Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Curr Issues Mol Biol ; 43(2): 978-995, 2021 Aug 26.
Article En | MEDLINE | ID: mdl-34563039

This paper describes the microbial community composition and genes for key metabolic genes, particularly the nitrogen fixation of the mucous-enveloped gut digesta of green (Lytechinus variegatus) and purple (Strongylocentrotus purpuratus) sea urchins by using the shotgun metagenomics approach. Both green and purple urchins showed high relative abundances of Gammaproteobacteria at 30% and 60%, respectively. However, Alphaproteobacteria in the green urchins had higher relative abundances (20%) than the purple urchins (2%). At the genus level, Vibrio was dominant in both green (~9%) and purple (~10%) urchins, whereas Psychromonas was prevalent only in purple urchins (~24%). An enrichment of Roseobacter and Ruegeria was found in the green urchins, whereas purple urchins revealed a higher abundance of Shewanella, Photobacterium, and Bacteroides (q-value < 0.01). Analysis of key metabolic genes at the KEGG-Level-2 categories revealed genes for amino acids (~20%), nucleotides (~5%), cofactors and vitamins (~6%), energy (~5%), carbohydrates (~13%) metabolisms, and an abundance of genes for assimilatory nitrogen reduction pathway in both urchins. Overall, the results from this study revealed the differences in the microbial community and genes designated for the metabolic processes in the nutrient-rich sea urchin gut digesta, suggesting their likely importance to the host and their environment.


Bacteria/genetics , Computational Biology , Gastrointestinal Microbiome/genetics , Lytechinus/microbiology , Metagenomics , Strongylocentrotus purpuratus/microbiology , Animals , Bacteria/classification , Bacteria/metabolism , High-Throughput Nucleotide Sequencing , Sequence Analysis, DNA
2.
Fish Shellfish Immunol ; 117: 253-261, 2021 Oct.
Article En | MEDLINE | ID: mdl-34418557

The sea urchin Lytechinus variegatus is considered a good candidate for aquaculture, but bacterial diseases are a major challenge in culture conditions. The innate immunological defenses of L. variegatus to bacterial challenges were assessed through hematology parameters, in vitro phagocytosis, lysozyme activity and total plasma protein concentrations in cell-free coelomic fluid. Adult sea urchins were inoculated with Microccocus lysodeikticus, Escherichia coli and Vibrio parahaemolyticus in the cavity coelomic. Filtrated and sterile seawater (FSW) injected and non-injected sea urchins were used as control groups. Righting time, external aspects and behavior of sea urchins were evaluated. Twenty-four hours post-inoculation, we found an increase in the population of colorless spherule cells (CLS), phagocytosis, and humoral responses in sea urchins challenged by bacterial inoculations. Righting time was not affected by the treatments and apparent external signs of disease were not observed at least during 96h post-inoculation. The immunological system of L. variegatus quickly eliminated pathogenic microorganisms. CLS and lysozyme activity cooperate in the immune defenses of L. variegatus, showing an extraordinary efficiency for adjusting the immune defenses under stress caused by microbes. We recommend that the cellular and humoral markers serve as routine tests to monitor health status in sea urchins.


Lytechinus/immunology , Animals , Escherichia coli , Escherichia coli Infections/immunology , Escherichia coli Infections/veterinary , Gram-Positive Bacterial Infections/immunology , Gram-Positive Bacterial Infections/veterinary , Immunity, Innate , Lytechinus/cytology , Lytechinus/microbiology , Micrococcus , Muramidase/immunology , Phagocytosis , Vibrio Infections/immunology , Vibrio Infections/veterinary , Vibrio parahaemolyticus
3.
Proc Biol Sci ; 285(1881)2018 06 27.
Article En | MEDLINE | ID: mdl-29925614

The microbiome of sea urchins plays a role in maintaining digestive health and innate immunity. Here, we investigated the effects of long-term (90 day) exposure to elevated seawater temperatures on the microbiome of the common, subtropical sea urchin Lytechinus variegatus The community composition and diversity of microbes varied according to the type of sample collected from the sea urchin (seawater, feed, intestines, coelomic fluid, digested pellet and faeces), with the lowest microbial diversity (predominately the order Campylobacterales) located in the intestinal tissue. Sea urchins exposed to near-future seawater temperatures maintained the community structure and diversity of microbes associated with their tissues. However, marginal, non-significant shifts in microbial community structure with elevated temperature resulted in significant changes in predicted metagenomic functions such as membrane transport and amino acid and carbohydrate metabolism. The predicted changes in key metabolic categories suggest that near-future climate-induced increases in seawater temperature could shift microbial community function and impact sea urchin digestive and immune physiology.


Climate Change , Hot Temperature/adverse effects , Lytechinus/microbiology , Microbiota , Seawater/analysis , Animals , Oceans and Seas , Random Allocation
4.
FEMS Microbiol Ecol ; 92(9)2016 09.
Article En | MEDLINE | ID: mdl-27368709

In this paper, we describe the microbial composition and their predictive metabolic profile in the sea urchin Lytechinus variegatus gut ecosystem along with samples from its habitat by using NextGen amplicon sequencing and downstream bioinformatics analyses. The microbial communities of the gut tissue revealed a near-exclusive abundance of Campylobacteraceae, whereas the pharynx tissue consisted of Tenericutes, followed by Gamma-, Alpha- and Epsilonproteobacteria at approximately equal capacities. The gut digesta and egested fecal pellets exhibited a microbial profile comprised of Gammaproteobacteria, mainly Vibrio, and Bacteroidetes. Both the seagrass and surrounding sea water revealed Alpha- and Betaproteobacteria. Bray-Curtis distances of microbial communities indicated a clustering profile with low intrasample variation. Predictive metagenomics performed on the microbial communities revealed that the gut tissue had high relative abundances of metabolisms assigned to the KEGG-Level-2 designation of energy metabolisms compared to the gut digesta, which had higher carbohydrate, amino acid and lipid metabolisms. Overall, the results of this study elaborate the spatial distribution of microbial communities in the gut ecosystem of L. variegatus, and specifically a selective attribute for Campylobacteraceae in the gut tissue. Also, the predictive functional significance of bacterial communities in uniquely compartmentalized gut ecosystems of L. variegatus has been described.


Gastrointestinal Microbiome , Lytechinus/microbiology , Animals , Ecosystem , Epsilonproteobacteria/isolation & purification , Epsilonproteobacteria/metabolism , Gammaproteobacteria/isolation & purification , Gammaproteobacteria/metabolism , Metabolome , Metagenomics , Phylogeny , Seawater/microbiology
5.
Article En | MEDLINE | ID: mdl-19444992

The sea urchin Lytechinus variegatus can survive chronic exposure to sodium phosphate (inorganic phosphate) concentrations as high as 3.2 mg L-1, and triethyl phosphate (organic phosphate) concentrations of 1000 mg L-1. However, chronic exposure to low (0.8 mg L-1 inorganic and 10 mg L-1 organic phosphate), medium (1.6 mg L-1 inorganic and 100 mg L-1 organic phosphate) or high (3.2 mg L-1 inorganic and 1000 mg L-1 organic phosphate) sublethal concentrations of these phosphates inhibit bactericidal clearance of the marine bacterium Vibrio sp. Bacteria were exposed to coelomic fluid collected from individuals maintained in either artificial seawater, or three concentrations of either inorganic phosphate or organic phosphate. Sterile marine broth, natural seawater and cell free coelomic fluid (cfCF) were employed as controls. Bacterial survival indices were measured at 0, 24 and 48 h periods once a week for four weeks. Bacteria were readily eliminated from the whole coelomic fluid (wCF) of individuals maintained in artificial seawater. Individuals maintained in inorganic phosphates were able to clear bacteria following a two week exposure period, while individuals maintained at even low concentrations of organic phosphates failed to clear all bacteria from their coelomic fluid. Exposure to phosphates represses antimicrobial defenses and may ultimately compromise survival of L. variegatus in the nearshore environment.


Body Fluids/drug effects , Body Fluids/microbiology , Lytechinus/drug effects , Lytechinus/microbiology , Organophosphates/adverse effects , Phosphates/adverse effects , Vibrio/drug effects , Vibrio/growth & development , Animals , Echinodermata/drug effects , Echinodermata/microbiology , Environmental Exposure/adverse effects , Organophosphates/administration & dosage , Phosphates/administration & dosage , Sea Urchins/drug effects , Sea Urchins/microbiology
...