Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.353
1.
Tumour Biol ; 46(1): 1-11, 2024.
Article En | MEDLINE | ID: mdl-38728194

BACKGROUND: It is well established that most colorectal carcinomas arise from conventional adenomas through the adenoma-carcinoma sequence (ACS) model. mitogen-activated protein kinases (MAPKs) pathway has been reported as a crucial player in tumorigenesis. The MAPK signaling pathway is activated by different extracellular signals involving the "mitogen-activated/extracellular signal-regulated kinase 1 (MEK1)", and this induces the expression of genes involved in proliferation and cellular transformation. Diaphanous-related formin-3 (DIAPH3) acts as a potential metastasis regulator through inhibiting the cellular transition to amoeboid behavior in different cancer types. OBJECTIVE: The aim of the study was to investigate the pattern of immunohistochemical expression of MEK1 and DIAPH3 in colorectal adenoma (CRA) and corresponding colorectal carcinoma (CRC) specimens. METHODS: The immunohistochemical expression of DIAPH3 and MEK1 was examined in 43 cases of CRC and their associated adenomas using tissue microarray technique. RESULTS: MEK1 was overexpressed in 23 CRC cases (53.5%) and in 20 CRA cases (46.5%). DIAPH3 was overexpressed in 11 CRA cases (about 29%) which were significantly lower than CRC (22 cases; 58%) (P = 0.011). Both MEK1 and DIAPH3 overexpression were significantly correlated in CRC (P = 0.009) and CRA cases (P = 0.002). Tumors with MEK1 overexpression had a significantly higher tumor grade (P = 0.050) and perineural invasion (P = 0.017). CONCLUSIONS: Both MEK1 and DIAPH3 are overexpressed across colorectal ACS with strong correlation between them. This co- expression suggests a possible synergistic effect of MEK1 and DIAPH-3 in colorectal ACS. Further large-scale studies are required to investigate the potential functional aspects of MEK1 and DIAPH3 in ACS and their involvement in tumor initiation and the metastatic process.


Adenoma , Colorectal Neoplasms , Formins , MAP Kinase Kinase 1 , Humans , Colorectal Neoplasms/pathology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Formins/genetics , Formins/metabolism , Adenoma/pathology , Adenoma/genetics , Adenoma/metabolism , Female , Male , Middle Aged , Aged , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 1/metabolism , Adult , Immunohistochemistry , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Carcinoma/pathology , Carcinoma/genetics , Carcinoma/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics
2.
Nat Commun ; 15(1): 3636, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710699

Polypharmacology drugs-compounds that inhibit multiple proteins-have many applications but are difficult to design. To address this challenge we have developed POLYGON, an approach to polypharmacology based on generative reinforcement learning. POLYGON embeds chemical space and iteratively samples it to generate new molecular structures; these are rewarded by the predicted ability to inhibit each of two protein targets and by drug-likeness and ease-of-synthesis. In binding data for >100,000 compounds, POLYGON correctly recognizes polypharmacology interactions with 82.5% accuracy. We subsequently generate de-novo compounds targeting ten pairs of proteins with documented co-dependency. Docking analysis indicates that top structures bind their two targets with low free energies and similar 3D orientations to canonical single-protein inhibitors. We synthesize 32 compounds targeting MEK1 and mTOR, with most yielding >50% reduction in each protein activity and in cell viability when dosed at 1-10 µM. These results support the potential of generative modeling for polypharmacology.


Molecular Docking Simulation , Humans , TOR Serine-Threonine Kinases/metabolism , Polypharmacology , MAP Kinase Kinase 1/antagonists & inhibitors , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Binding , Drug Discovery/methods , Drug Design , Cell Survival/drug effects
3.
Sci Rep ; 14(1): 9550, 2024 04 25.
Article En | MEDLINE | ID: mdl-38664461

DNA double-strand breaks (DSBs) activate DNA damage responses (DDRs) in both mitotic and meiotic cells. A single-stranded DNA (ssDNA) binding protein, Replication protein-A (RPA) binds to the ssDNA formed at DSBs to activate ATR/Mec1 kinase for the response. Meiotic DSBs induce homologous recombination monitored by a meiotic DDR called the recombination checkpoint that blocks the pachytene exit in meiotic prophase I. In this study, we further characterized the essential role of RPA in the maintenance of the recombination checkpoint during Saccharomyces cerevisiae meiosis. The depletion of an RPA subunit, Rfa1, in a recombination-defective dmc1 mutant, fully alleviates the pachytene arrest with the persistent unrepaired DSBs. RPA depletion decreases the activity of a meiosis-specific CHK2 homolog, Mek1 kinase, which in turn activates the Ndt80 transcriptional regulator for pachytene exit. These support the idea that RPA is a sensor of ssDNAs for the activation of meiotic DDR. Rfa1 depletion also accelerates the prophase I delay in the zip1 mutant defective in both chromosome synapsis and the recombination, consistent with the notion that the accumulation of ssDNAs rather than defective synapsis triggers prophase I delay in the zip1 mutant.


DNA Breaks, Double-Stranded , Meiosis , Replication Protein A , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcription Factors , Replication Protein A/metabolism , Replication Protein A/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Cycle Proteins/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Recombination, Genetic , Homologous Recombination , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/genetics , DNA, Single-Stranded/metabolism , DNA, Single-Stranded/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics
4.
Aging (Albany NY) ; 16(5): 4224-4235, 2024 Feb 29.
Article En | MEDLINE | ID: mdl-38431286

Alcoholic liver disease (ALD) serves as the leading cause of chronic liver diseases-related morbidity and mortality, which threatens the life of millions of patients in the world. However, the molecular mechanisms underlying ALD progression remain unclear. Here, we applied microarray analysis and experimental approaches to identify miRNAs and related regulatory signaling that associated with ALD. Microarray analysis identified that the expression of miR-99b was elevated in the ALD mouse model. The AML-12 cells were treated with EtOH and the expression of miR-99b was enhanced in the cells. The expression of miR-99b was positively correlated with ALT levels in the ALD mice. The microarray analysis identified the abnormally expressed mRNAs in ALD mice and the overlap analysis was performed with based on the differently expressed mRNAs and the transcriptional factors of miR-99b, in which STAT1 was identified. The elevated expression of STAT1 was validated in ALD mice. Meanwhile, the treatment of EtOH induced the expression of STAT1 in the AML-12 cells. The expression of STAT1 was positively correlated with ALT levels in the ALD mice. The positive correlation of STAT1 and miR-99b expression was identified in bioinformatics analysis and ALD mice. The expression of miR-99b and pri-miR-99b was promoted by the overexpression of STAT1 in AML-12 cells. ChIP analysis confirmed the enrichment of STAT1 on miR-99b promoter in AML-12 cells. Next, we found that the expression of mitogen-activated protein kinase kinase 1 (MAP2K1) was negatively associated with miR-99b. The expression of MAP2K1 was downregulated in ALD mice. Consistently, the expression of MAP2K1 was reduced by the treatment of EtOH in AML-12 cells. The expression of MAP2K1 was negative correlated with ALT levels in the ALD mice. We identified the binding site of MAP2K1 and miR-99b. Meanwhile, the treatment of miR-99b mimic repressed the luciferase activity of MAP2K1 in AML-12 cells. The expression of MAP2K1 was suppressed by miR-99b in the cells. We observed that the expression of MAP2K1 was inhibited by the overexpression of STAT1 in AML-12 cells. Meanwhile, the apoptosis of AML-12 cells was induced by the treatment of EtOH, while miR-99b mimic promoted but the overexpression of MAP2K1 attenuated the effect of EtOH in the cells. In conclusion, we identified the correlation and effect of STAT1, miR-99b, and MAP2K1 in ALD mouse model and hepatocyte. STAT1, miR-99b, and MAP2K1 may serve as potential therapeutic target of ALD.


Leukemia, Myeloid, Acute , Liver Diseases, Alcoholic , MicroRNAs , Humans , Animals , Mice , MAP Kinase Kinase 1/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Hepatocytes/metabolism , Liver Diseases, Alcoholic/genetics , Liver Diseases, Alcoholic/metabolism , Ethanol , Leukemia, Myeloid, Acute/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism
5.
Transplantation ; 108(5): 1127-1141, 2024 May 01.
Article En | MEDLINE | ID: mdl-38238904

BACKGROUND: Emerging evidence has highlighted the role of macrophages in heart transplant rejection (HTR). However, the molecular signals modulating the immunometabolic phenotype of allograft-infiltrating macrophages (AIMs) during HTR remain unknown. METHODS: We analyzed single-cell RNA sequencing data from cardiac graft-infiltrating immunocytes to characterize the activation patterns and metabolic features of AIMs. We used flow cytometry to determine iNOS and PKM2 expression and MEK/ERK signaling activation levels in AIMs. We then generated macrophage-specific Mek1/2 knockout mice to determine the role of the MEK1/2-PKM2 pathway in the proinflammatory phenotype and glycolytic capacity of AIMs during HTR. RESULTS: Single-cell RNA sequencing analysis showed that AIMs had a significantly elevated proinflammatory and glycolytic phenotype. Flow cytometry analysis verified that iNOS and PKM2 expressions were significantly upregulated in AIMs. Moreover, MEK/ERK signaling was activated in AIMs and positively correlated with proinflammatory and glycolytic signatures. Macrophage-specific Mek1/2 deletion significantly protected chronic cardiac allograft rejection and inhibited the proinflammatory phenotype and glycolytic capacity of AIMs. Mek1/2 ablation also reduced the proinflammatory phenotype and glycolytic capacity of lipopolysaccharides + interferon-γ-stimulated macrophages. Mek1/2 ablation impaired nuclear translocation and PKM2 expression in macrophages. PKM2 overexpression partially restored the proinflammatory phenotype and glycolytic capacity of Mek1/2 -deficient macrophages. Moreover, trametinib, an Food and Drug Administration-approved MEK1/2 inhibitor, ameliorated chronic cardiac allograft rejection. CONCLUSIONS: These findings suggest that the MEK1/2-PKM2 pathway is essential for immunometabolic reprogramming of proinflammatory AIMs, implying that it may be a promising therapeutic target in clinical heart transplantation.


Graft Rejection , Heart Transplantation , MAP Kinase Kinase 1 , MAP Kinase Kinase 2 , Macrophages , Mice, Knockout , Animals , Heart Transplantation/adverse effects , Graft Rejection/immunology , Graft Rejection/metabolism , Graft Rejection/pathology , Graft Rejection/genetics , Macrophages/immunology , Macrophages/metabolism , Mice , MAP Kinase Kinase 2/metabolism , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/genetics , Thyroid Hormone-Binding Proteins , Mice, Inbred C57BL , Membrane Proteins/genetics , Membrane Proteins/metabolism , Male , Signal Transduction , Carrier Proteins/metabolism , Carrier Proteins/genetics , Glycolysis , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Disease Models, Animal , Phenotype , Allografts
6.
J Vasc Res ; 60(4): 213-226, 2023.
Article En | MEDLINE | ID: mdl-37778342

INTRODUCTION: Cardiovascular disorders are characterized by vascular smooth muscle (VSM) transition from a contractile to proliferative state. Protease-activated receptor 2 (PAR2) involvement in this phenotypic conversion remains unclear. We hypothesized that PAR2 controls VSM cell proliferation in phenotype-dependent manner and through specific protein kinases. METHODS: Rat clonal low (PLo; P3-P6) and high passage (PHi; P10-P15) VSM cells were established as respective models of quiescent and proliferative cells, based on reduced PKG-1 and VASP. Western blotting determined expression of cytoskeletal/contractile proteins, PAR2, and select protein kinases. DNA synthesis and cell proliferation were measured 24-72 h following PAR2 agonism (SLIGRL; 100 nM-10 µm) with/without PKA (PKI; 10 µm), MEK1/2 (PD98059; 10 µm), and PI3K (LY294002; 1 µm) blockade. RESULTS: PKG-1, VASP, SM22α, calponin, cofilin, and PAR2 were reduced in PHi versus PLo cells. Following PAR2 agonism, DNA synthesis and cell proliferation increased in PLo cells but decreased in PHi cells. Western analyses showed reduced PKA, MEK1/2, and PI3K in PHi versus PLo cells, and kinase blockade revealed PAR2 controls VSM cell proliferation through PKA/MEK1/2. DISCUSSION: Findings highlight PAR2 and PAR2-driven PKA/MEK1/2 in control of VSM cell growth and provide evidence for continued investigation of PAR2 in VSM pathology.


Cyclic AMP-Dependent Protein Kinases , Receptor, PAR-2 , Rats , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Receptor, PAR-2/genetics , Receptor, PAR-2/metabolism , MAP Kinase Kinase 1/metabolism , Muscle, Smooth, Vascular/metabolism , Cell Proliferation , Phosphatidylinositol 3-Kinases/metabolism , DNA/metabolism , Cells, Cultured
7.
Philos Trans R Soc Lond B Biol Sci ; 378(1890): 20220246, 2023 11 20.
Article En | MEDLINE | ID: mdl-37778380

Drug resistance is still a big challenge for cancer patients. We previously demonstrated that inhibiting peptidylarginine deiminase 2 (PADI2) enzyme activity with Cl-amine increases the efficacy of docetaxel (Doc) on tamoxifen-resistant breast cancer cells with PADI2 expression. However, it is not clear whether this effect applies to other tumour cells. Here, we collected four types of tumour cells with different PADIs expression and fully evaluated the inhibitory effect of the combination of PADIs inhibitor (BB-Cla) and Doc in vitro and in vivo on tumour cell growth. Results show that inhibiting PADIs combined with Doc additively inhibits tumour cell growth across the four tumour cells. PADI2-catalysed citrullination of MEK1 Arg 189 exists in the four tumour cells, and blocking the function of MEK1 Cit189 promotes the anti-tumour effect of Doc in these tumour cells. Further analysis shows that inhibiting MEK1 Cit189 decreases the expression of cancer cell stemness factors and helps prevent cancer cell stemness maintenance. Importantly, this combined treatment can partially restore the sensitivity of chemotherapy-resistant cells to docetaxel or cisplatin in tumour cells. Thus, our study provides an experimental basis for the combined therapeutic approaches using docetaxel- and PADIs inhibitors-based strategies in tumour treatment. This article is part of the Theo Murphy meeting issue 'The virtues and vices of protein citrullination'.


Antineoplastic Agents , Citrullination , Docetaxel , Drug Resistance, Neoplasm , MAP Kinase Kinase 1 , Humans , Docetaxel/pharmacology , Tamoxifen , MAP Kinase Kinase 1/genetics , MAP Kinase Kinase 1/metabolism , Antineoplastic Agents/pharmacology
8.
J Vet Med Sci ; 85(9): 977-984, 2023 Sep 07.
Article En | MEDLINE | ID: mdl-37495516

Melanoma is a highly aggressive and metastatic cancer occurring in both humans and dogs. Canine melanoma accounts for a significant proportion of neoplastic diseases in dogs, and despite standard treatments, overall survival rates remain low. Protein phosphatase 6 (PP6), an evolutionarily conserved serine/threonine protein phosphatase, regulates various biological processes. Additionally, the loss of PP6 function reportedly leads to the development of melanoma in humans. However, there are no reports regarding the role of PP6 in canine cancer cells. We, therefore, conducted a study investigating the role of PP6 in canine melanoma by using four canine melanoma cell lines: CMec1, CMM, KMeC and LMeC. PP6 knockdown increased phosphorylation levels of mitogen-activated protein kinase kinase 1/2 (MEK1/2) and extracellular signal-regulated kinase 1/2 (ERK1/2) but not Akt. Furthermore, PP6 knockdown decreased sensitivity to trametinib, a MEK inhibitor, but did not alter sensitivity to Akt inhibitor. These findings suggest that PP6 may function as a tumor suppressor in canine melanoma and modulate the response to trametinib treatment. Understanding the role of PP6 in canine melanoma could lead to the development of more effective treatment strategies for this aggressive disease.


Dog Diseases , Melanoma , Animals , Dogs , Humans , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/pharmacology , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinase 3/pharmacology , MAP Kinase Signaling System , Phosphoprotein Phosphatases/metabolism , Phosphoprotein Phosphatases/pharmacology , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Melanoma/drug therapy , Melanoma/veterinary , Cell Line, Tumor , Dog Diseases/drug therapy
9.
Cells ; 12(12)2023 06 17.
Article En | MEDLINE | ID: mdl-37371121

Peptide Lv is a small endogenous secretory peptide that is proangiogenic through hyperpolarizing vascular endothelial cells (ECs) by enhancing the current densities of KCa3.1 channels. However, it is unclear how peptide Lv enhances these currents. One way to enhance the current densities of ion channels is to promote its trafficking and insertion into the plasma membrane. We hypothesized that peptide Lv-elicited KCa3.1 augmentation occurs through activating the mitogen-activated protein kinase kinase 1 (MEK1)-extracellular signal-regulated kinase (ERK) and phosphoinositide 3-kinase (PI3K)-protein kinase B (Akt) signaling pathways, which are known to mediate ion channel trafficking and membrane insertion in neurons. To test this hypothesis, we employed patch-clamp electrophysiological recordings and cell-surface biotinylation assays on ECs treated with peptide Lv and pharmaceutical inhibitors of ERK and Akt. Blocking ERK or Akt activation diminished peptide Lv-elicited EC hyperpolarization and increase in KCa3.1 current densities. Blocking PI3K or Akt activation decreased the level of plasma membrane-bound, but not the total amount of KCa3.1 protein in ECs. Therefore, the peptide Lv-elicited EC hyperpolarization and KCa3.1 augmentation occurred in part through channel trafficking and insertion mediated by MEK1-ERK and PI3K-Akt activation. These results demonstrate the molecular mechanisms of how peptide Lv promotes EC-mediated angiogenesis.


Endothelial Cells , Extracellular Signal-Regulated MAP Kinases , Proto-Oncogene Proteins c-akt , Endothelial Cells/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Kinase 1/metabolism , Peptides , Phosphatidylinositol 3-Kinase/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
10.
Ann Clin Lab Sci ; 53(2): 248-258, 2023 Mar.
Article En | MEDLINE | ID: mdl-37094858

OBJECTIVE: Osteoarthritis (OA) is a chronic joint disease characterized by cartilage degeneration, significantly reducing the quality of life. Previous report has confirmed that MAP2K1 acts as a potential therapeutic target in OA. Nevertheless, its specific function and related molecular mechanism in OA remain uncharacterized. Our report revealed the biological significance of MAP2K1 and elucidated its regulatory mechanism in OA. METHODS: Interleukin (IL)-1ß was utilized to stimulate human chondrocyte cell line CHON-001 for establishing the in vitro models of OA. Cell apoptosis and viability were determined by flow cytometry analysis and CCK-8 assay. Protein levels and gene expression were quantified by western blotting and RT-qPCR. Binding relation between miR-16-5p and MAP2K1 (mitogen-activated protein kinase kinase 1) was confirmed by luciferase reporter assay. RESULTS: IL-1ß treatment triggered CHON-001 cell injury by repressing cell viability and facilitating cell apoptosis. Moreover, IL-1ß stimulation upregulated MAP2K1 level in CHON-001 cells. MAP2K1 depletion attenuated IL-1ß-elicited CHON-001 cell injury. Mechanistically, miR-16-5p targeted MAP2K1 in CHON-001 cells. In rescue assays, MAP2K1 upregulation counteracted the suppressive impact of miR-16-5p enhancement on IL-1ß-triggered CHON-001 cell dysfunction. In addition, upregulated miR-16-5p suppressed IL-1ß-elicited activation of MAPK pathway in CHON-001 cells. CONCLUSIONS: MiR-16-5p mitigates IL-1ß-induced damage to chondrocyte CHON-001 by targeting MAP2K1 and inactivating the MAPK signaling.


MicroRNAs , Osteoarthritis , Humans , Chondrocytes/metabolism , MAP Kinase Kinase 1/metabolism , Quality of Life , MicroRNAs/genetics , Interleukin-1beta/metabolism , Apoptosis
11.
Cell Biol Int ; 47(2): 480-491, 2023 Feb.
Article En | MEDLINE | ID: mdl-36273427

Cardiac hypertrophy caused by angiotensin II (Ang II) is essential for the pathological process of heart failure. The intermediate calcium-activated potassium channel (SK4) has been shown to be involved in the process of the inflammatory response, cell proliferation, and apoptosis. However, the role of SK4 in cardiac hypertrophy has not been elucidated. Cardiac hypertrophy in human-induced pluripotent stem cells-derived cardiomyocytes (HiPSC-CMs) was induced by Ang II. Cells were transfected with SK4 adenovirus or treated with SK4 inhibitor (TRAM-34). TUNEL staining was used to assess the levels of apoptosis. Real-time polymerase chain reaction and Western blot analysis were used to measure messenger RNA (mRNA) and protein levels, respectively. The present results showed that SK4 expression was upregulated in HiPSC-CMs stimulated by Ang II. The downregulation of SK4 by a specific inhibitor TRAM-34 markedly ameliorated cardiac hypertrophy (reflected by the mRNA levels of atrial natriuretic peptide, brain natriuretic peptide, and ß-myosin heavy chain) and apoptosis (reflected by the level of Caspase 3, Bax, and Bcl-2) induced by Ang II treatment. The action of SK4 in cardiac hypertrophy was mediated by Ras-Raf-mitogen-activated protein kinases 1/2 (MEK1/2)-extracellular-regulated protein kinases 1/2 (ERK1/2) and calcineurin (CN)-nuclear factors of activated T cells (NFAT) activation. Our studies demonstrated that inhibition of SK4 significantly alleviated cardiac hypertrophy induced by Ang II in hiPSC-CMs by targeting Ras-Raf-MEK1/2-ERK1/2 signaling and CN-NFAT signaling pathway. Our studies suggest that SK4 may serve as a potential therapeutic target that could delay hypertrophy.


Angiotensin II , Myocytes, Cardiac , Humans , Myocytes, Cardiac/metabolism , Angiotensin II/pharmacology , Angiotensin II/metabolism , NFATC Transcription Factors/metabolism , MAP Kinase Signaling System , MAP Kinase Kinase 1/metabolism , Signal Transduction , Cardiomegaly/metabolism , RNA, Messenger/metabolism , Stem Cells/metabolism
12.
Biomed Res Int ; 2022: 7375661, 2022.
Article En | MEDLINE | ID: mdl-36203485

Purpose: Gastric cancer(GC)is one of the deadliest digestive tract tumors worldwide,existing studies suggest that dysregulated expression of microRNAs (miRNAs) plays an important role in the pathogenesis and progression of GC. This study aimed to investigate the expression, biological function, and downstream mechanism of miR-34c-5p in GC, provide new targets for gastric cancer diagnosis and treatment. Methods: The expression of miR-34c-5p in GC tissues and cell lines was examined by RT-qPCR. Cell wound healing, transwell and cell cloning assays were used to detect the effect of miR-34c-5p on the migration and invasion abilities, respectively, of GC cells. Western blot was performed to detect the expression of related proteins. Bioinformatics analysis was used to predict the binding of MAP2K1 to miR-34c-5p and the targeting relationship was confirmed by dual luciferase reporter assay. Results: The expression level of miR-34c-5p was significantly decreased in GC tissues and cell lines. miR-34c-5p overexpression inhibited migration, invasion, and colony formation of gastric cancer cells, the related protein E-cadherin expression was significantly increased and N-cadherin, vimentin, and PCNA expression were significantly decreased, while miR-34c-5p knockdown exerted the opposite effects. In addition, the targeting relationship between miR-34c-5p and MAP2K1 was predicted and confirmed, and further confirmed by rescue experiments that MAP2K1 alleviated the inhibitory effect of miR-34c-5p in GC. Conclusion: MiR-34c-5p is lowly expressed in GC, and it can target MAP2K1 to exert inhibitory effects on GC proliferation, invasion, and migration. These findings provide a promising biomarker and a potential therapeutic target for gastric cancer.


MicroRNAs , Stomach Neoplasms , Cadherins/metabolism , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Luciferases/metabolism , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/pharmacology , MAP Kinase Kinase 1/therapeutic use , MicroRNAs/metabolism , Neoplastic Processes , Proliferating Cell Nuclear Antigen/metabolism , Stomach Neoplasms/pathology , Vimentin/metabolism
13.
Circ Res ; 131(9): e102-e119, 2022 10 14.
Article En | MEDLINE | ID: mdl-36164973

BACKGROUND: Pulmonary arterial hypertension (PAH) is characterized by progressive distal pulmonary artery (PA) obstruction, leading to right ventricular hypertrophy and failure. Exacerbated intracellular calcium (Ca2+) signaling contributes to abnormalities in PA smooth muscle cells (PASMCs), including aberrant proliferation, apoptosis resistance, exacerbated migration, and arterial contractility. Store-operated Ca2+ entry is involved in Ca2+ homeostasis in PASMCs, but its properties in PAH are unclear. METHODS: Using a combination of Ca2+ imaging, molecular biology, in vitro, ex vivo, and in vivo approaches, we investigated the roles of the Orai1 SOC channel in PA remodeling in PAH and determined the consequences of pharmacological Orai1 inhibition in vivo using experimental models of pulmonary hypertension (PH). RESULTS: Store-operated Ca2+ entry and Orai1 mRNA and protein were increased in human PASMCs (hPASMCs) from patients with PAH (PAH-hPASMCs). We found that MEK1/2 (mitogen-activated protein kinase kinase 1/2), NFAT (nuclear factor of activated T cells), and NFκB (nuclear factor-kappa B) contribute to the upregulation of Orai1 expression in PAH-hPASMCs. Using small interfering RNA (siRNA) and Orai1 inhibitors, we found that Orai1 inhibition reduced store-operated Ca2+ entry, mitochondrial Ca2+ uptake, aberrant proliferation, apoptosis resistance, migration, and excessive calcineurin activity in PAH-hPASMCs. Orai1 inhibitors reduced agonist-evoked constriction in human PAs. In experimental rat models of PH evoked by chronic hypoxia, monocrotaline, or Sugen/hypoxia, administration of Orai1 inhibitors (N-{4-[3,5-bis(Trifluoromethyl)-1H-pyrazol-1-yl]phenyl}-4-methyl-1,2,3-thiadiazole-5-carboxamide [BTP2], 4-(2,5-dimethoxyphenyl)-N-[(pyridin-4-yl)methyl]aniline [JPIII], or 5J4) protected against PH. CONCLUSIONS: In human PAH and experimental PH, Orai1 expression and activity are increased. Orai1 inhibition normalizes the PAH-hPASMCs phenotype and attenuates PH in rat models. These results suggest that Orai1 should be considered as a relevant therapeutic target for PAH.


Aniline Compounds , Hypertension, Pulmonary , Pulmonary Arterial Hypertension , Thiadiazoles , Animals , Humans , Rats , Aniline Compounds/therapeutic use , Calcineurin/metabolism , Calcium/metabolism , Cell Proliferation/genetics , Cells, Cultured , Hypertension, Pulmonary/drug therapy , Hypoxia/metabolism , MAP Kinase Kinase 1/metabolism , Monocrotaline/toxicity , Myocytes, Smooth Muscle/metabolism , ORAI1 Protein , Pulmonary Artery/metabolism , RNA, Messenger/metabolism , RNA, Small Interfering/metabolism , Thiadiazoles/metabolism
14.
Chem Biol Interact ; 367: 110114, 2022 Nov 01.
Article En | MEDLINE | ID: mdl-36027947

Dexmedetomidine (DEX) displays a neuroprotective role in aged rats with isoflurane (ISO)-induced cognitive impairment through antioxidant, and anti-inflammatory, and anti-apoptotic effects. Therefore, the present study was performed to define the molecular mechanism of DEX on ISO-induced neurological impairment in aged rats in relation to the MEK1/ERK1/Nrf2/HO-1 axis. The study enrolled elderly patients undergoing ISO anesthesia. Patient cognitive function following treatment with DEX was evaluated using mini-mental state examination (MMSE). The results revealed that DEX supplementation of anesthesia contributed to higher MMSE scores in patients one week post treatment. Rat model of neurological impairment was also induced in 18-month-age Wistar rats by ISO, followed by DEX treatment. Based on the results of Morris water maze experiment, ELISA, and TUNEL and hematoxylin-eosin staining, in vivo experiments confirmed that DEX could reduce the oxidative stress and neurological damage induced by ISO in rats. DEX activated the nuclear factor erythroid 2-related factor (Nrf2)/Heme Oxygenase 1 (HO-1) pathway. DEX upregulated the expression of Nrf2 and HO-1 by activating the MEK1/ERK1 pathway, whereby attenuating the ISO-caused oxidative stress and neurological damage in rats. Collectively, DEX suppresses the ISO-induced neurological impairment in the aged rats by promoting HO-1 through activation of the MEK1/ERK1/Nrf2 axis.


Dexmedetomidine , Isoflurane , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/metabolism , Dexmedetomidine/pharmacology , Eosine Yellowish-(YS)/pharmacology , Hematoxylin/pharmacology , Heme Oxygenase-1/metabolism , Isoflurane/toxicity , MAP Kinase Kinase 1/metabolism , MAP Kinase Kinase 1/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Rats , Rats, Sprague-Dawley , Rats, Wistar
15.
Cell Death Dis ; 13(8): 701, 2022 08 12.
Article En | MEDLINE | ID: mdl-35961969

Oral submucous fibrosis (OSF) is a chronic and insidious oral potentially malignant disorder associated with a 4-17% risk of oral squamous cell carcinoma (OSCC). Our previous study found that proteasomal activator 28 gamma (PA28γ) is frequently overexpressed in oral squamous cell carcinoma and negatively correlated with poor patient prognosis. However, the role of PA28γ in the occurrence and development of OSF remains unclear. Here, we screened PA28γ-related genes and investigated their function in OSF. We demonstrated that the expression of PA28γ was positively associated with MEK1 and gradually elevated from normal to progressive stages of OSF tissue. Arecoline, a pathogenic component of OSF, could upregulate the protein levels of PA28γ and phosphorylated MEK1 and contribute to epithelial to mesenchymal transition (EMT) in epithelial cells. Notably, PA28γ could interact with MEK1 and upregulate its phosphorylation level. Furthermore, arecoline upregulated BRAF, which can interact with PA28γ and upregulate its protein level. Additionally, BRAF, PA28γ, and MEK1 could form protein complexes and then enhance the MEK1/ERK signaling pathways. The concrete mechanism of the protein stability of PA28γ is that BRAF mediates its degradation by inhibiting its ubiquitination. These findings underscore the instrumental role of PA28γ in the BRAF/MEK1 pathway and enhanced EMT through MEK1/ERK activation in OSF.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Oral Submucous Fibrosis , Arecoline/pharmacology , Autoantigens , Carcinoma, Squamous Cell/pathology , Epithelial-Mesenchymal Transition/genetics , Humans , MAP Kinase Kinase 1/metabolism , Mouth Neoplasms/pathology , Oral Submucous Fibrosis/genetics , Proteasome Endopeptidase Complex , Proto-Oncogene Proteins B-raf , Squamous Cell Carcinoma of Head and Neck
16.
Cell Biochem Funct ; 40(5): 481-490, 2022 Jul.
Article En | MEDLINE | ID: mdl-35604288

MEK1 is an attractive target due to its role in selective extracellular-signal-regulated kinase phosphorylation, which plays a pivotal role in regulating cell proliferation. Another benefit of targeting the MEK protein is its unique hydrophobic pocket that can accommodate highly selective allosteric inhibitors. To date, various MEK1 inhibitors have reached clinical trials against several cancers, but they were discarded due to their severe toxicity and low efficacy. Thus, the development of allosteric inhibitors for MEK1 is the demand of the hour. In this in-silico study, molecular docking, long-term molecular dynamics (5 µs), and molecular mechanics Poisson-Boltzmann surface area analysis were undertaken to address the potential of quinolines as allosteric inhibitors. We selected four reference MEK1 inhibitors for the comparative analysis. The drug-likeness and toxicity of these molecules were also examined based on their ADMET and Toxicity Prediction by Komputer Assisted Technology profiles. The outcome of the analysis revealed that the quinolines (4m, 4o, 4s, and 4n) exhibited better stability and binding affinity while being nontoxic compared to reference inhibitors. We have reached the conclusion that these quinoline molecules could be checked by experimental studies to validate their use as allosteric inhibitors against MEK1.


Protein Kinase Inhibitors , Quinolines , Allosteric Site , MAP Kinase Kinase 1/chemistry , MAP Kinase Kinase 1/metabolism , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Quinolines/pharmacology
17.
Cell Mol Life Sci ; 79(5): 281, 2022 May 04.
Article En | MEDLINE | ID: mdl-35508574

MEK1 interactions with B-Raf and KSR1 are key steps in Ras/Raf/MEK/ERK signaling. Despite this, vital mechanistic details of how these execute signal transduction are still enigmatic. Among these is why, despite B-Raf and KSR1 kinase domains similarity, the B-Raf/MEK1 and KSR1/MEK1 complexes have distinct contributions to MEK1 activation, and broadly, what is KSR1's role. Our molecular dynamics simulations clarify these still unresolved ambiguities. Our results reveal that the proline-rich (P-rich) loop of MEK1 plays a decisive role in MEK1 activation loop (A-loop) phosphorylation. In the inactive B-Raf/MEK1 heterodimer, the collapsed A-loop of B-Raf interacts with the P-rich loop and A-loop of MEK1, minimizing MEK1 A-loop fluctuation and preventing it from phosphorylation. In the active B-Raf/MEK1 heterodimer, the P-rich loop moves in concert with the A-loop of B-Raf as it extends. This reduces the number of residues interacting with MEK1 A-loop, allowing increased A-loop fluctuation, and bringing Ser222 closer to ATP for phosphorylation. B-Raf αG-helix Arg662 promotes MEK1 activation by orienting Ser218 towards ATP. In KSR1/MEK1, the KSR1 αG-helix has Ala826 in place of B-Raf Arg662. This difference results in much fewer interactions between KSR1 αG-helix and MEK1 A-loop, thus a more flexible A-loop. We postulate that if KSR1 were to adopt an active configuration with an extended A-loop as seen in other protein kinases, then the MEK1 P-rich loop would extend in a similar manner, as seen in the active B-Raf/MEK1 heterodimer. This would result in highly flexible MEK1 A-loop, and KSR1 functioning as an active, B-Raf-like, kinase.


Protein Kinases , Proto-Oncogene Proteins B-raf , Adenosine Triphosphate/metabolism , MAP Kinase Kinase 1/chemistry , MAP Kinase Kinase 1/metabolism , Phosphorylation , Protein Kinases/metabolism , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins c-raf/metabolism , Signal Transduction
18.
Phytochemistry ; 198: 113154, 2022 Jun.
Article En | MEDLINE | ID: mdl-35245525

Three undescribed diterpenes including two ent-abietanes, euphomauritanol A, and euphomauritanol B, and one jatrophane, euphomauritanophane A, in addition to eight previously described metabolites were isolated from the MeOH-CH2Cl2 (1:1) extract of the Euphorbia mauritanica. The chemical structures of isolates were established based on the spectroscopic means including FT-IR, HRMS, 1D and 2D NMR. The absolute stereochemistry of the undescribed diterpenes was deduced by experimental and calculated TDDFT-electronic circular dichroism (ECD). The anti-proliferative effects of the isolated diterpenes were evaluated against B16-BL6, Hep G2, and Caco-2. The euphomauritanol A, euphomauritanol B, and euphomauritanophane A significantly inhibited the growth of murine melanoma B16-BL6 cell lines with IC50 10.28, 20.22, and 38.81 µM, respectively with no responses against the other cells. These activities were rationalized by molecular docking of the active compounds in BRAFV600E and MEK1 active sites. Moreover, the in-silico pharmacokinetics predictions by Swiss ADME revealed that the active compounds possessed favorable oral bioavailability and drug-likeness properties.


Diterpenes , Euphorbia , MAP Kinase Kinase 1 , Melanoma , Proto-Oncogene Proteins B-raf , Animals , Caco-2 Cells , Diterpenes/chemistry , Diterpenes/pharmacology , Egypt , Euphorbia/chemistry , Hep G2 Cells , Humans , MAP Kinase Kinase 1/metabolism , Melanoma/drug therapy , Melanoma/enzymology , Melanoma, Experimental/drug therapy , Melanoma, Experimental/enzymology , Mice , Molecular Docking Simulation , Molecular Structure , Proto-Oncogene Proteins B-raf/metabolism , Spectroscopy, Fourier Transform Infrared
19.
Lancet ; 399(10324): 541-553, 2022 02 05.
Article En | MEDLINE | ID: mdl-35123694

BACKGROUND: Low-grade serous carcinoma of the ovary or peritoneum is characterised by MAPK pathway aberrations and its reduced sensitivity to chemotherapy relative to high-grade serous carcinoma. We compared the MEK inhibitor trametinib to physician's choice standard of care in patients with recurrent low-grade serous carcinoma. METHODS: This international, randomised, open-label, multicentre, phase 2/3 trial was done at 84 hospitals in the USA and UK. Eligible patients were aged 18 years or older with recurrent low-grade serous carcinoma and measurable disease, as defined by Response Evaluation Criteria In Solid Tumors version 1.1, had received at least one platinum-based regimen, but not all five standard-of-care drugs, and had received an unlimited number of previous regimens. Patients with serous borderline tumours or tumours containing low-grade serous and high-grade serous carcinoma were excluded. Eligible patients were randomly assigned (1:1) to receive either oral trametinib 2 mg once daily (trametinib group) or one of five standard-of-care treatment options (standard-of-care group): intravenous paclitaxel 80 mg/m2 by body surface area on days 1, 8, and 15 of every 28-day cycle; intravenous pegylated liposomal doxorubicin 40-50 mg/m2 by body surface area once every 4 weeks; intravenous topotecan 4 mg/m2 by body surface area on days 1, 8, and 15 of every 28-day cycle; oral letrozole 2·5 mg once daily; or oral tamoxifen 20 mg twice daily. Randomisation was stratified by geographical region (USA or UK), number of previous regimens (1, 2, or ≥3), performance status (0 or 1), and planned standard-of-care regimen. The primary endpoint was investigator-assessed progression-free survival while receiving randomised therapy, as assessed by imaging at baseline, once every 8 weeks for 15 months, and then once every 3 months thereafter, in the intention-to-treat population. Safety was assessed in patients who received at least one dose of study therapy. This trial is registered with ClinicalTrials.gov, NCT02101788, and is active but not recruiting. FINDINGS: Between Feb 27, 2014, and April 10, 2018, 260 patients were enrolled and randomly assigned to the trametinib group (n=130) or the standard-of-care group (n=130). At the primary analysis, there were 217 progression-free survival events (101 [78%] in the trametinib group and 116 [89%] in the standard-of-care group). Median progression-free survival in the trametinib group was 13·0 months (95% CI 9·9-15·0) compared with 7·2 months (5·6-9·9) in the standard-of-care group (hazard ratio 0·48 [95% CI 0·36-0·64]; p<0·0001). The most frequent grade 3 or 4 adverse events in the trametinib group were skin rash (17 [13%] of 128), anaemia (16 [13%]), hypertension (15 [12%]), diarrhoea (13 [10%]), nausea (12 [9%]), and fatigue (ten [8%]). The most frequent grade 3 or 4 adverse events in the standard-of-care group were abdominal pain (22 [17%]), nausea (14 [11%]), anaemia (12 [10%]), and vomiting (ten [8%]). There were no treatment-related deaths. INTERPRETATION: Trametinib represents a new standard-of-care option for patients with recurrent low-grade serous carcinoma. FUNDING: NRG Oncology, Cancer Research UK, Target Ovarian Cancer, and Novartis.


Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Carcinoma, Ovarian Epithelial/drug therapy , Ovarian Neoplasms/drug therapy , Pyridones/administration & dosage , Pyrimidinones/administration & dosage , Administration, Oral , Adult , Aged , Carcinoma, Ovarian Epithelial/pathology , Female , Humans , MAP Kinase Kinase 1/metabolism , Middle Aged , Neoplasm Grading , Neoplasm Recurrence, Local/pathology , Ovarian Neoplasms/pathology , Paclitaxel/administration & dosage , Progression-Free Survival , Standard of Care , Treatment Outcome , United Kingdom , United States
20.
Nat Commun ; 13(1): 844, 2022 02 11.
Article En | MEDLINE | ID: mdl-35149678

The combination of ultrahigh-throughput screening and sequencing informs on function and intragenic epistasis within combinatorial protein mutant libraries. Establishing a droplet-based, in vitro compartmentalised approach for robust expression and screening of protein kinase cascades (>107 variants/day) allowed us to dissect the intrinsic molecular features of the MKK-ERK signalling pathway, without interference from endogenous cellular components. In a six-residue combinatorial library of the MKK1 docking domain, we identified 29,563 sequence permutations that allow MKK1 to efficiently phosphorylate and activate its downstream target kinase ERK2. A flexibly placed hydrophobic sequence motif emerges which is defined by higher order epistatic interactions between six residues, suggesting synergy that enables high connectivity in the sequence landscape. Through positive epistasis, MKK1 maintains function during mutagenesis, establishing the importance of co-dependent residues in mammalian protein kinase-substrate interactions, and creating a scenario for the evolution of diverse human signalling networks.


Epistasis, Genetic , Mitogen-Activated Protein Kinases/chemistry , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Phosphates/metabolism , Catalysis , Humans , MAP Kinase Kinase 1/chemistry , MAP Kinase Kinase 1/metabolism , MAP Kinase Signaling System , Mitogen-Activated Protein Kinase 1/chemistry , Mitogen-Activated Protein Kinase 1/metabolism , Molecular Docking Simulation , Phosphorylation , Protein Domains , Protein Kinases/chemistry , Protein Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Signal Transduction , Substrate Specificity
...