Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.260
1.
Mol Biol Rep ; 51(1): 602, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698158

BACKGROUND: Low-temperature severely limits the growth and development of Camellia oleifera (C. oleifera). The mitogen-activated protein kinase (MAPK) cascade plays a key role in the response to cold stress. METHODS AND RESULTS: Our study aims to identify MAPK cascade genes in C. oleifera and reveal their roles in response to cold stress. In our study, we systematically identified and analyzed the MAPK cascade gene families of C. oleifera, including their physical and chemical properties, conserved motifs, and multiple sequence alignments. In addition, we characterized the interacting networks of MAPKK kinase (MAPKKK)-MAPK kinase (MAPKK)-MAPK in C. oleifera. The molecular mechanism of cold stress resistance of MAPK cascade genes in wild C. oleifera was analyzed by differential gene expression and real-time quantitative reverse transcription-PCR (qRT-PCR). CONCLUSION: In this study, 21 MAPKs, 4 MAPKKs and 55 MAPKKKs genes were identified in the leaf transcriptome of C. oleifera. According to the phylogenetic results, MAPKs were divided into 4 groups (A, B, C and D), MAPKKs were divided into 3 groups (A, B and D), and MAPKKKs were divided into 2 groups (MEKK and Raf). Motif analysis showed that the motifs in each subfamily were conserved, and most of the motifs in the same subfamily were basically the same. The protein interaction network based on Arabidopsis thaliana (A. thaliana) homologs revealed that MAPK, MAPKK, and MAPKKK genes were widely involved in C. oleifera growth and development and in responses to biotic and abiotic stresses. Gene expression analysis revealed that the CoMAPKKK5/CoMAPKKK43/CoMAPKKK49-CoMAPKK4-CoMAPK8 module may play a key role in the cold stress resistance of wild C. oleifera at a high-elevation site in Lu Mountain (LSG). This study can facilitate the mining and utilization of genetic resources of C. oleifera with low-temperature tolerance.


Camellia , Cold-Shock Response , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Cold-Shock Response/genetics , Camellia/genetics , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , MAP Kinase Signaling System/genetics , Cold Temperature , Transcriptome/genetics , Multigene Family , Mitogen-Activated Protein Kinase Kinases/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Gene Expression Profiling/methods , Plant Leaves/genetics
2.
Sci Rep ; 14(1): 10482, 2024 05 07.
Article En | MEDLINE | ID: mdl-38714855

The mitogen-activated protein kinase (MAPK) pathway plays a critical role in tumor development and immunotherapy. Nevertheless, additional research is necessary to comprehend the relationship between the MAPK pathway and the prognosis of bladder cancer (BLCA), as well as its influence on the tumor immune microenvironment. To create prognostic models, we screened ten genes associated with the MAPK pathway using COX and least absolute shrinkage and selection operator (LASSO) regression analysis. These models were validated in the Genomic Data Commons (GEO) cohort and further examined for immune infiltration, somatic mutation, and drug sensitivity characteristics. Finally, the findings were validated using The Human Protein Atlas (HPA) database and through Quantitative Real-time PCR (qRT-PCR). Patients were classified into high-risk and low-risk groups based on the prognosis-related genes of the MAPK pathway. The high-risk group had poorer overall survival than the low-risk group and showed increased immune infiltration compared to the low-risk group. Additionally, the nomograms built using the risk scores and clinical factors exhibited high accuracy in predicting the survival of BLCA patients. The prognostic profiling of MAPK pathway-associated genes represents a potent clinical prediction tool, serving as the foundation for precise clinical treatment of BLCA.


MAP Kinase Signaling System , Urinary Bladder Neoplasms , Humans , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/mortality , Urinary Bladder Neoplasms/pathology , Prognosis , MAP Kinase Signaling System/genetics , Male , Female , Nomograms , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Tumor Microenvironment/genetics , Tumor Microenvironment/immunology , Aged , Middle Aged
3.
Mol Biol Rep ; 51(1): 644, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727958

BACKGROUND: MicroRNAs are differentially expressed in periodontitis tissues. They are involved in cellular responses to inflammation and can be used as markers for diagnosing periodontitis. Microarray analysis showed that the expression level of microRNA-671-5p in periodontal tissues of patients with periodontitis was increased. In this study, we investigated the mechanism of action of microRNA-671-5p in human periodontal ligament stem cells (hPDLSCs) under inflammatory conditions. METHODS AND RESULTS: HPDLSCs were treated with lipopolysaccharide (LPS) to establish an inflammation model. The cell survival rate was determined using the cell counting kit-8 (CCK8). Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) and western blot analyses were used to detect the expression of microRNA-671-5p and dual-specificity phosphatase (DUSP) 8 proteins, respectively, Interleukin (IL)-6, IL-1ß, and tumor necrosis factor (TNF)-α were detected using qRT-PCR and Enzyme-linked immunosorbent assay (ELISA). A dual-luciferase reporter system was employed to determine the relationship between micoRNA-671-5p and DUSP8 expression. Activation of the p38 mitogen-activated protein kinase (MAPK) signaling pathway was confirmed using western blot analysis. Following the treatment of hPDLSCs with LPS, the expression levels of microRNA-671-5p in hPDLSCs were increased, cell viability decreased, and the expression of inflammatory factors displayed an increasing trend. MicroRNA-671-5p targets and binds to DUSP8. Silencing microRNA-671-5p or overexpressing DUSP8 can improve cell survival rate and reduce inflammatory responses. When DUSP8 was overexpressed, the expression of p-p38 was reduced. CONCLUSIONS: microRNA-671-5p targets DUSP8/p38 MAPK pathway to regulate LPS-induced proliferation and inflammation in hPDLSCs.


Dual-Specificity Phosphatases , Inflammation , Lipopolysaccharides , MicroRNAs , Periodontal Ligament , Stem Cells , p38 Mitogen-Activated Protein Kinases , Periodontal Ligament/metabolism , Periodontal Ligament/cytology , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Stem Cells/metabolism , Dual-Specificity Phosphatases/genetics , Dual-Specificity Phosphatases/metabolism , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Lipopolysaccharides/pharmacology , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/drug effects , Periodontitis/genetics , Periodontitis/metabolism , Periodontitis/pathology , Cell Survival/genetics , Cell Survival/drug effects , Signal Transduction/genetics , Cells, Cultured
4.
Cell Mol Biol (Noisy-le-grand) ; 70(4): 164-168, 2024 Apr 28.
Article En | MEDLINE | ID: mdl-38678607

This study aimed to explore the effects of miR-129-5p on inflammation and nucleus pulposus (NP) cell apoptosis in rats with intervertebral disc degeneration (IVDD) through the c-Jun N-terminal kinase (JNK) signaling pathway. A total of 20 rats were randomly divided into control group (n=10) or IVDD group (n=10). The mRNA expressions of miR-129-5p and apoptosis index Fas in IVDD tissues were determined using RT-PCR. NP cell apoptosis rate was detected via TUNEL assay. NP cells were extracted from IVDD tissues for primary culture. Subsequently, the cells were transfected with miR-129-5p inhibitor or mimic to inhibit or overexpress miR-129-5p, respectively. Furthermore, the changes in the JNK pathway indexes and apoptosis indexes were detected using Western blotting. In IVDD group, the expression of miR-129-5p was significantly down-regulated, while the transcriptional level of Fas was up-regulated compared with those in control group. Pearson correlation analysis revealed a negative correlation between the expressions of miR-129-5p and Fas mRNA (r=-0.75, P<0.05). IVDD group exhibited significantly higher levels of serum TNF-α, IL-6 and IL-1 than control group. Subsequent TUNEL assay indicated that the apoptosis rate was evidently higher in IVDD group (60.6%) than control group (2.5%). The results of Western blotting showed that the protein expressions of JNK1, JNK2 and Fas remarkably rose in IVDD group compared with those in control group. However, they declined remarkably in miR-129-5p mimic group compared with those in control group. Furthermore, such trends were significantly reversed in miR-129-5p inhibitor group. MiR-129-5p was significantly down-regulated in IVDD, whose overexpression has anti-inflammatory and anti-apoptotic effects.


Apoptosis , Inflammation , Intervertebral Disc Degeneration , MAP Kinase Signaling System , MicroRNAs , Nucleus Pulposus , Rats, Sprague-Dawley , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/pathology , Intervertebral Disc Degeneration/metabolism , Apoptosis/genetics , Nucleus Pulposus/metabolism , Nucleus Pulposus/pathology , Inflammation/genetics , Inflammation/pathology , MAP Kinase Signaling System/genetics , Male , Rats , fas Receptor/genetics , fas Receptor/metabolism
5.
J Proteome Res ; 23(5): 1859-1870, 2024 May 03.
Article En | MEDLINE | ID: mdl-38655723

To understand how upregulated isoglutaminyl cyclase (isoQC) is involved in the initiation of diseases such as cancer, we developed a human KYSE30 carcinoma cell model in which isoQC was stably overexpressed. GO and KEGG analysis of the DEGs (228) and DEPs (254) respectively implicated isoQC on the proliferation invasion and metastasis of cells and suggested that isoQC might participate in the regulation of MAPK, RAS, circadian rhythm, and related pathways. At the functional level, isoQC-overexpressing KYSE30 cells showed enhanced proliferation, migration, and invasion capacity. Next, we decided to study the precise effect of isoQC overexpression on JNK, p-JNK, AKT, p-AKT, ERK, p-ERK, and PER2, as RNA levels of these proteins are significantly correlated with signal levels indicated in RNA-Seq analysis, and these candidates are the top correlated DEPs enriched in RT-qPCR analysis. We saw that only p-ERK expression was inhibited, while PER2 was increased. These phenotypes were inhibited upon exposure to PER2 inhibitor KL044, which allowed for the restoration of p-ERK levels. These data support upregulated isoQC being able to promote cancer cell proliferation and migration in vitro, likely by helping to regulate the MAPK and RAS signaling pathways, and the circadian protein PER2 might be a potential mediator.


Aminoacyltransferases , Cell Movement , Cell Proliferation , MAP Kinase Signaling System , Humans , Cell Proliferation/genetics , Cell Movement/genetics , MAP Kinase Signaling System/genetics , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Period Circadian Proteins/genetics , Period Circadian Proteins/metabolism , Neoplasm Invasiveness , Up-Regulation , Neoplasms/genetics , Neoplasms/pathology , Neoplasms/metabolism
6.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 162-167, 2024 Mar 31.
Article En | MEDLINE | ID: mdl-38650142

Prostate cancer, prevalent among males, is influenced by various molecular factors, including Growth Differentiation Factor 15 (GDF15). Despite its recognized role in multiple tumor types, GDF15's specific involvement in prostate cancer remains insufficiently explored. This study investigates the regulatory function of GDF15 in prostate cancer. To explore GDF15's impact, we established GDF15 knockdown and overexpression models in prostate cancer cells. We quantified mRNA and protein levels using RT-PCR and Western blotting. Functional assays, including CCK8, Transwell, wound healing, and flow cytometry, were employed to evaluate cell proliferation, invasion, migration, and apoptosis. Additionally, the effect of GDF15 on tumor growth was assessed using a metastatic tumor model in nude mice. Elevated GDF15 expression was identified in prostate cancer tissues and cells. The knockdown of GDF15 led to the activation of the MAPK/ERK signaling pathway. C16PAF was found to counteract the inhibitory effects of sh-GDF15 on cell proliferation, invasion, migration, and apoptosis in LNCaP cells. It also reversed the sh-GDF15-induced alterations in the epithelial-mesenchymal transition (EMT) process. In vivo, C16PAF notably mitigated the sh-GDF15-induced suppression of tumor growth. The study demonstrated that sh-GDF15 inhibits cell proliferation, invasion, migration, EMT process, and tumor growth, while it promotes apoptosis. However, these effects were significantly reversed by C16PAF. The study underscores the potential of GDF15 as a target for novel therapeutic interventions in prostate cancer treatment and prevention. These findings illuminate GDF15's multifaceted role in prostate cancer pathogenesis and suggest its viability as a therapeutic target.


Apoptosis , Cell Movement , Cell Proliferation , Epithelial-Mesenchymal Transition , Gene Knockdown Techniques , Growth Differentiation Factor 15 , MAP Kinase Signaling System , Mice, Nude , Prostatic Neoplasms , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/metabolism , Male , Prostatic Neoplasms/pathology , Prostatic Neoplasms/genetics , Prostatic Neoplasms/metabolism , Humans , Animals , Cell Line, Tumor , Cell Proliferation/genetics , MAP Kinase Signaling System/genetics , Apoptosis/genetics , Epithelial-Mesenchymal Transition/genetics , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , Mice , Mice, Inbred BALB C
7.
J Orthop Surg Res ; 19(1): 190, 2024 Mar 18.
Article En | MEDLINE | ID: mdl-38500202

PURPOSE: To study the effect of miR-150-5p on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs), and further explore the relationship between its regulatory mechanism and irisin. METHODS: We isolated mouse BMSCs, and induced osteogenic differentiation by osteogenic induction medium. Using qPCR to detect the expression of osteogenic differentiation-related genes, western blot to detect the expression of osteogenic differentiation-related proteins, and luciferase reporter system to verify that FNDC5 is the target of miR-150-5p. Irisin intraperitoneal injection to treat osteoporosis in mice constructed by subcutaneous injection of dexamethasone. RESULTS: Up-regulation of miR-150-5p inhibited the proliferation of BMSCs, and decreased the content of osteocalcin, ALP activity, calcium deposition, the expression of osteogenic differentiation genes (Runx2, OSX, OCN, OPN, ALP and BMP2) and protein (BMP2, OCN, and Runx2). And down-regulation of miR-150-5p plays the opposite role of up-regulation of miR-150-5p on osteogenic differentiation of BMSCs. Results of luciferase reporter gene assay showed that FNDC5 gene was the target gene of miR-150-5p, and miR-150-5p inhibited the expression of FNDC5 in mouse BMSCs. The expression of osteogenic differentiation genes and protein, the content of osteocalcin, ALP activity and calcium deposition in BMSCs co-overexpressed by miR-150-5p and FNDC5 was significantly higher than that of miR-150-5p overexpressed alone. In addition, the overexpression of FNDC5 reversed the blocked of p38/MAPK pathway by the overexpression of miR-150-5p in BMSCs. Irisin, a protein encoded by FNDC5 gene, improved symptoms in osteoporosis mice through intraperitoneal injection, while the inhibitor of p38/MAPK pathway weakened this function of irisin. CONCLUSION: miR-150-5p inhibits the osteogenic differentiation of BMSCs by targeting irisin to regulate the/p38/MAPK signaling pathway, and miR-150-5p/irisin/p38 pathway is a potential target for treating osteoporosis.


Mesenchymal Stem Cells , MicroRNAs , Osteoporosis , Animals , Mice , Bone Marrow , Calcium/metabolism , Cell Differentiation/genetics , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/metabolism , Fibronectins/genetics , Fibronectins/metabolism , Fibronectins/pharmacology , Luciferases/metabolism , Luciferases/pharmacology , MAP Kinase Signaling System/genetics , Mesenchymal Stem Cells/metabolism , MicroRNAs/metabolism , Osteocalcin/metabolism , Osteogenesis/genetics , Osteoporosis/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Transcription Factors/metabolism
8.
J Cancer Res Clin Oncol ; 150(3): 127, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38483604

PURPOSE: Pancreatic cancer (PC) is a highly malignant tumor that poses a severe threat to human health. Brain glycogen phosphorylase (PYGB) breaks down glycogen and provides an energy source for tumor cells. Although PYGB has been reported in several tumors, its role in PC remains unclear. METHODS: We constructed a risk diagnostic model of PC-related genes by WGCNA and LASSO regression and found PYGB, an essential gene in PC. Then, we explored the pro-carcinogenic role of PYGB in PC by in vivo and in vitro experiments. RESULTS: We found that PYGB, SCL2A1, and SLC16A3 had a significant effect on the diagnosis and prognosis of PC, but PYGB had the most significant effect on the prognosis. Pan-cancer analysis showed that PYGB was highly expressed in most of the tumors but had the highest correlation with PC. In TCGA and GEO databases, we found that PYGB was highly expressed in PC tissues and correlated with PC's prognostic and pathological features. Through in vivo and in vitro experiments, we found that high expression of PYGB promoted the proliferation, invasion, and metastasis of PC cells. Through enrichment analysis, we found that PYGB is associated with several key cell biological processes and signaling pathways. In experiments, we validated that the MAPK/ERK pathway is involved in the pro-tumorigenic mechanism of PYGB in PC. CONCLUSION: Our results suggest that PYGB promotes PC cell proliferation, invasion, and metastasis, leading to poor patient prognosis. PYGB gene may be a novel diagnostic biomarker and gene therapy target for PC.


Pancreatic Neoplasms , Humans , Biomarkers , Glycogen Phosphorylase, Brain Form/genetics , Glycogen Phosphorylase, Brain Form/metabolism , MAP Kinase Signaling System/genetics , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/therapy , Prognosis , Signal Transduction/genetics
9.
Neoplasia ; 51: 100987, 2024 05.
Article En | MEDLINE | ID: mdl-38489912

Gene fusions are common in high-grade serous ovarian cancer (HGSC). Such genetic lesions may promote tumorigenesis, but the pathogenic mechanisms are currently poorly understood. Here, we investigated the role of a PIK3R1-CCDC178 fusion identified from a patient with advanced HGSC. We show that the fusion induces HGSC cell migration by regulating ERK1/2 and increases resistance to platinum treatment. Platinum resistance was associated with rod and ring-like cellular structure formation. These structures contained, in addition to the fusion protein, CIN85, a key regulator of PI3K-AKT-mTOR signaling. Our data suggest that the fusion-driven structure formation induces a previously unrecognized cell survival and resistance mechanism, which depends on ERK1/2-activation.


Class Ia Phosphatidylinositol 3-Kinase , Drug Resistance, Neoplasm , MAP Kinase Signaling System , Oncogene Proteins, Fusion , Ovarian Neoplasms , Phosphatidylinositol 3-Kinases , Female , Humans , Class Ia Phosphatidylinositol 3-Kinase/genetics , Class Ia Phosphatidylinositol 3-Kinase/metabolism , Drug Resistance, Neoplasm/genetics , MAP Kinase Signaling System/genetics , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics , Ovarian Neoplasms/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Platinum , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism
10.
J Clin Invest ; 134(9)2024 Mar 14.
Article En | MEDLINE | ID: mdl-38483480

Macrophage immune checkpoint inhibitors, such as anti-CD47 antibodies, show promise in clinical trials for solid and hematologic malignancies. However, the best strategies to use these therapies remain unknown, and ongoing studies suggest they may be most effective when used in combination with other anticancer agents. Here, we developed an unbiased, high-throughput screening platform to identify drugs that render lung cancer cells more vulnerable to macrophage attack, and we found that therapeutic synergy exists between genotype-directed therapies and anti-CD47 antibodies. In validation studies, we found that the combination of genotype-directed therapies and CD47 blockade elicited robust phagocytosis and eliminated persister cells in vitro and maximized antitumor responses in vivo. Importantly, these findings broadly applied to lung cancers with various RTK/MAPK pathway alterations - including EGFR mutations, ALK fusions, or KRASG12C mutations. We observed downregulation of ß2-microglobulin and CD73 as molecular mechanisms contributing to enhanced sensitivity to macrophage attack. Our findings demonstrate that dual inhibition of the RTK/MAPK pathway and the CD47/SIRPa axis is a promising immunotherapeutic strategy. Our study provides strong rationale for testing this therapeutic combination in patients with lung cancers bearing driver mutations.


CD47 Antigen , Lung Neoplasms , Macrophages , Lung Neoplasms/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/metabolism , Humans , CD47 Antigen/genetics , CD47 Antigen/metabolism , CD47 Antigen/immunology , CD47 Antigen/antagonists & inhibitors , Mice , Animals , Macrophages/metabolism , Macrophages/immunology , Macrophages/pathology , Cell Line, Tumor , Mutation , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Molecular Targeted Therapy , ErbB Receptors/genetics , ErbB Receptors/metabolism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/immunology , MAP Kinase Signaling System/drug effects , MAP Kinase Signaling System/immunology , MAP Kinase Signaling System/genetics , Phagocytosis , Female
11.
Fungal Genet Biol ; 171: 103874, 2024 Mar.
Article En | MEDLINE | ID: mdl-38307402

Aspergillus cristatus is a probiotic fungus known for its safety and abundant secondary metabolites, making it a promising candidate for various applications. However, limited progress has been made in researching A. cristatus due to challenges in genetic manipulation. The mitogen-activated protein kinase (MAPK) signaling pathway is involved in numerous physiological processes, but its specific role in A. cristatus remains unclear. In this study, we successfully developed an efficient polyethylene glycol (PEG)-mediated protoplast transformation method for A. cristatus, enabling us to investigate the function of Pmk1, Mpk1, and Hog1 in the MAPK signaling pathway. Our findings revealed that Pmk1, Mpk1, and Hog1 are crucial for sexual reproduction, melanin synthesis, and response to external stress in A. cristatus. Notably, the deletion of Pmk1, Mpk1, or Hog1 resulted in the loss of sexual reproduction capability in A. cristatus. Overall, this research on MAPK will contribute to the continued understanding of the reproductive strategy and melanin synthesis mechanism of A. cristatus.


Mitogen-Activated Protein Kinases , Saccharomyces cerevisiae Proteins , Mitogen-Activated Protein Kinases/genetics , Mitogen-Activated Protein Kinases/metabolism , Melanins/genetics , MAP Kinase Signaling System/genetics , Aspergillus/genetics , Aspergillus/metabolism , Phosphorylation , Saccharomyces cerevisiae Proteins/metabolism
12.
Gene ; 905: 148234, 2024 May 05.
Article En | MEDLINE | ID: mdl-38309318

OBJECTIVES: Ameloblastoma (AM), a common odontogenic epithelial tumor, exhibits aggressive growth due to incomplete encapsulation within the jawbone. Postoperative recurrence is a significant concern, closely associated with its invasive nature. We investigate the role of tRNA N-7 methylguanosine (m7G) modification mediated by Methyltransferase-like 1 (METTL1) in AM's invasive growth and prognosis. MATERIALS AND METHODS: METTL1 expression was analyzed in diverse cell lines and clinical AM tissues. Its association with postoperative AM recurrence was examined. Functional experiments included METTL1 gene silencing using shRNA in hTERT-AM cells, assessing cell proliferation, migration, and invasion. Xenograft tumor model was constructed to investigate tumor growth. Molecular mechanisms behind METTL1's role in AM invasiveness were elucidated using Ribosome nascent-chain complex-bound mRNA sequencing (RNC-seq) and experimental analysis. RESULTS: High METTL1 expression was significantly associated with postoperative recurrence in AM. The inhibition of AM development following METTL1 knockdown has been corroborated by experiments conducted both in vitro and in vivo. Analysis of RNC-seq data revealed that downregulated genes were predominantly enriched in the mitogen-activated protein kinase (MAPK) signaling pathway, suggesting that METTL1 may promote AM's invasive growth through the MAPK signaling pathway. CONCLUSION: Our study elucidates the functional role of METTL1 in AM's invasive development and prognosis. High METTL1 expression is linked to postoperative recurrence, and METTL1 appears to promote AM invasiveness through the MAPK signaling pathway. These findings contribute to a better understanding of AM pathogenesis and may guide future therapeutic strategies.


Ameloblastoma , Methyltransferases , Humans , Ameloblastoma/genetics , Cell Line , Cell Proliferation/genetics , MAP Kinase Signaling System/genetics , Methyltransferases/genetics , Methyltransferases/metabolism
14.
Int J Mol Sci ; 25(3)2024 Jan 28.
Article En | MEDLINE | ID: mdl-38338909

Pancreatic cancer represents a formidable challenge in oncology, primarily due to its aggressive nature and limited therapeutic options. The prognosis of patients with pancreatic ductal adenocarcinoma (PDAC), the main form of pancreatic cancer, remains disappointingly poor with a 5-year overall survival of only 5%. Almost 95% of PDAC patients harbor Kirsten rat sarcoma virus (KRAS) oncogenic mutations. KRAS activates downstream intracellular pathways, most notably the rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling axis. Dysregulation of the RAF/MEK/ERK pathway is a crucial feature of pancreatic cancer and therefore its main components, RAF, MEK and ERK kinases, have been targeted pharmacologically, largely by small-molecule inhibitors. The recent advances in the development of inhibitors not only directly targeting the RAF/MEK/ERK pathway but also indirectly through inhibition of its regulators, such as Src homology-containing protein tyrosine phosphatase 2 (SHP2) and Son of sevenless homolog 1 (SOS1), provide new therapeutic opportunities. Moreover, the discovery of allele-specific small-molecule inhibitors against mutant KRAS variants has brought excitement for successful innovations in the battle against pancreatic cancer. Herein, we review the recent advances in targeted therapy and combinatorial strategies with focus on the current preclinical and clinical approaches, providing critical insight, underscoring the potential of these efforts and supporting their promise to improve the lives of patients with PDAC.


Carcinoma, Pancreatic Ductal , Fibrosarcoma , Pancreatic Neoplasms , Humans , Carcinoma, Pancreatic Ductal/drug therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , MAP Kinase Signaling System/genetics , Mitogen-Activated Protein Kinase Kinases/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Proto-Oncogene Proteins c-raf/antagonists & inhibitors , Proto-Oncogene Proteins c-raf/metabolism
15.
J Gene Med ; 26(1): e3649, 2024 Jan.
Article En | MEDLINE | ID: mdl-38282155

BACKGROUND: Ovarian cancer is one of the most common cancers in women. Profiles changes of microRNAs (miRNAs) are closely linked to malignant tumors. In the present study, we investigated expression of miR-451a in high-grade serous ovarian cancer (HGSOC). We also investigated the potential pathological roles and the likely mechanism of miR-451a in the development of HGSOC using animal models and cell lines. METHODS: Using bioinformatics techniques and a real-time PCR, we analyzed differently expressed miRNAs in HGSOC compared to normal tissue. MTT (i.e. 3-[4, 5-dimethyl thiazol-2-yl]-2,5-diphenyl tetrazolium bromide), EDU (i.e. 5-ethynyl-2'-deoxyuridine) and transwell assays were performed to investigate the effect of miR-451a on the proliferation and migration of HGSOC SKOV-3 cells. A dual luciferase reporter assay was performed to verify the targeting relationship of miR-451 and RAB5A (one of the Rab GTPase proteins that regulates endocytosis and vesicle transport). Also, we analyzed levels of the RAB5A mRNA and protein by real-time PCR, western blotting and immunohistochemistry assays in HGSOC cells and tissues. Finally, we performed in vivo experiments using HGSOC mice. RESULTS: miR-451a was substantially upregulated in HGSOC and associated with favorable clinical characteristics. miR-451a knockdown significantly increased growth and metastasis of HGSOC cell line SKOV-3 through Ras/Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling. In addition, RAB5A, an early endosome marker, was shown to be a direct target of miR-451a. Moreover, RAB5A is correlated with unfavorable clinical features and shows independent prognostic significance in HGSOC. CONCLUSIONS: We found that the miR-451a/RAB5A axis is associated with tumorigenesis and progression through the Ras/Raf/MEK/ERK pathway, providing prognostic indicators and therapeutic targets for patients with HGSOC.


MicroRNAs , Ovarian Neoplasms , rab5 GTP-Binding Proteins , Animals , Female , Humans , Mice , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation, Neoplastic , MAP Kinase Signaling System/genetics , MicroRNAs/genetics , Mitogen-Activated Protein Kinase Kinases/genetics , Ovarian Neoplasms/genetics , rab5 GTP-Binding Proteins/genetics
16.
Sci Rep ; 14(1): 124, 2024 01 02.
Article En | MEDLINE | ID: mdl-38167930

To explore the relationship between miR-373 and the occurrence and development of colorectal cancer. Additionally, it aims to predict the potential cellular signaling pathways and regulatory mechanisms in which miR-373 may be involved and provides a theoretical basis and experimental evidence for the clinical application of miR-373 as a potential biomarker, molecular target, and prognostic indicator in colorectal cancer. Real-time quantitative PCR is used to analyze the expression of miR-373 in human colorectal cancer cell lines and normal human colonic epithelial cells. Further validation of the differential expression of miR-373 in colorectal cancer cell lines is being performed. Biological functions such as cell proliferation, invasion and apoptosis are being detected by MTT, CCK-8, transwell, cell cycle analysis, and flow cytometry experiments to verify the changes in the biological behavior of colon cancer cells after overexpression and interference of miR-373 in SW-480 cells and to explore the effects of miR-373 on cell proliferation, invasion, and apoptosis in colon cancer cells. Proteomic analysis is being conducted on proteins extracted from miR-373 overexpressing SW480 cells, and mass spectrometry is used for protein identification. GO, KEGG, and enrichment analysis are being employed to analyze the significantly differentially expressed proteins. The expression levels of pathway-related proteins are being verified using Western blot. Overexpression of miR-373 increased the invasive and metastatic ability of SW-480 cells; knockdown of miR-373 decreased the invasive and metastatic ability of SW-480 cells. However, there was no statistically significant effect on cell proliferation and apoptosis in SW-480 cells. Proteomic analysis identified 78 differentially expressed proteins based on fold change (FC) > 1.2 and P < 0.05. Annotation of differentially changed proteins revealed that the MAPK signaling pathway, PI3K-Akt signaling pathway, and FAK signaling pathway may play crucial roles in the migration and invasion of colorectal cancer. Western blot analysis showed that overexpression of miR-373 significantly increased the levels of p-ERK1/2 in SW480 cells. miR-373 may activate the ERK/MAPK signaling pathway to promote the invasion and migration of colorectal cancer cells.


Colonic Neoplasms , Colorectal Neoplasms , MicroRNAs , Humans , MAP Kinase Signaling System/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proteomics , Cell Line, Tumor , Cell Movement/genetics , Colonic Neoplasms/pathology , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology
17.
Mol Biotechnol ; 66(1): 102-111, 2024 Jan.
Article En | MEDLINE | ID: mdl-37041423

Retinoblastoma (RB) is a malignant ocular cancer that affects children. Several microRNAs (miRNAs) have been implicated in RB regulation. The present study aimed to investigate the role of miR-4529-3p in RB pathogenesis. Scratch, Transwell, and Cell Counting Kit (CCK)-8 assays were conducted to assess the migratory, invasive, and proliferative abilities of RB cells. The expression levels of miR-4529-3p, RB1, and ERK pathway-related proteins were analyzed using western blotting and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Target relationships were verified using dual-luciferase reporter experiments. A murine RB model was developed to analyze the effects of miR-4529-3p on RB tumor growth in vivo. Our experiments revealed high levels of miR-4529-3p and low levels of RB1 in RB tissues. Functional analyses revealed that the migratory, invasive, and proliferative abilities of RB cells were repressed by miR-4529-3p inhibition. Similarly, p-ERK 1/2 protein levels were suppressed by miR-4529-3p inhibition. Furthermore, downregulation of miR-4529-3p limited tumor growth in vivo. Mechanistically, miR-4259-3p targets RB1. Interestingly, RB1 silencing abrogated the alleviative effects of miR-4529-3p downregulation in RB cells. MiR-4529-3p promotes RB progression by inhibiting RB1 and activating the ERK pathway. This evidence suggests that the miR-4529-3p/RB1 regulatory axis may be a prospective target for RB treatment in clinical settings.


MicroRNAs , Retinal Neoplasms , Retinoblastoma , Child , Humans , Animals , Mice , Retinoblastoma/genetics , Retinoblastoma/metabolism , Retinoblastoma/pathology , MAP Kinase Signaling System/genetics , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Signal Transduction , Retinal Neoplasms/genetics , Retinal Neoplasms/metabolism , Retinal Neoplasms/pathology , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Ubiquitin-Protein Ligases/metabolism , Retinoblastoma Binding Proteins/genetics , Retinoblastoma Binding Proteins/metabolism
18.
J Oral Biosci ; 66(1): 151-159, 2024 Mar.
Article En | MEDLINE | ID: mdl-38030062

OBJECTIVES: This study aimed to clarify the molecular mechanism underlying the higher invasion and metastasis abilities of LMF4 cells than those of HSC-3 cells by comparing the expression levels of the tumor suppressor factor, cell adhesion molecule 1 (CADM1). METHODS: We explored 1) whether CADM1 expression level was downregulated in LMF4 cells compared with HSC-3 cells, 2) whether CADM1 expression knockdown increased the expression levels of matrix metalloproteinases (MMPs), 3) the exact cellular signaling pathways responsible for increased MMP expression after knockdown of CADM1 expression, and 4) whether disruption of CADM1-dependent HSC-3 cell adhesion increased the migratory and invasive activities of HSC-3 cells. RESULTS: CADM1 expression was lower in the LMF4 than in the HSC-3 cells. The knockdown of CADM1 increased the expression of MMP-2 and MMP-9 in HSC-3 cells. In addition, the upregulation of MMP-2 expression after CADM1 knockdown was abrogated by the mitogen-activated protein (MAP)/extracellular signal-regulated kinase kinase (MEK) inhibitor U0126 and the phosphoinositide 3-kinase (PI3K) inhibitor LY294002. The upregulation of MMP-9 expression after the knockdown of CADM1 was abrogated by the c-Jun N-terminal kinase (JNK) inhibitor SP600125 and the p38 MAP kinase (MAPK) inhibitor SB203580 and LY294002. Anti-CADM1 neutralizing antibody evoked migratory and invasive abilities of HSC-3 cells. CONCLUSION: The disruption of CADM1-dependent cell-cell adhesion in human oral squamous cell carcinoma cells resulted in tumor progression, possibly through an increase in MMP-2 expression in a MEK/PI3K-dependent manner and an increase in MMP-9 expression in a JNK/p38 MAPK/PI3K-dependent manner.


Carcinoma, Squamous Cell , Head and Neck Neoplasms , Mouth Neoplasms , Humans , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Phosphatidylinositol 3-Kinases/metabolism , MAP Kinase Signaling System/genetics , Carcinoma, Squamous Cell/genetics , Squamous Cell Carcinoma of Head and Neck , Cell Adhesion/genetics , Mouth Neoplasms/genetics , p38 Mitogen-Activated Protein Kinases/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Cell Adhesion Molecule-1/genetics , Cell Adhesion Molecule-1/metabolism
19.
Am J Med Genet A ; 194(4): e63477, 2024 Apr.
Article En | MEDLINE | ID: mdl-37969032

Germline pathogenic variants in the RAS/mitogen-activated protein kinase (MAPK) signaling pathway are the molecular cause of RASopathies, a group of clinically overlapping genetic syndromes. RASopathies constitute a wide clinical spectrum characterized by distinct facial features, short stature, predisposition to cancer, and variable anomalies in nearly all the major body systems. With increasing global recognition of these conditions, the 8th International RASopathies Symposium spotlighted global perspectives on clinical care and research, including strategies for building international collaborations and developing diverse patient cohorts in anticipation of interventional trials. This biannual meeting, organized by RASopathies Network, was held in a hybrid virtual/in-person format. The agenda featured emerging discoveries and case findings as well as progress in preclinical and therapeutic pipelines. Stakeholders including basic scientists, clinician-scientists, practitioners, industry representatives, patients, and family advocates gathered to discuss cutting edge science, recognize current gaps in knowledge, and hear from people with RASopathies about the experience of daily living. Presentations by RASopathy self-advocates and early-stage investigators were featured throughout the program to encourage a sustainable, diverse, long-term research and advocacy partnership focused on improving health and bringing treatments to people with RASopathies.


Costello Syndrome , Ectodermal Dysplasia , Heart Defects, Congenital , Neoplasms , Noonan Syndrome , Humans , ras Proteins/genetics , MAP Kinase Signaling System/genetics , Costello Syndrome/genetics , Neoplasms/genetics , Ectodermal Dysplasia/genetics , Noonan Syndrome/genetics , Heart Defects, Congenital/genetics
20.
FEBS J ; 291(7): 1483-1505, 2024 Apr.
Article En | MEDLINE | ID: mdl-38143314

Alterations in glycosylation are associated with breast tumor formation and progression. Nevertheless, the specific functions and mechanisms of the human major UDP-galactose transporter-encoding gene solute carrier family 35 member A2 (SLC35A2) in breast invasive carcinoma (BRCA) have not been fully determined. Here, we report that SLC35A2 promotes BRCA progression by activating extracellular signal regulated kinase (ERK). SLC35A2 expression and prognosis-predictive significance in pan-cancer were evaluated using public databases. The upstream non-coding RNAs (ncRNAs) of SLC35A2 were analyzed, and their expression and regulations were validated in breast tissues and cell lines by a quantitative PCR and dual-luciferase assays. We used bioinformatic tools to assess the link between SLC35A2 expression and immune infiltration and performed immunohistochemistry for validation. Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, transwell, flow cytometer and western blotting were used to assess the proliferation, motility, cell cycle and apoptosis of BRCA cells in vitro. The xenograft models were constructed to assess the effect of SLC35A2 on BRCA tumor growth in vivo. The results indicated that SLC35A2 expression was upregulated and linked to an unfavorable prognosis in BRCA. The most likely upstream ncRNA-associated pathway of SLC35A2 in BRCA was the AC074117.1/hsa-let-7b-5p axis. SLC35A2 expression had positive correlations with the presence of Th2 cells, regulatory T cells and immune checkpoints. Knockdown of SLC35A2 could reduce BRCA cell proliferation, motility, and cause G2/M arrest and cell apoptosis via ERK signaling. Moreover, ERK activation can rescue the inhibitory effects of knockdown SLC35A2 in BRCA. In conclusion, AC074117.1/hsa-let-7b-5p axis-mediated high expression of SLC35A2 acts as a tumor promoter in BRCA via ERK signaling, which provides a potential target for BRCA treatment.


Breast Neoplasms , MicroRNAs , Humans , Female , Breast Neoplasms/pathology , Extracellular Signal-Regulated MAP Kinases , MAP Kinase Signaling System/genetics , Apoptosis/genetics , Cell Line, Tumor , G2 Phase Cell Cycle Checkpoints , Cell Proliferation/genetics , MicroRNAs/genetics , MicroRNAs/metabolism
...