS, via activation of the JNK signaling pathway, are a major regulator of synapse overgrowth. In LSD, increased autophagy contributes to lysosomal storage and, presumably, elevated levels of oxidative stress. In support of this suggestion, we report here that impaired autophagy function reverses synaptic overgrowth in spin. Our data describe a previously unexplored link between oxidative stress and synapse overgrowth via the JNK signaling pathway.


Asunto(s)
Drosophila/crecimiento & desarrollo , Drosophila/metabolismo , Unión Neuromuscular/crecimiento & desarrollo , Unión Neuromuscular/metabolismo , Animales , Animales Modificados Genéticamente , Autofagia/genética , Autofagia/fisiología , Modelos Animales de Enfermedad , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Genes de Insecto , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/genética , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/metabolismo , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/patología , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Neurológicos , Mutación , Estrés Oxidativo , Factor de Transcripción AP-1/metabolismo
15.
J Neurosci ; 28(46): 11778-84, 2008 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-19005039

RESUMEN

At the 2008 Annual Meeting of the Society for Neuroscience, a Mini-Symposium entitled "Contributions to TRP Channels to Neurological Disease" included talks from six heads of newly established laboratories, each with a unique research focus, model system, and set of experimental tools. Some of the questions addressed in these talks include the following. What is the role of transient receptor potential (TRP) channels in pain perception? How do normally functioning TRP channels contribute to cell death pathways? What are the characteristics of TRPpathies, disease states that result from overactive or underactive TRP channels? How are TRP channels regulated by signal transduction cascades? This review summarizes recent results from those laboratories and provides six perspectives on the subject of TRP channels and disease.


Asunto(s)
Enfermedades del Sistema Nervioso/metabolismo , Sistema Nervioso/metabolismo , Dolor/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Animales , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/fisiopatología , Sordera/genética , Sordera/metabolismo , Sordera/fisiopatología , Predisposición Genética a la Enfermedad/genética , Humanos , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/genética , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/metabolismo , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/fisiopatología , Degeneración Nerviosa/genética , Degeneración Nerviosa/metabolismo , Degeneración Nerviosa/fisiopatología , Sistema Nervioso/fisiopatología , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/fisiopatología , Dolor/genética , Dolor/fisiopatología , Canales de Potencial de Receptor Transitorio/genética
16.
Biochem Biophys Res Commun ; 377(3): 843-6, 2008 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-18952067

RESUMEN

A subgroup of neutral lipid storage disease has been recently associated with myopathy (NLSDM) and attributed to mutations in the gene (PNPLA2) encoding an adipose triglyceride lipase involved in the degradation of intracellular triglycerides. Five NLSDM patients have been described thus far and we reported three additional patients. A 44-year old Iranian woman and two Italian brothers, aged 40 and 35, presented with exercise intolerance and proximal limb weakness, elevated CK levels, and Jordan's anomaly. Muscle biopsies showed marked neutral lipid accumulation in all patients. The 10 exons and the intron-exon junctions of the PNPLA2 gene were sequenced. Two novel homozygous mutations in exon 5 of PNPLA2 gene were found (c.695delT and c.542delAC). Both mutations resulted in frameshifts leading to premature stop codons (p.L255X and p.I212X, respectively). These mutations predict a truncated PNPLA2 protein lacking the C-terminal hydrophobic domain. These findings indicate that NLSDM is rare, but genetically heterogeneous.


Asunto(s)
Mutación del Sistema de Lectura , Lipasa/genética , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/genética , Enfermedades Musculares/genética , Adulto , Biopsia , Exones/genética , Femenino , Humanos , Lipasa/metabolismo , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/metabolismo , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/patología , Masculino , Persona de Mediana Edad , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología
17.
Subcell Biochem ; 49: 441-67, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18751922

RESUMEN

Glycosphingolipids, comprising a ceramide lipid backbone linked to one/more saccharides, are particularly abundant on the outer leaflet of the eukaryotic plasma membrane and play a role in a wide variety of essential cellular processes. Biosynthesis and subsequently degradation of these lipids is tightly regulated via the involvement of numerous enzymes, and failure of an enzyme to participate in the metabolism results in storage of the enzyme's substrate, giving rise to a lysosomal storage disease. The characteristics, severity and onset of the disease are dependent on the enzyme deficient and the residual activity. Most lysosomal storage disorders found thus far are caused by a defect in the catabolic activity of a hydrolase, causing progressive accumulation of its substrate, predominantly in the lysosome. Storage of gangliosides, sialic acid containing glycosphingolipids, mostly found in the central nervous system, is a hallmark of neuronopathic forms of the disease, that include GM1 and GM2 gangliosidoses, Gaucher type II and III and Niemann-Pick C. Models for these diseases have provided valuable insight into the disease pathology and potential treatment methods.Treatment of these rare but severe disorders proves challenging due to restricted access of therapeutics through the blood-brain barrier. However, recent advances in enzyme replacement, bone marrow transplantation, gene transfer, substrate reduction and chaperon-mediated therapy provide great potential in treating these devastating disorders.


Asunto(s)
Glicoesfingolípidos/metabolismo , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/metabolismo , Animales , Trasplante de Médula Ósea , Gangliosidosis GM2/metabolismo , Gangliosidosis GM1/metabolismo , Enfermedad de Gaucher/metabolismo , Terapia Genética , Humanos , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/terapia , Modelos Animales , Chaperonas Moleculares/uso terapéutico , Enfermedades de Niemann-Pick/metabolismo , Sialiltransferasas/deficiencia
18.
Hum Mol Genet ; 17(4): 469-77, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17989065

RESUMEN

It is estimated that more than 40 different lysosomal storage disorders (LSDs) cumulatively affect one in 5000 live births, and in the majority of the LSDs, neurodegeneration is a prominent feature. Neuronal ceroid lipofuscinoses (NCLs), as a group, represent one of the most common (one in 12,500 births) neurodegenerative LSDs. The infantile NCL (INCL) is the most devastating neurodegenerative LSD, which is caused by inactivating mutations in the palmitoyl-protein thioesterase-1 (PPT1) gene. We previously reported that neuronal death by apoptosis in INCL, and in the PPT1-knockout (PPT1-KO) mice that mimic INCL, is at least in part caused by endoplasmic reticulum (ER) and oxidative stresses. In the present study, we sought to determine whether ER and oxidative stresses are unique manifestations of INCL or they are common to both neurodegenerative and non-neurodegenerative LSDs. Unexpectedly, we found that ER and oxidative stresses are common manifestations in cells from both neurodegenerative and non-neurodegenerative LSDs. Moreover, all LSD cells studied show extraordinary sensitivity to brefeldin-A-induced apoptosis, which suggests pre-existing ER stress conditions. Further, we uncovered that chemical disruption of lysosomal homeostasis in normal cells causes ER stress, suggesting a cross-talk between the lysosomes and the ER. Most importantly, we found that chemical chaperones that alleviate ER and oxidative stresses are also cytoprotective in all forms of LSDs studied. We propose that ER and oxidative stresses are common mediators of apoptosis in both neurodegenerative and non-neurodegenerative LSDs and suggest that the beneficial effects of chemical/pharmacological chaperones are exerted, at least in part, by alleviating these stress conditions.


Asunto(s)
Apoptosis/fisiología , Retículo Endoplásmico/metabolismo , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/metabolismo , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/patología , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/patología , Apoptosis/efectos de los fármacos , Calnexina/genética , Catalasa/genética , Células Cultivadas , Proteínas de Unión al ADN/genética , Retículo Endoplásmico/efectos de los fármacos , Chaperón BiP del Retículo Endoplásmico , Gangliosidosis GM1/genética , Gangliosidosis GM1/metabolismo , Gangliosidosis GM1/patología , Marcadores Genéticos , Glutarredoxinas/genética , Proteínas de Choque Térmico/genética , Humanos , Enfermedades por Almacenamiento Lisosomal/tratamiento farmacológico , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/tratamiento farmacológico , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/genética , Lisosomas/metabolismo , Metilaminas/farmacología , ATPasas de Translocación de Protón Mitocondriales/genética , Chaperonas Moleculares/genética , Lipofuscinosis Ceroideas Neuronales/tratamiento farmacológico , Lipofuscinosis Ceroideas Neuronales/genética , Lipofuscinosis Ceroideas Neuronales/metabolismo , Lipofuscinosis Ceroideas Neuronales/patología , Proteínas Nucleares/genética , Estrés Oxidativo/genética , Pliegue de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Transcripción del Factor Regulador X , Superóxido Dismutasa/genética , Ácido Tauroquenodesoxicólico/farmacología , Factores de Transcripción
19.
Acta Neuropathol ; 114(5): 481-9, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17653558

RESUMEN

A number of the lysosomal storage diseases that have now been characterized are associated with intra-lysosomal accumulation of lipids, caused by defective lysosomal enzymes. We have previously reported neuronal accumulation of both alpha- and beta-synucleins in brain tissue of a GM2 gangliosidosis mouse model. Although alpha-synuclein has been implicated in several neurodegenerative disorders including Parkinson's disease, dementia with Lewy bodies and multiple system atrophy, its functions remain largely unclear. In our present study, we have examined a cohort of human lipidosis cases, including Sandhoff disease, Tay-Sachs disease, metachromatic leukodystrophy, beta-galactosialidosis and adrenoleukodystrophy, for the expression of alpha- and beta-synucleins and the associated lipid storage levels. The accumulation of alpha-synuclein was found in brain tissue in not only cases of lysosomal storage diseases, but also in instances of adrenoleukodystrophy, which is a peroxisomal disease. alpha-synuclein was detected in both neurons and glial cells of patients with these two disorders, although its distribution was found to be disease-dependent. In addition, alpha-synuclein-positive neurons were also found to be NeuN-positive, whereas NeuN-negative neurons did not show any accumulation of this protein. By comparison, the accumulation of beta-synuclein was detectable only in the pons of Sandhoff disease cases. This differential accumulation of alpha- and beta-synucleins in human lipidoses may be related to functional differences between these two proteins. In addition, the accumulation of alpha-synuclein may also be a condition that is common to lysosomal storage diseases and adrenoleukodystrophies that show an enhanced expression of this protein upon the elevation of stored lipids.


Asunto(s)
Encefalopatías Metabólicas Innatas/metabolismo , Encéfalo/metabolismo , Lipidosis/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Sinucleínas/metabolismo , Adulto , Antígenos Nucleares/metabolismo , Encéfalo/patología , Encéfalo/fisiopatología , Encefalopatías Metabólicas Innatas/patología , Encefalopatías Metabólicas Innatas/fisiopatología , Preescolar , Estudios de Cohortes , Humanos , Metabolismo de los Lípidos/genética , Lipidosis/patología , Lipidosis/fisiopatología , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/metabolismo , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/patología , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/fisiopatología , Masculino , Persona de Mediana Edad , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/patología , Neuronas/patología , Trastorno Peroxisomal/metabolismo , Trastorno Peroxisomal/patología , Trastorno Peroxisomal/fisiopatología , Enfermedad de Sandhoff/metabolismo , Enfermedad de Sandhoff/patología , Enfermedad de Sandhoff/fisiopatología , Sinucleínas/análisis , alfa-Sinucleína/metabolismo , Sinucleína beta/metabolismo
20.
J Biol Chem ; 282(39): 28904-28914, 2007 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-17652097

RESUMEN

Two missense mutations (P123H and V70M) of beta-synuclein (beta-syn), the homologue of alpha-syn, have been recently identified in dementia with Lewy bodies. However, the mechanism through which these mutations influence the pathogenesis of dementia with Lewy bodies is unclear. To investigate the role of the beta-syn mutations in neurodegeneration, each mutant was stably transfected into B103 neuroblastoma cells. Cells overexpressing mutated beta-syn had eosinophilic cytoplasmic inclusion bodies immunopositive for mutant beta-syn, and electron microscopy revealed that these cells were abundant in various cytoplasmic membranous inclusions resembling the histopathology of lysosomal storage disease. Consistent with these findings, the inclusion bodies were immunopositive for lysosomal markers, including cathepsin B, LAMP-2, GM2 ganglioside, and ATP13A2, which has recently been linked to PARK9. Notably, formation of these lysosomal inclusions was greatly stimulated by co-expression of alpha-syn, was dependent on the phosphorylation of alpha-syn at Ser-129, and was more efficient with the A53T familial mutant of alpha-syn compared with wild type. Furthermore, the inclusion formation in cells overexpressing mutant beta-syn and transfected with alpha-syn was significantly suppressed by treatment with autophagy-lysosomal inhibitors, which were associated with impaired clearance of syn proteins and enhanced apoptosis, indicating that formation of lysosomal inclusions might be protective. Collectively, the results demonstrated unambiguously that overexpression of beta-syn mutants (P123H and V70M) in neuroblastoma cells results in an enhanced lysosomal pathology. We suggest that these missense mutations of beta-syn might play a causative role in stimulating neurodegeneration.


Asunto(s)
Cuerpos de Lewy/metabolismo , Cuerpos de Lewy/ultraestructura , Enfermedad por Cuerpos de Lewy/metabolismo , Enfermedad por Cuerpos de Lewy/patología , Lisosomas/metabolismo , Lisosomas/ultraestructura , Sinucleína beta/metabolismo , Animales , Apoptosis/genética , Autofagia/genética , Biomarcadores/metabolismo , Línea Celular , Línea Celular Tumoral , Humanos , Cuerpos de Lewy/genética , Enfermedad por Cuerpos de Lewy/genética , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/genética , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/metabolismo , Enfermedades por Almacenamiento Lisosomal del Sistema Nervioso/patología , Lisosomas/genética , Microscopía Electrónica de Transmisión , Proteínas/genética , Proteínas/metabolismo , Ratas , Homología de Secuencia de Aminoácido , Sinucleína beta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA