Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 334
Filtrar
1.
Nat Commun ; 15(1): 8047, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39277621

RESUMEN

Magnaporthe oryzae is a devastating fungal pathogen that causes the rice blast disease worldwide. The post-translational modification of ADP-ribosylation holds significant importance in various fundamental biological processes. However, the specific function of this modification in M. oryzae remains unknown. This study revealed that Poly(ADP-ribosyl)ation (PARylation) executes a critical function in M. oryzae. M. oryzae Poly(ADP-ribose) polymerase 1 (PARP1) exhibits robust PARylation activity. Disruption of PARylation by PARP1 knock-out or chemical inhibition reveals its involvement in M. oryzae virulence, particularly in appressorium formation. Furthermore, we identified two M. oryzae 14-3-3 proteins, GRF1 and GRF2, as substrates of PARP1. Deletion of GRF1 or GRF2 results in delayed and dysfunctional appressorium, diminished plant penetration, and reduced virulence of the fungus. Biochemical and genetic evidence suggest that PARylation of 14-3-3s is essential for its function in M. oryzae virulence. Moreover, PARylation regulates 14-3-3 dimerization and is required for the activation of the mitogen-activated protein kinases (MAPKs), Pmk1 and Mps1. GRF1 interacts with both Mst7 and Pmk1, and bridges their interaction in a PARylation-dependent manner. This study unveils a distinctive mechanism that PARylation of 14-3-3 proteins controls appressorium formation through MAPK activation, and could facilitate the development of new strategies of rice blast disease control.


Asunto(s)
Proteínas 14-3-3 , Proteínas Fúngicas , Oryza , Enfermedades de las Plantas , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Virulencia , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , ADP-Ribosilación , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Poli(ADP-Ribosa) Polimerasa-1/genética , Ascomicetos/patogenicidad , Ascomicetos/genética , Ascomicetos/metabolismo , Magnaporthe/patogenicidad , Magnaporthe/genética , Magnaporthe/metabolismo , Procesamiento Proteico-Postraduccional
2.
J Agric Food Chem ; 72(36): 19657-19666, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39190007

RESUMEN

Magnaporthe oryzae, the causal agent of rice blast, is a fungal disease pathogen. Bacillus spp. have emerged as the most promising biological control agent alternative to chemical fungicides. In this study, the bacterial strain JLU-1 with significant antagonistic activity isolated from the rhizosphere soil of rice was identified as Bacillus velezensis through whole-genome sequencing, average nucleotide identity analysis, and 16S rRNA gene sequencing. Twelve gene clusters for secondary metabolite synthesis were identified in JLU-1. Furthermore, 3 secondary metabolites were identified in JLU-1, and the antagonistic effect of secondary metabolites against fungal pathogens was confirmed. Exposure to JLU-1 reduced the virulence of M. oryzae, and JLU-1 has the ability to induce the reactive oxygen species production of rice and improve the salt tolerance of rice. All of these results indicated that JLU-1 and its secondary metabolites have the promising potential to be developed into a biocontrol agent to control fungal diseases.


Asunto(s)
Bacillus , Agentes de Control Biológico , Oryza , Enfermedades de las Plantas , Bacillus/genética , Bacillus/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Agentes de Control Biológico/farmacología , Agentes de Control Biológico/metabolismo , Metabolismo Secundario , Antibiosis , Microbiología del Suelo , Ascomicetos/genética , Ascomicetos/metabolismo , Control Biológico de Vectores , Magnaporthe/genética , Magnaporthe/metabolismo
3.
Proc Natl Acad Sci U S A ; 121(28): e2402872121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968126

RESUMEN

Bioengineering of plant immune receptors has emerged as a key strategy for generating novel disease resistance traits to counteract the expanding threat of plant pathogens to global food security. However, current approaches are limited by rapid evolution of plant pathogens in the field and may lack durability when deployed. Here, we show that the rice nucleotide-binding, leucine-rich repeat (NLR) immune receptor Pik-1 can be engineered to respond to a conserved family of effectors from the multihost blast fungus pathogen Magnaporthe oryzae. We switched the effector binding and response profile of the Pik NLR from its cognate rice blast effector AVR-Pik to the host-determining factor pathogenicity toward weeping lovegrass 2 (Pwl2) by installing a putative host target, OsHIPP43, in place of the native integrated heavy metal-associated domain (generating Pikm-1OsHIPP43). This chimeric receptor also responded to other PWL alleles from diverse blast isolates. The crystal structure of the Pwl2/OsHIPP43 complex revealed a multifaceted, robust interface that cannot be easily disrupted by mutagenesis, and may therefore provide durable, broad resistance to blast isolates carrying PWL effectors in the field. Our findings highlight how the host targets of pathogen effectors can be used to bioengineer recognition specificities that have more robust properties compared to naturally evolved disease resistance genes.


Asunto(s)
Proteínas Fúngicas , Proteínas NLR , Oryza , Enfermedades de las Plantas , Proteínas de Plantas , Oryza/microbiología , Oryza/inmunología , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Proteínas NLR/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/inmunología , Proteínas de Plantas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/inmunología , Interacciones Huésped-Patógeno/inmunología , Resistencia a la Enfermedad/inmunología , Inmunidad de la Planta , Bioingeniería/métodos , Magnaporthe/inmunología , Magnaporthe/genética , Magnaporthe/metabolismo , Unión Proteica , Receptores Inmunológicos/metabolismo , Ascomicetos
4.
PLoS Pathog ; 20(6): e1012277, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38885263

RESUMEN

Filamentous plant pathogens deliver effector proteins into host cells to suppress host defence responses and manipulate metabolic processes to support colonization. Understanding the evolution and molecular function of these effectors provides knowledge about pathogenesis and can suggest novel strategies to reduce damage caused by pathogens. However, effector proteins are highly variable, share weak sequence similarity and, although they can be grouped according to their structure, only a few structurally conserved effector families have been functionally characterized to date. Here, we demonstrate that Zinc-finger fold (ZiF) secreted proteins form a functionally diverse effector family in the blast fungus Magnaporthe oryzae. This family relies on the Zinc-finger motif for protein stability and is ubiquitously present in blast fungus lineages infecting 13 different host species, forming different effector tribes. Homologs of the canonical ZiF effector, AVR-Pii, from rice infecting isolates are present in multiple M. oryzae lineages. Wheat infecting strains of the fungus also possess an AVR-Pii like allele that binds host Exo70 proteins and activates the immune receptor Pii. Furthermore, ZiF tribes may vary in the proteins they bind to, indicating functional diversification and an intricate effector/host interactome. Altogether, we uncovered a new effector family with a common protein fold that has functionally diversified in lineages of M. oryzae. This work expands our understanding of the diversity of M. oryzae effectors, the molecular basis of plant pathogenesis and may ultimately facilitate the development of new sources for pathogen resistance.


Asunto(s)
Proteínas Fúngicas , Enfermedades de las Plantas , Dedos de Zinc , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Interacciones Huésped-Patógeno , Oryza/microbiología , Ascomicetos/genética , Ascomicetos/metabolismo , Magnaporthe/genética , Magnaporthe/metabolismo , Filogenia
5.
Int J Biol Macromol ; 268(Pt 1): 131867, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670181

RESUMEN

Polarized growth is critical for the development of filamentous phytopathogens, and the CHY-type zinc finger protein Chy1 regulates microtubule assembly to influence polarized growth and thereby affect plant infections. However, the biological role of a Chy1 homolog MoChy1 remains unknown in Magnaporthe oryzae. We found here that the MoChy1-GFP was distributed in the cytoplasm outside the vacuole in hyphae and localized mainly to the vacuole compartments as the appressorium matured. The Mochy1 mutants showed an extremely slow growth rate, curved and branched mycelium, reduced conidiation, and a smaller size in the appressorium. Meanwhile, the Mochy1 mutants showed increased sensitivity to benomyl, damaged microtubule cytoskeleton, and mislocalized polarisome protein MoSpa2 and chitin synthase MoChs6 in hyphae. Compared to Guy11, the Mochy1 mutants exhibited increased sensitivity to H2O2, impaired ability to eliminate host-derived ROS and reduced penetration into host plants, resulting in a strong reduction in pathogenicity of Mochy1 mutants. Furthermore, the Mochy1 mutants also exhibited defects in chitin distribution, osmotic stress tolerance, and septin ring organization during appressorium differentiation and fungal development. Nonselective autophagy was negatively regulated in Mochy1 mutants compared to Guy11. In summary, MoChy1 plays multiple roles in fungal polar growth and full virulence of M. oryzae.


Asunto(s)
Autofagia , Proteínas Fúngicas , Esporas Fúngicas , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/genética , Mutación , Dedos de Zinc , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Virulencia/genética , Magnaporthe/patogenicidad , Magnaporthe/genética , Magnaporthe/crecimiento & desarrollo , Magnaporthe/metabolismo , Enfermedades de las Plantas/microbiología , Oryza/microbiología , Regulación Fúngica de la Expresión Génica , Ascomicetos
6.
Nat Commun ; 15(1): 1104, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321036

RESUMEN

Some plant sensor nucleotide-binding leucine-rich repeat (NLR) receptors detect pathogen effectors through their integrated domains (IDs). Rice RGA5 sensor NLR recognizes its corresponding effectors AVR-Pia and AVR1-CO39 from the blast fungus Magnaporthe oryzae through direct binding to its heavy metal-associated (HMA) ID to trigger the RGA4 helper NLR-dependent resistance in rice. Here, we report a mutant of RGA5 named RGA5HMA5 that confers complete resistance in transgenic rice plants to the M. oryzae strains expressing the noncorresponding effector AVR-PikD. RGA5HMA5 carries three engineered interfaces, two of which lie in the HMA ID and the other in the C-terminal Lys-rich stretch tailing the ID. However, RGA5 variants having one or two of the three interfaces, including replacing all the Lys residues with Glu residues in the Lys-rich stretch, failed to activate RGA4-dependent cell death of rice protoplasts. Altogether, this work demonstrates that sensor NLRs require a concerted action of multiple surfaces within and outside the IDs to both recognize effectors and activate helper NLR-mediated resistance, and has implications in structure-guided designing of sensor NLRs.


Asunto(s)
Magnaporthe , Oryza , Unión Proteica , Dominios Proteicos , Proteínas de Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Oryza/metabolismo , Resistencia a la Enfermedad , Magnaporthe/metabolismo
7.
PLoS Pathog ; 20(1): e1011945, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38252628

RESUMEN

The rice blast fungus Magnaporthe oryzae differentiates specialized cells called appressoria that are required for fungal penetration into host leaves. In this study, we identified the novel basic leucine zipper (bZIP) transcription factor BIP1 (B-ZIP Involved in Pathogenesis-1) that is essential for pathogenicity. BIP1 is required for the infection of plant leaves, even if they are wounded, but not for appressorium-mediated penetration of artificial cellophane membranes. This phenotype suggests that BIP1 is not implicated in the differentiation of the penetration peg but is necessary for the initial establishment of the fungus within plant cells. BIP1 expression was restricted to the appressorium by both transcriptional and post-transcriptional control. Genome-wide transcriptome analysis showed that 40 genes were down regulated in a BIP1 deletion mutant. Most of these genes were specifically expressed in the appressorium. They encode proteins with pathogenesis-related functions such as enzymes involved in secondary metabolism including those encoded by the ACE1 gene cluster, small secreted proteins such as SLP2, BAS2, BAS3, and AVR-Pi9 effectors, as well as plant cuticle and cell wall degrading enzymes. Interestingly, this BIP1 network is different from other known infection-related regulatory networks, highlighting the complexity of gene expression control during plant-fungal interactions. Promoters of BIP1-regulated genes shared a GCN4/bZIP-binding DNA motif (TGACTC) binding in vitro to BIP1. Mutation of this motif in the promoter of MGG_08381.7 from the ACE1 gene cluster abolished its appressorium-specific expression, showing that BIP1 behaves as a transcriptional activator. In summary, our findings demonstrate that BIP1 is critical for the expression of early invasion-related genes in appressoria. These genes are likely needed for biotrophic invasion of the first infected host cell, but not for the penetration process itself. Through these mechanisms, the blast fungus strategically anticipates the host plant environment and responses during appressorium-mediated penetration.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Oryza/microbiología , Magnaporthe/metabolismo , Ascomicetos/genética , Ascomicetos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Regulación Fúngica de la Expresión Génica
8.
PLoS Pathog ; 20(1): e1011988, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38289966

RESUMEN

Autophagy and Cell wall integrity (CWI) signaling are critical stress-responsive processes during fungal infection of host plants. In the rice blast fungus Magnaporthe oryzae, autophagy-related (ATG) proteins phosphorylate CWI kinases to regulate virulence; however, how autophagy interplays with CWI signaling to coordinate such regulation remains unknown. Here, we have identified the phosphorylation of ATG protein MoAtg4 as an important process in the coordination between autophagy and CWI in M. oryzae. The ATG kinase MoAtg1 phosphorylates MoAtg4 to inhibit the deconjugation and recycling of the key ATG protein MoAtg8. At the same time, MoMkk1, a core kinase of CWI, also phosphorylates MoAtg4 to attenuate the C-terminal cleavage of MoAtg8. Significantly, these two phosphorylation events maintain proper autophagy levels to coordinate the development and pathogenicity of the rice blast fungus.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Fosforilación , Virulencia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Magnaporthe/metabolismo , Autofagia , Pared Celular/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Regulación Fúngica de la Expresión Génica
9.
Plant Commun ; 5(2): 100724, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-37771153

RESUMEN

Rice blast is a devastating disease worldwide, threatening rice production and food security. The blast fungus Magnaporthe oryzae invades the host via the appressorium, a specialized pressure-generating structure that generates enormous turgor pressure to penetrate the host cuticle. However, owing to ongoing evolution of fungicide resistance, it is vitally important to identify new targets and fungicides. Here, we show that Trs85, a subunit of the transport protein particle III complex, is essential for appressorium-mediated infection in M. oryzae. We explain how Trs85 regulates autophagy through Ypt1 (a small guanosine triphosphatase protein) in M. oryzae. We then identify a key conserved amphipathic α helix within Trs85 that is associated with pathogenicity of M. oryzae. Through computer-aided screening, we identify a lead compound, SP-141, that affects autophagy and the Trs85-Ypt1 interaction. SP-141 demonstrates a substantial capacity to effectively inhibit infection caused by the rice blast fungus while also exhibiting wide-ranging potential as an antifungal agent with broad-spectrum activity. Taken together, our data show that Trs85 is a potential new target and that SP-141 has potential for the control of rice blast. Our findings thus provide a novel strategy that may help in the fight against rice blast.


Asunto(s)
Antifúngicos , Ascomicetos , Indoles , Magnaporthe , Piridinas , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Antifúngicos/metabolismo , Magnaporthe/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo
10.
Plant Commun ; 5(1): 100679, 2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-37653727

RESUMEN

Plant diseases cause enormous economic losses in agriculture and threaten global food security, and application of agrochemicals is an important method of crop disease control. Exploration of disease-resistance mechanisms and synthesis of highly bioactive agrochemicals are thus important research objectives. Here, we show that propranolol, a phosphatidate phosphatase (Pah) inhibitor, effectively suppresses fungal growth, sporulation, sexual reproduction, and infection of diverse plants. The MoPah1 enzyme activity of the rice blast fungus Magnaporthe oryzae is inhibited by propranolol. Alterations in lipid metabolism are associated with inhibited hyphal growth and appressorium formation caused by propranolol in M. oryzae. Propranolol inhibits a broad spectrum of 12 plant pathogens, effectively inhibiting infection of barley, wheat, maize, tomato, and pear. To improve antifungal capacity, we synthesized a series of propranolol derivatives, one of which shows a 16-fold increase in antifungal ability and binds directly to MoPah1. Propranolol and its derivatives can also reduce the severity of rice blast and Fusarium head blight of wheat in the field. Taken together, our results demonstrate that propranolol suppresses fungal development and infection through mechanisms involved in lipid metabolism. Propranolol and its derivatives may therefore be promising candidates for fungicide development.


Asunto(s)
Fungicidas Industriales , Magnaporthe , Oryza , Fungicidas Industriales/farmacología , Fungicidas Industriales/metabolismo , Antifúngicos/farmacología , Antifúngicos/metabolismo , Oryza/microbiología , Fosfatidato Fosfatasa/metabolismo , Fosfatidato Fosfatasa/farmacología , Propranolol/farmacología , Propranolol/metabolismo , Magnaporthe/metabolismo , Triticum
11.
Lett Appl Microbiol ; 76(12)2023 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-38086617

RESUMEN

Our study focuses on hydroxamate-type siderophores from Pseudomonas putida BP25, known for chelating ferric iron and aiding microbial growth in iron-deficient environments. Confirmed through CAS-agar and tetrazolium tests, a purified siderophore extract was obtained via ion-exchange chromatography. Applying varying concentrations of this siderophore to rice seedlings demonstrated concentration-dependent effects on shoot and root phenotypes. Prophylactic application on rice leaves significantly reduced blast severity (68.7%-97.0%), surpassing curative application (47.5%-86.87%). Additionally, the siderophore treatment elevated peroxidase, polyphenol oxidase, and total phenols in rice plants. Defense-related genes linked to salicylic acid (OsPR1.1, OsNPR1, and OsPDF2.2), and other pathways (Oshox24, OsCLE, and OsGLP3-3, OsEIN2.4, and OsCSE) promoting blast suppression showed upregulation. However, the OsACS6 gene associated with ethylene-induced internodal elongation was significantly downregulated. Overall, our findings propose that the siderophore from P. putida BP25 induces defense gene transcription, offering potential for sustainable rice production via bio-formulation.


Asunto(s)
Magnaporthe , Oryza , Pseudomonas putida , Sideróforos/metabolismo , Oryza/metabolismo , Pseudomonas putida/genética , Pseudomonas putida/metabolismo , Magnaporthe/genética , Magnaporthe/metabolismo , Hierro/metabolismo , Enfermedades de las Plantas
12.
Biomolecules ; 13(11)2023 11 14.
Artículo en Inglés | MEDLINE | ID: mdl-38002332

RESUMEN

Recalcitrant rice blast disease is caused by Magnaporthe oryzae, which has a significant negative economic reverberation on crop productivity. In order to induce the disease onto the host, M. oryzae positively generates many types of small secreted proteins, here named as effectors, to manipulate the host cell for the purpose of stimulating pathogenic infection. In M. oryzae, by engaging with specific receptors on the cell surface, effectors activate signaling channels which control an array of cellular activities, such as proliferation, differentiation and apoptosis. The most recent research on effector identification, classification, function, secretion, and control mechanism has been compiled in this review. In addition, the article also discusses directions and challenges for future research into an effector in M. oryzae.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Magnaporthe/metabolismo , Oryza/metabolismo , Ascomicetos/metabolismo , Proteínas Fúngicas/metabolismo
13.
Cell Rep ; 42(10): 113315, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37862164

RESUMEN

The receptor protein PEX5, an important component of peroxisomes, regulates growth, development, and immunity in yeast and mammals. PEX5 also influences growth and development in plants, but whether it participates in plant immunity has remained unclear. Here, we report that knockdown of OsPEX5 enhances resistance to the rice blast fungus Magnaporthe oryzae. We demonstrate that OsPEX5 interacts with the E3 ubiquitin ligase APIP6, a positive regulator of plant immunity. APIP6 ubiquitinates OsPEX5 in vitro and promotes its degradation in vivo via the 26S proteasome pathway. In addition, OsPEX5 interacts with the aldehyde dehydrogenase OsALDH2B1, which functions in growth-defense trade-offs in rice. OsPEX5 stabilizes OsALDH2B1 to enhance its repression of the defense-related gene OsAOS2. Our study thus uncovers a previously unrecognized hierarchical regulatory mechanism in which an E3 ubiquitin ligase targets a peroxisome receptor protein that negatively regulates immunity in rice by stabilizing an aldehyde dehydrogenase that suppresses defense gene expression.


Asunto(s)
Ascomicetos , Magnaporthe , Magnaporthe/metabolismo , Ascomicetos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Enfermedades de las Plantas , Resistencia a la Enfermedad , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
14.
Int J Biol Macromol ; 253(Pt 2): 126728, 2023 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-37678689

RESUMEN

Mediator, a universal eukaryotic coactivator, is a multiprotein complex to transduce information from the DNA-bound transcription factors to the RNA polymerase II transcriptional machinery. In this study, the biofunctions of a rice mediator subunit OsMED16 in leaf development and blast resistance were characterized. OsMED16 encodes a putative protein of 1170 amino acids, which is 393 bp shorted than the version in Rice Genome Annotation Project databases. Overexpression of OsMED16 plants exhibited wider leaves with larger and more numerous cells in lateral axis, and enhanced resistance to M. oryzae with hyperaccumulated salicylic acid. Further analysis revealed that OsMED16 interacts with OsE2Fa in nuclei, and the complex could directly regulate the transcriptional levels of several genes involved in cell cycle regulation and SA mediated blast resistance, such as OsCC52A1, OsCDKA1, OsCDKB2;2, OsICS1 and OsWRKY45. Altogether, this study proved that OsMED16 is a positive regulator of rice leaf development and blast resistance, and providing new insights into the crosstalk between cell cycle regulation and immunity.


Asunto(s)
Magnaporthe , Oryza , Oryza/metabolismo , Magnaporthe/metabolismo , Regulación de la Expresión Génica de las Plantas , Complejo Mediador/genética , Complejo Mediador/metabolismo , Proteínas de Plantas/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Enfermedades de las Plantas/genética , Resistencia a la Enfermedad/genética
15.
J Proteomics ; 287: 104970, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37467888

RESUMEN

Magnaporthe oryzae snodprot1 homologous protein (MSP1) is known to function as a pathogen-associated molecular pattern (PAMP) and trigger PAMP-triggered immunity (PTI) in rice including induction of programmed cell death and expression of defense-related genes. The involvement of several post-translational modifications (PTMs) in the regulation of plant immune response, especially PTI, is well established, however, the information on the regulatory roles of these PTMs in response to MSP1-induced signaling is currently elusive. Here, we report the phosphoproteome, ubiquitinome, and acetylproteome to investigate the MSP1-induced PTMs alterations in MSP1 overexpressed and wild-type rice. Our analysis identified a total of 4666 PTMs-modified sites in rice leaves including 4292 phosphosites, 189 ubiquitin sites, and 185 acetylation sites. Among these, the PTM status of 437 phosphorylated, 53 ubiquitinated, and 68 acetylated peptides was significantly changed by MSP1. Functional annotation of MSP1 modulated peptides by MapMan analysis revealed that these were majorly associated with cellular immune responses including signaling, transcription factors, DNA and RNA regulation, and protein metabolism, among others. Taken together, our study provides novel insights into post-translational mediated regulation of rice proteins in response to M. oryzae secreted PAMP which help in understanding the molecular mechanism of MSP1-induced signaling in rice in greater detail. SIGNIFICANCE: The research investigates the effect of overexpression of MSP1 protein in rice leaves on the phosphoproteome, acetylome, and ubiquitinome. The study found that MSP1 is involved in rice protein phosphorylation, particularly in signaling pathways, and identified a key component, PTAC16, in MSP1-induced signaling. The analysis also revealed MSP1's role in protein degradation and modification by inducing ubiquitination of the target rice proteins. The research identified potential kinases involved in the phosphorylation of rice proteins, including casein kinase II, 14-3-3 domain binding motif, ß-adrenergic receptor kinase, ERK1,2 kinase substrate motif, and casein kinase I motifs. Overall, the findings provide insights into the molecular mechanisms underlying of MSP1 induced signaling in rice which may have implications for improving crop yield and quality.


Asunto(s)
Magnaporthe , Oryza , Oryza/metabolismo , Proteína 1 de Superficie de Merozoito/genética , Proteína 1 de Superficie de Merozoito/metabolismo , Procesamiento Proteico-Postraduccional , Proteolisis , Péptidos/metabolismo , Proteoma/metabolismo , Enfermedades de las Plantas , Proteínas de Plantas/metabolismo , Magnaporthe/metabolismo
16.
Plant Commun ; 4(5): 100626, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37177781

RESUMEN

Rice blast, caused by Magnaporthe oryzae, is one of the most devastating diseases of rice. During infection, M. oryzae secretes effectors to facilitate blast development. Among these effectors, the avirulence factor AvrPi9 is recognized by Pi9, a broad-spectrum blast resistance protein that triggers Pi9-mediated resistance in rice. However, little is known about the interaction between AvrPi9 and Pi9 and how AvrPi9 exerts virulence to promote infection. In this study, we found that ectopic expression of AvrPi9 in the Pi9-lacking cultivar TP309 suppressed basal resistance against M. oryzae. Furthermore, we identified an AvrPi9-interacting protein in rice, which we named OsRGLG5, encoding a functional RING-type E3 ubiquitin ligase. During infection, AvrPi9 was ubiquitinated and degraded by OsRGLG5. Meanwhile, AvrPi9 affected the stability of OsRGLG5. Infection assays revealed that OsRGLG5 is a positive regulator of basal resistance against M. oryzae, but it is not essential for Pi9-mediated blast resistance in rice. In conclusion, our results revealed that OsRGLG5 is targeted by the M. oryzae effector AvrPi9 and positively regulates basal resistance against rice blast.


Asunto(s)
Ascomicetos , Magnaporthe , Oryza , Resistencia a la Enfermedad/genética , Magnaporthe/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Oryza/genética , Oryza/metabolismo , Enfermedades de las Plantas/genética
17.
Microbiol Spectr ; 11(3): e0482422, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37154721

RESUMEN

Endophytes play an important role in shaping plant growth and immunity. However, the mechanisms for endophyte-induced disease resistance in host plants remain unclear. Here, we screened and isolated the immunity inducer ShAM1 from the endophyte Streptomyces hygroscopicus OsiSh-2, which strongly antagonizes the pathogen Magnaporthe oryzae. Recombinant ShAM1 can trigger rice immune responses and induce hypersensitive responses in various plant species. After infection with M. oryzae, blast resistance was dramatically improved in ShAM1-inoculated rice. In addition, the enhanced disease resistance by ShAM1 was found to occur through a priming strategy and was mainly regulated through the jasmonic acid-ethylene (JA/ET)-dependent signaling pathway. ShAM1 was identified as a novel α-mannosidase, and its induction of immunity is dependent on its enzyme activity. When we incubated ShAM1 with isolated rice cell walls, the release of oligosaccharides was observed. Notably, extracts from the ShAM1-digested cell wall can enhance the disease resistance of the host rice. These results indicated that ShAM1 triggered immune defense against pathogens by damage-associated molecular pattern (DAMP)-related mechanisms. Our work provides a representative example of endophyte-mediated modulation of disease resistance in host plants. The effects of ShAM1 indicate the promise of using active components from endophytes as plant defense elicitors for the management of plant disease. IMPORTANCE The specific biological niche inside host plants allows endophytes to regulate plant disease resistance effectively. However, there have been few reports on the role of active metabolites from endophytes in inducing host disease resistance. In this study, we demonstrated that an identified α-mannosidase protein, ShAM1, secreted by the endophyte S. hygroscopicus OsiSh-2 could activate typical plant immunity responses and induce a timely and cost-efficient priming defense against the pathogen M. oryzae in rice. Importantly, we revealed that ShAM1 enhanced plant disease resistance through its hydrolytic enzyme (HE) activity to digest the rice cell wall and release damage-associated molecular patterns. Taken together, these findings provide an example of the interaction mode of endophyte-plant symbionts and suggest that HEs derived from endophytes can be used as environmentally friendly and safe prevention agent for plant disease control.


Asunto(s)
Magnaporthe , Oryza , Resistencia a la Enfermedad , Endófitos/fisiología , alfa-Manosidasa/metabolismo , alfa-Manosidasa/farmacología , Magnaporthe/metabolismo , Enfermedades de las Plantas , Pared Celular
18.
Elife ; 122023 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-37199729

RESUMEN

A subset of plant intracellular NLR immune receptors detect effector proteins, secreted by phytopathogens to promote infection, through unconventional integrated domains which resemble the effector's host targets. Direct binding of effectors to these integrated domains activates plant defenses. The rice NLR receptor Pik-1 binds the Magnaporthe oryzae effector AVR-Pik through an integrated heavy metal-associated (HMA) domain. However, the stealthy alleles AVR-PikC and AVR-PikF avoid interaction with Pik-HMA and evade host defenses. Here, we exploited knowledge of the biochemical interactions between AVR-Pik and its host target, OsHIPP19, to engineer novel Pik-1 variants that respond to AVR-PikC/F. First, we exchanged the HMA domain of Pikp-1 for OsHIPP19-HMA, demonstrating that effector targets can be incorporated into NLR receptors to provide novel recognition profiles. Second, we used the structure of OsHIPP19-HMA to guide the mutagenesis of Pikp-HMA to expand its recognition profile. We demonstrate that the extended recognition profiles of engineered Pikp-1 variants correlate with effector binding in planta and in vitro, and with the gain of new contacts across the effector/HMA interface. Crucially, transgenic rice producing the engineered Pikp-1 variants was resistant to blast fungus isolates carrying AVR-PikC or AVR-PikF. These results demonstrate that effector target-guided engineering of NLR receptors can provide new-to-nature disease resistance in crops.


Asunto(s)
Magnaporthe , Oryza , Resistencia a la Enfermedad/genética , Receptores Inmunológicos/metabolismo , Plantas/metabolismo , Enfermedades de las Plantas/microbiología , Magnaporthe/metabolismo , Proteínas de Plantas/química , Interacciones Huésped-Patógeno
19.
PLoS Pathog ; 19(4): e1011251, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37011084

RESUMEN

Magnaporthe oryzae causes rice blasts posing serious threats to food security worldwide. During infection, M. oryzae utilizes several transmembrane receptor proteins that sense cell surface cues to induce highly specialized infectious structures called appressoria. However, little is known about the mechanisms of intracellular receptor tracking and their function. Here, we described that disrupting the coat protein complex II (COPII) cargo protein MoErv14 severely affects appressorium formation and pathogenicity as the ΔMoerv14 mutant is defective not only in cAMP production but also in the phosphorylation of the mitogen-activated protein kinase (MAPK) MoPmk1. Studies also showed that either externally supplementing cAMP or maintaining MoPmk1 phosphorylation suppresses the observed defects in the ΔMoerv14 strain. Importantly, MoErv14 is found to regulate the transport of MoPth11, a membrane receptor functioning upstream of G-protein/cAMP signaling, and MoWish and MoSho1 function upstream of the Pmk1-MAPK pathway. In summary, our studies elucidate the mechanism by which the COPII protein MoErv14 plays an important function in regulating the transport of receptors involved in the appressorium formation and virulence of the blast fungus.


Asunto(s)
Magnaporthe , Oryza , Virulencia , Magnaporthe/metabolismo , Transducción de Señal , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Membrana Celular/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/metabolismo
20.
Plant Commun ; 4(4): 100561, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-36774535

RESUMEN

Fatty acid ß-oxidation is critical for fatty acid degradation and cellular development. In the rice blast fungus Magnaporthe oryzae, fatty acid ß-oxidation is reported to be important mainly for turgor generation in the appressorium. However, the role of fatty acid ß-oxidation during invasive hyphal growth is rarely documented. We demonstrated that blocking peroxisomal fatty acid ß-oxidation impaired lipid droplet (LD) degradation and infectious growth of M. oryzae. We found that the key regulator of pathogenesis, MoMsn2, which we identified previously, is involved in fatty acid ß-oxidation by targeting MoDCI1 (encoding dienoyl-coenzyme A [CoA] isomerase), which is also important for LD degradation and infectious growth. Cytological observations revealed that MoMsn2 accumulated from the cytosol to the nucleus during early infection or upon treatment with oleate. We determined that the low-density lipoprotein receptor-related protein MoLrp1, which is also involved in fatty acid ß-oxidation and infectious growth, plays a critical role in the accumulation of MoMsn2 from the cytosol to the nucleus by activating the cyclic AMP signaling pathway. Our results provide new insights into the importance of fatty acid oxidation during invasive hyphal growth, which is modulated by MoMsn2 and its related signaling pathways in M. oryzae.


Asunto(s)
Proteínas Fúngicas , Magnaporthe , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Magnaporthe/metabolismo , Transducción de Señal , Ácidos Grasos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA