Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(20): 30149-30162, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38602634

RESUMEN

Nanoparticles, particularly magnesium oxide nanoparticles (MgO-NPs), are increasingly utilized in various fields, yet their potential impact on cellular systems remains a topic of concern. This study aimed to comprehensively investigate the molecular mechanisms underlying MgO-NP-induced cellular impairment in Saccharomyces cerevisiae, with a focus on cell wall integrity, endoplasmic reticulum (ER) stress response, mitochondrial function, lipid metabolism, autophagy, and epigenetic alterations. MgO-NPs were synthesized through a chemical reduction method, characterized for morphology, size distribution, and elemental composition. Concentration-dependent toxicity assays were conducted to evaluate the inhibitory effect on yeast growth, accompanied by propidium iodide (PI) staining to assess membrane damage. Intracellular reactive oxygen species (ROS) accumulation was measured, and chitin synthesis, indicative of cell wall perturbation, was examined along with the expression of chitin synthesis genes. Mitochondrial function was assessed through Psd1 localization, and ER structure was analyzed using dsRed-HDEL marker. The unfolded protein response (UPR) pathway activation was monitored, and lipid droplet formation and autophagy induction were investigated. Results demonstrated a dose-dependent inhibition of yeast growth by MgO-NPs, with concomitant membrane damage and ROS accumulation. Cell wall perturbation was evidenced by increased chitin synthesis and upregulation of chitin synthesis genes. MgO-NPs impaired mitochondrial function, disrupted ER structure, and activated the UPR pathway. Lipid droplet formation and autophagy were induced, indicating cellular stress responses. Additionally, MgO-NPs exhibited differential cytotoxicity on histone mutant strains, implicating specific histone residues in cellular response to nanoparticle stress. Immunoblotting revealed alterations in histone posttranslational modifications, particularly enhanced methylation of H3K4me. This study provides comprehensive insights into the multifaceted effects of MgO-NPs on S. cerevisiae, elucidating key molecular pathways involved in nanoparticle-induced cellular impairment. Understanding these mechanisms is crucial for assessing nanoparticle toxicity and developing strategies for safer nanoparticle applications.


Asunto(s)
Pared Celular , Estrés del Retículo Endoplásmico , Óxido de Magnesio , Nanopartículas , Saccharomyces cerevisiae , Saccharomyces cerevisiae/efectos de los fármacos , Óxido de Magnesio/toxicidad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Pared Celular/efectos de los fármacos , Nanopartículas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Autofagia/efectos de los fármacos
2.
Biol Trace Elem Res ; 202(2): 736-742, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37231319

RESUMEN

Nanotechnology is an advancing and emerging field of all environmental, medical, and industrial applications. Magnesium oxide nanoparticles have been widely used in medicine, consumer products, industrial products, textiles, ceramics, alleviation of heartburn, stomach ulcers, and bone regeneration. In the present study, acute toxicity (LC50) of MgO nanoparticles and hematological and histopathological changes in Cirrhinus mrigala was analyzed. The lethal concentration for 50% of MgO nanoparticles was 4.2321 mg/L. Hematological parameters such as white blood cells, red blood cells, hematocrit, hemoglobin, platelets, mean corpuscular volume, mean corpuscular hemoglobin, and mean corpuscular hemoglobin concentration, as well as histopathological abnormalities in gills, muscle, and liver were observed on the 7th and 14th days of exposure. The WBC, RBC, HCT, Hb, and platelets count increased on the 14th day of exposure compared to the control and 7th day of exposure. The MCV, MCH, and MCHC levels decreased on the 7th day of exposure compared to the control and increased on the 14th day. Histopathological changes of MgO nanoparticles in gills, muscle, and liver highly damaged in the quantity of 3.6 mg/L compared to 12 mg/L on 7th and 14th days of exposure. This study finds the level of exposure in hematology and histopathological changes in tissues in relation to the exposure of MgO NPs.


Asunto(s)
Cyprinidae , Hematología , Nanopartículas , Animales , Óxido de Magnesio/toxicidad , Branquias/patología , Hemoglobinas , Hígado/patología , Nanopartículas/toxicidad , Músculos
3.
Ann Med ; 55(2): 2258917, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37769030

RESUMEN

INTRODUCTION: Magnesium oxide nanoparticles (MgO NPs) have a variety of applications that have contributed to their elevated popularity, however, the safety and toxic effects on humans are also of concern with these increased applications. There is insufficient data regarding the effect of MgO NPs on reproductive organs, which are crucial aspects to the body's vital physiological functions. The present study was undertaken in male and female rats to assess the reproductive toxicological potential of two doses (low versus high) of MgO NPs on testicular and ovarian tissues. The toxicity was evaluated using histological, hormonal, and oxidative parameters. MATERIAL AND METHODS: In this work, magnesium oxide nanoparticles (MgO NPs) were synthesized by the sol-gel route and were characterized by X ray diffraction analysis (XRD) and Fourier transform infra-red spectroscopy (FTIR). Forty-eight adult Wister albino rats were used in this experiment which were divided into groups of male and female, and then further into control, low dose MgO NPs, and high dose MgO NPs. The low dose used was 131.5 mg/kg b.w. (1/10 LD50) while the high dose used was 263 mg/kg b.w. (1/5 LD50). All doses were given orally by gastric tube. After 4 weeks, blood samples were collected to investigate the level of sex hormones and both ovarian and testicular tissues were examined for variable oxidative parameters and histopathological changes by light microscopy. RESULTS: The obtained findings showed that high dose of MgO NPs produced considerable changes in sex hormones and stress parameters in both male and female rats in comparison to the low dose and control groups. Histomorphometric analysis demonstrated the presence of histopathological alterations in the testicular and ovarian tissues. CONCLUSION: The results of this study showed dose-dependent adverse effects of MgO NPs on the testis and ovary both functionally and histopathologically as compared to the control rats.


Asunto(s)
Óxido de Magnesio , Nanopartículas del Metal , Ratas , Masculino , Humanos , Femenino , Animales , Óxido de Magnesio/toxicidad , Nanopartículas del Metal/toxicidad , Nanopartículas del Metal/química , Ratas Wistar , Genitales , Hormonas Esteroides Gonadales
4.
Nanotoxicology ; 16(3): 393-407, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35818303

RESUMEN

The use of metal oxide nanoparticles (NPs) is steadily spreading, leading to increased environmental exposures to many organisms, including humans. To improve our knowledge of this potential hazard, we have evaluated the genotoxic risk of cerium oxide (CeO2NPs) and magnesium oxide (MgONPs) nanoparticle exposures using Drosophila as an in vivo assay model. In this study, two well-known assays, such as the wing somatic mutation and recombination test (wing-spot assay) and the single-cell gel electrophoresis test (comet assay) were used. As a novelty, and for the first time, changes in the expression levels of a wide panel of DNA repair genes were also evaluated. Our results indicate that none of the concentrations of CeO2NPs increased the total spot frequency in the wing-spot assay, while induction was observed at the highest dose of MgONPs. Regarding the comet assay, both tested NPs were unable to induce single DNA strand breaks or oxidative damage in DNA bases. Nevertheless, exposure to CeO2NPs induced significant increases in the expression levels of the Mlh1 and Brca2 genes, which are involved in the double-strand break repair pathway, together with a decrease in the expression levels of the MCPH1 and Rad51D genes. Regarding the effects of MgONPs exposure, the expression levels of the Ercc1, Brca2, Rad1, mu2, and stg genes were significantly increased, while Mlh1 and MCPH1 genes were decreased. Our results show the usefulness of our approach in detecting mild genotoxic effects by evaluating changes in the expression of a panel of genes involved in DNA repair pathways.


Asunto(s)
Cerio , Nanopartículas del Metal , Nanopartículas , Animales , Proteínas de Ciclo Celular , Cerio/toxicidad , Ensayo Cometa , Proteínas del Citoesqueleto , ADN , Daño del ADN , Drosophila , Humanos , Óxido de Magnesio/toxicidad , Nanopartículas del Metal/toxicidad , Nanopartículas/toxicidad , Óxidos
5.
Ann Med ; 53(1): 1850-1862, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34693843

RESUMEN

Introduction: Recently, zein-coated MgO nanowires were synthesized, which could be promising as an effective antimicrobial compounds that can be combined in the preparation of a diversity of new dental formulations. However, there is a deficiency of information concerning their toxicological profile regarding the human health.Objective: This in vivo study aimed to explore the hepato- and nephrotoxicity of low versus high doses of zein-coated MgO nanowires in rats.Materials and Methods: A 21-day recurrent dose toxicity research was carried out. Wistar rats were divided into 2 main groups, males and females (n = 18). Each group was further subdivided into 3 subgroups: control, MgO-zein nanowires low dose, MgO-zein nanowires high dose. The low dose used was 100 mg/kg while the high dose used was 200 mg/kg.Results: The results showed that MgO-zein nanowires at both doses did not affect the electrolytes levels compared to the control levels. Also, they did not produce any significant alteration in liver function markers in both rats' genders. MgO-zein nanowires at both doses did not produce any effective alteration in serum creatinine in treated rats of both genders. Moreover, very minimal histological alterations were observed in both doses of MgO-zein nanowires in liver and kidney of both genders.Conclusion: Based on the observed safety of zein-coated MgO nanowires, it can be utilized as an effective antimicrobial compound that can be combined in the preparation of a diversity of new dental formulations.KEY MESSAGESMgO NPs are globally used in multiple fields including the therapeutic field.Zein has wide pharmaceutical applications especially coating the tablet over sugar.There are no cytotoxic studies that investigate MgO-zein nanowires safety until now.


Asunto(s)
Antiinfecciosos/farmacología , Óxido de Magnesio/toxicidad , Nanocables , Zeína/química , Animales , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Óxido de Magnesio/farmacología , Masculino , Ratas , Ratas Wistar
6.
J Hazard Mater ; 411: 124884, 2021 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-33858076

RESUMEN

In the present scenario, the development of eco-friendly multifunctional biocidal substances with low cost and high efficiency, has become the center of focus. This study is, focused on the synthesis of magnesium oxide (MgO) and chitosan-modified magnesium oxide (CMgO) nanoparticles (NPs), via a green precipitation process. In this process, leaves extract of Plumbago zeylanica L was, used as a nucleating agent. The MgO and CMgO NPs exhibit face-centered cubic structures, as confirmed by XRD studies. Morphologically, the FESEM and TEM images showed that the MgO and CMgO NPs were spherical, with an average particle size of ~40±2 and ~37±2 nm, respectively. EDX spectra were used to identify the elemental compositions of the nanoparticles. By using FTIR spectra, the Mg-O stretching frequency of MgO and CMgO NPs were observed at 431 and 435 cm-1, respectively. The photoluminescence (PL) spectra of MgO and CMgO NPs, revealed oxygen vacancies at 499 nm and 519 nm, respectively, due to the active radicals generated, which were responsible for their biocidal activities. The toxicity effects of the nanoparticles developed, on cell viability (antibacterial and anticancer), were measured on the MCF-7 cell line and six different types of gram-negative bacteria. The antibacterial activities of the nanoparticles on: Klebsiella pneumoniae, Escherichia coli, Shigella dysenteriae, Pseudomonas aeruginosa, Proteus vulgaris and Vibrio cholerae bacteria, were studied with the well diffusion method. The MgO and CMgO NPs were tested on breast cancer cell line (MCF-7) via an MTT assay and it proved that CMgO NPs possess higher anticancer properties than MgO NPs. Overall, CMgO NPs showed a higher amount of cytotoxicity for both the bacterial and cancer cells when compared to the MgO NPs. Toxicity studies of fibroblast L929 cells revealed that the CMgO NPs were less harmful to the healthy cells when compared to the MgO NPs. These results suggest that biopolymer chitosan-modified MgO NPs can be used for healthcare industrial applications in order to improve human health conditions.


Asunto(s)
Quitosano , Nanopartículas del Metal , Nanopartículas , Antibacterianos/toxicidad , Quitosano/toxicidad , Bacterias Gramnegativas , Humanos , Óxido de Magnesio/toxicidad , Nanopartículas del Metal/toxicidad , Pruebas de Sensibilidad Microbiana , Nanopartículas/toxicidad , Extractos Vegetales
7.
Biomed Pharmacother ; 138: 111483, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33744756

RESUMEN

The aim of this study was to prepare, characterize, and determine the in vitro anticancer effects of platinum-doped magnesia (Pt/MgO) nanoparticles. The chemical compositions, functional groups, and size of nanoparticles were determined using X-ray diffraction, Fourier transform infrared spectroscopy, energy dispersive X-ray spectroscopy, transmission electron microscopy, and scanning electron microscopy. Pt/MgO nanoparticles were cuboid and in the nanosize range of 30-50 nm. The cytotoxicity of Pt/MgO nanoparticles was determined via the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay on the human lung and colonic cancer cells (A549 and HT29 respectively) and normal human lung and colonic fibroblasts cells (MRC-5 and CCD-18Co repectively). The Pt/MgO nanoparticles were relatively innocuous to normal cells. Pt/MgO nanoparticles downregulated Bcl-2 and upregulated Bax and p53 tumor suppressor proteins in the cancer cells. Pt/MgO nanoparticles also induced production of reactive oxygen species, decreased cellular glutathione level, and increased lipid peroxidation. Thus, the anticancer effects of Pt/MgO nanoparticles were attributed to the induction of oxidative stress and apoptosis. The study showed the potential of Pt/MgO nanoparticles as an anti-cancer compound.


Asunto(s)
Citotoxinas/toxicidad , Óxido de Magnesio/toxicidad , Nanopartículas del Metal/toxicidad , Estrés Oxidativo/efectos de los fármacos , Platino (Metal)/toxicidad , Células A549 , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Relación Dosis-Respuesta a Droga , Células HT29 , Humanos , Mediadores de Inflamación/metabolismo , Estrés Oxidativo/fisiología
8.
J Biochem Mol Toxicol ; 35(3): e22676, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33315275

RESUMEN

The liver is the main organ responsible for drug and xenobiotic metabolism and detoxification in the body. There are many antiepileptic drugs and nanoparticles that have been reported to cause serious untoward biological responses and hepatotoxicity. The aim of this study is to investigate the potential toxic effect of aspartic acid-coated magnesium oxide nanoparticles (Mg nano) and valproate (valp) using an in vitro three-dimensional (3D) human liver organoid model and an in vivo pentylenetetrazole (PTZ)-induced convulsion model in rats. Here, 3D human liver organoids were treated with valp or valp + Mg nano for 24 h and then incubated with PTZ for an extra 24 h. As the in vivo model, rats were treated with valp, Mg nano, or valp + Mg nano for 4 weeks and then they were treated with PTZ for 24 h. Toxicity in the liver organoids was demonstrated by reduced cell viability, decreased ATP, and increased reactive oxygen species. In the rat convulsion model, results revealed elevated serum alanine aminotransferase and aspartate aminotransferase levels. Both the in vitro and in vivo data demonstrated the potential toxic effects of valp + Mg nano on the liver tissues.


Asunto(s)
Hepatocitos/metabolismo , Hígado/metabolismo , Óxido de Magnesio/toxicidad , Nanopartículas/toxicidad , Organoides/metabolismo , Ácido Valproico/efectos adversos , Hepatocitos/patología , Humanos , Hígado/patología , Organoides/patología , Ácido Valproico/farmacología
9.
PLoS One ; 14(8): e0214900, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31415561

RESUMEN

Novel Magnesium Oxide (MgO) nanoparticles (NPs) modified with the polymer polyethylene glycol (PEG) were synthesized as carrier for the anticancer drug 2-Methoxyestradiol (2ME) to improve its clinical application. The functionalized NPs were characterized by Infrared spectroscopy with Fourier transform to elucidate the vibration modes of this conjugate, indicating the formation of the MgO-PEG-2ME nanocomposite. The studies of absorption and liberation determined that MgO-PEG-2ME NPs incorporated 98.51 % of 2ME while liberation of 2ME was constant during 7 days at pH 2, 5 and 7.35. Finally, the MgO-PEG-2ME NPs decreased the viability of the prostate cancer cell line LNCap suggesting that this nanocomposite is suitable as a drug delivery system for anticancer prostate therapy.


Asunto(s)
2-Metoxiestradiol/química , Antineoplásicos/química , Portadores de Fármacos/química , Óxido de Magnesio/química , Nanopartículas/química , Polietilenglicoles/química , 2-Metoxiestradiol/farmacología , Absorción Fisicoquímica , Antineoplásicos/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/toxicidad , Liberación de Fármacos , Humanos , Cinética , Óxido de Magnesio/toxicidad , Modelos Moleculares , Conformación Molecular
10.
Arch Toxicol ; 93(6): 1491-1500, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30989313

RESUMEN

Nanoparticles (NPs) are increasingly used in different consumer-related areas, for instance in food packaging or as additives, because of their enormous potential. Magnesium oxide (MgO) is an EU-approved food additive (E number 530). It is commonly used as a drying agent for powdered foods, for colour retention or as a food supplement. There are no consistent results regarding the effects of oral MgO NP uptake. Consequently, the aim of this study was to examine the effects of MgO NPs in the HT29 intestinal cell line. MgO NP concentrations ranged from 0.001 to 100 µg/ml and incubation times were up to 24 h. The cytotoxic and genotoxic potential were investigated. Apoptotic processes and cell cycle changes were analysed by flow cytometry. Finally, oxidative stress was examined. Transmission electron microscopy indicated that there was no cellular uptake. MgO NPs had no cytotoxic or genotoxic effects in HT29 cells and they did not induce apoptotic processes, cell cycle changes or oxidative stress.


Asunto(s)
Óxido de Magnesio/toxicidad , Nanopartículas del Metal/toxicidad , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células HT29 , Humanos , Óxido de Magnesio/metabolismo , Mutágenos/toxicidad , Estrés Oxidativo/efectos de los fármacos
11.
J Photochem Photobiol B ; 190: 86-97, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30504053

RESUMEN

A rapid and ecofriendly fabrication of metal oxide nanoparticles using biogenic sources is the current trend being used to replace the toxic chemical method. The present study was carried out to synthesize magnesium oxide nanoparticles (MgONPs) using the marine brown algae Sargassum wighitii as the reducing and capping agent. The as-prepared MgONPs were characterized by spectroscopic and microscopic analyses. UV-visible spectrum of the MgONPs showed a sharp absorption peak at 322 nm. X- ray diffraction analysis illustrated that the MgONPs were crystalline in nature with a face-centered cubic structure. Presence of magnesium and oxygen were further confirmed by EDX profile. FTIR analysis showed the presence of functional groups specific for sulfated polysaccharides, which might be responsible for the synthesis of MgONPs. Zeta potential and dynamic light scattering analysis illustrated that the MgONPs were highly stable at 19.8 mV with an average size of 68.06 nm. MgONPs showed potent antibacterial activity and antifungal activities against human pathogens. Photocatalytic activity of MgONPs was witnessed by the quick degradation of the organic dye methylene blue on exposure to both sunlight and UV irradiation. MgONPs showed significant cytotoxicity against the lung cancer cell lines A549 in a dose dependent manner with the IC50 value of 37.5 ±â€¯0.34 µg/ml. Safety evaluation using peripheral blood mononuclear cells (PBMCs) illustrated the MgONPs to be non-toxic in nature. Overall, the results concluded that the MgONPs generated using marine algae have exhibited scope for multifaceted biological applications.


Asunto(s)
Óxido de Magnesio/química , Nanopartículas del Metal/química , Sargassum/química , Células A549 , Antibacterianos , Antineoplásicos , Catálisis , Tecnología Química Verde , Humanos , Óxido de Magnesio/aislamiento & purificación , Óxido de Magnesio/toxicidad , Nanopartículas del Metal/toxicidad , Azul de Metileno/química , Análisis Espectral
12.
J Environ Sci (China) ; 66: 125-137, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29628079

RESUMEN

Allium cepa bioassay had been used from decades for the assessment of toxicants and their harmful effects on environment as well as human health. Magnesium oxide (MgO) particles are being utilized in different fields. However, reports on the adverse effects of MgO nanoparticles on the environment and mankind are scarce. Hence, the toxicity of MgO particles is of concern because of their increased utilization. In the current study, A. cepa was used as an indicator to assess the toxicological efficiency of MgO nano- and microparticles (NPs and MPs) at a range of exposure concentrations (12.5, 25, 50, and 100µg/mL). The toxicity was evaluated by using various bioassays on A. cepa root tip cells such as comet assay, oxidative stress and their uptake/internalization profile. Results indicated a dose dependent increase in chromosomal aberrations and decrease in mitotic index (MI) when compared to control cells and the effect was more significant for NPs than MPs (at p<0.05). Comet analysis revealed that the Deoxyribonucleic acid (DNA) damage in terms of percent tail DNA ranged from 6.8-30.1 over 12.5-100µg/mL concentrations of MgO NPs and was found to be significant at the exposed concentrations. A significant increase in generation of hydrogen peroxide and superoxide radicals was observed in accordance with the lipid peroxidation profile in both MgO NPs and MPs treated plants when compared with control. In conclusion, this investigation revealed that MgO NPs exposure exhibited greater toxicity on A. cepa than MPs.


Asunto(s)
Óxido de Magnesio/toxicidad , Nanopartículas del Metal/toxicidad , Cebollas/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Pruebas de Toxicidad/métodos , Bioensayo/métodos , Peroxidación de Lípido/efectos de los fármacos
13.
Environ Toxicol ; 33(4): 396-410, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29282847

RESUMEN

Increased utilization and exposure levels of Magnesium oxide (MgO) nanoparticles (NPs) to humans and environment may raise unexpected consequences. The goal of this study was to evaluate the toxicological implications of MgO NPs and MPs after 28 day repeated oral administration in Wistar rats with three different doses (250, 500, and 1000 mg/kg). The MgO particles were characterised systematically in order to get more insights of the toxicological behaviour. MgO NPs induced significant DNA damage and aberrations in chromosomes. Moreover, hepatic enzymes released into the systemic circulation caused significant elevated levels of physiological enzymes in blood. NPs could interfere with proteins and enzymes and alter the redox balance in cell environment. Significant accumulation of Mg in all tissues and clearance via urine and faeces was noted in size dependent kinetics. Oral administration of MgO NPs altered the biochemical and genotoxic parameters in dose dependent and gender independent manner.


Asunto(s)
Daño del ADN , Óxido de Magnesio/toxicidad , Nanopartículas del Metal/toxicidad , Administración Oral , Animales , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Óxido de Magnesio/farmacocinética , Masculino , Tamaño de la Partícula , Ratas Wistar , Distribución Tisular
14.
BMJ Case Rep ; 20172017 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-28325719

RESUMEN

We report a case of hypermagnesemia associated with the use of milk of magnesia in a male patient with end-stage renal disease. After experiencing nausea and vomiting, he developed severe bradycardia and then asystole. Resuscitation efforts were successful; however, he developed atrial fibrillation with severe widening of the QRS and diffuse ST elevation, hypothermia, hypotension and apnoea requiring intubation. Initial diagnoses included ST-elevation myocardial infarction, cardiogenic and/or septic shock and hyperkalaemia. However, serum magnesium was later found to be >4.1 mmol/L (equivalent to >10 mg/dL). He underwent haemodialysis (HD) to remove serum magnesium with remarkable overall improvement. Severe hypermagnesemia can manifest with severe bradycardia and asystole, shock, hypothermia and respiratory failure and can mimic acute coronary syndromes complicated with cardiogenic shock or septic shock. Therefore, clinicians should be aware of this life-threatening condition in patients with significant renal dysfunction. Timely treatment with HD is highly effective and lifesaving.


Asunto(s)
Paro Cardíaco/inducido químicamente , Obstrucción Intestinal/complicaciones , Óxido de Magnesio/toxicidad , Magnesio/sangre , Anciano , Diálisis/métodos , Humanos , Obstrucción Intestinal/terapia , Fallo Renal Crónico/complicaciones , Óxido de Magnesio/administración & dosificación , Masculino , Resucitación
15.
J Biomater Sci Polym Ed ; 28(5): 486-503, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28054502

RESUMEN

The modified MgO nanoparticles (m-MgO-NPs) by a copolymer containing the malic acid and low molecular weight poly(L-lactide) (poly(L-lactide-co-malic acid), PLMA) have been successfully prepared. MgO nanoparticles (MgO-NPs) were coated by the PLMA and m-MgO-NPs were uniformly dispersed in the PLLA matrix to a novel biocomposite material (PLLA/m-MgO-NPs) with more excellent interface bonding and uniformer dispersion, compared to the PLLA/MgO-NPs. Compared to neat PLLA and PLLA/MgO-NPs film, the m-MgO-NPs not only shown the obvious neutralization effect on the acidic solution in the degradation of the PLLA and better hydrophilicity, but also exhibited the higher cell viability and decrease the toxicity to the cell in the degradation process of PLLA in vitro. In addition, m-MgO-NPs also reduced the degradation rate of the PLLA. The mechanisms for the excellent dispersion of nanoparticles, enhanced pH stability, reduced degradation rate of the PLLA and the cell viability in vitro in the case of PLLA/m-MgO-NPs have also been proposed and discussed in detail.


Asunto(s)
Óxido de Magnesio/química , Nanocompuestos/química , Nanopartículas/química , Poliésteres/química , Animales , Materiales Biocompatibles/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Estabilidad de Medicamentos , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Óxido de Magnesio/toxicidad , Malatos/química , Ratones , Peso Molecular , Tamaño de la Partícula , Poliésteres/toxicidad , Propiedades de Superficie
16.
J Adhes Dent ; 18(4): 325-30, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27419241

RESUMEN

PURPOSE: To examine whether a difference exists between the in vivo biocompatibility of glass-ionomer cements (GICs) containing chlorhexidine (CHX) in different concentrations. MATERIALS AND METHODS: Eighty-four male Wistar rats were distributed into 7 groups (n = 12) and received subcutaneous implants of small tubes containing different materials, as follows: Ketac control (K), Ketac-CHX 10% (K10), Ketac-CHX 18% (K18), Resilience control (R), Resilience-CHX 10% (R10), Resilience-CHX 18% (R18), Control (polyethylene). The animals were then sacrificed on post-insertion days 7, 15 and 30, and tissues were examined under an optical microscope for inflammatory infiltrate, edema, necrosis, granulation tissue, multinucleated giant cells, and collagen fibers. The results were statistically analyzed using Kruskal-Wallis and Dunn's tests (p < 0.05). RESULTS: Groups K18 and R18 showed larger areas of intense inflammatory infiltrate, with significant differences between group C and groups K18 and R18 (p = 0.007) at 7 days, and between groups C and K18 (p = 0.017) at 15 days. In terms of tissue repair, groups K18 and R18 demonstrated a lower quantity of collagen fibers with significant differences from group C (p = 0.019) at 7 days, and between group K18 and group C (p = 0.021) at 15 days. CONCLUSION: The 18% concentration of CHX was shown to have a toxic effect. The 10% concentration of CHX was shown to be suitable for tissue contact. The addition of CHX to the glass-ionomer cements is a highly promising method for obtaining of an antibacterial GIC for use in clinical practice.


Asunto(s)
Antiinfecciosos Locales/administración & dosificación , Materiales Biocompatibles/toxicidad , Clorhexidina/administración & dosificación , Cementos de Ionómero Vítreo/toxicidad , Resinas Acrílicas/química , Resinas Acrílicas/toxicidad , Animales , Antiinfecciosos Locales/química , Antiinfecciosos Locales/toxicidad , Materiales Biocompatibles/química , Ácido Carbónico/química , Ácido Carbónico/toxicidad , Clorhexidina/química , Clorhexidina/toxicidad , Colágeno/efectos de los fármacos , Materiales Dentales/química , Materiales Dentales/toxicidad , Edema/inducido químicamente , Fibroblastos/efectos de los fármacos , Células Gigantes/efectos de los fármacos , Cementos de Ionómero Vítreo/química , Tejido de Granulación/efectos de los fármacos , Óxido de Magnesio/química , Óxido de Magnesio/toxicidad , Masculino , Ensayo de Materiales , Necrosis , Cemento de Policarboxilato/química , Cemento de Policarboxilato/toxicidad , Polietileno/química , Distribución Aleatoria , Ratas , Tejido Subcutáneo/efectos de los fármacos , Óxido de Zinc/química , Óxido de Zinc/toxicidad
17.
Int J Toxicol ; 35(4): 429-37, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27177543

RESUMEN

Worldwide researchers have rising concerns about magnesium-based materials, especially magnesium oxide (MgO) nanaoparticles, due to increasing usage as promising structural materials in various fields including cancer treatment. However, there is a serious lack of information about their toxicity at the cellular and molecular levels. In this study, the toxic potentials of MgO nanoparticles were investigated on liver (HepG2), kidney (NRK-52E), intestine (Caco-2), and lung (A549) cell lines. For the toxicological assessment, the following assays were used: the particle characterization by transmission electron microscopy, the determination of cellular uptake by inductively coupled plasma-mass spectrometry, MTT and neutral red uptake assays for cytotoxicity, comet assay for genotoxicity, and the determination of malondialdehyde (MDA), 8-hydroxydeoxyguanosine, protein carbonyl, and glutathione levels by enzyme-linked immune sorbent assays for the potential of oxidative damage and annexin V-fluorescein isothiocyanate (FITC) apoptosis detection assay with propidium iodide (PI) for apoptosis. Magnesium oxide nanoparticles were taken up by the cells depending on their concentration and agglomeration/aggregation potentials. Magnesium oxide nanoparticles induced DNA (≤14.27 fold) and oxidative damage. At a concentration of ≥323.39 µg/mL, MgO nanoparticles caused 50% inhibition in cell viability by 2 different cytotoxicity assays. The cell sensitivity to cytotoxic and genotoxic damage induced by MgO nanoparticles was ranked as HepG2 < A549 < Caco-2 < NRK-52E. Although it was observed that MgO nanoparticles induced apoptotic effects on the cells, apoptosis was not the main cell death. DNA damage, cell death, and oxidative damage effects of MgO nanoparticles should raise concern about the safety associated with their applications in consumer products.


Asunto(s)
Óxido de Magnesio/toxicidad , Nanopartículas del Metal/toxicidad , 8-Hidroxi-2'-Desoxicoguanosina , Animales , Muerte Celular/efectos de los fármacos , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Daño del ADN , Desoxiguanosina/análogos & derivados , Desoxiguanosina/metabolismo , Humanos , Estrés Oxidativo/efectos de los fármacos , Ratas
18.
IET Nanobiotechnol ; 9(5): 247-51, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26435276

RESUMEN

Foot-and-mouth disease (FMD) is an extremely contagious viral disease of cloven-hoofed animals that can lead to huge economic losses in the livestock production. No antiviral therapies are available for treating FMD virus (FMDV) infections in animals. The antiviral effects of magnesium oxide nanoparticles (MgO NPs) on the FMDV were investigated in cell culture. The viability of the cells after MgO NP treatment was determined using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The direct effects of MgO NPs on the FMDV in extracellular (virucidal assay) and also different stages of virus replication (antiviral assay) were evaluated by plaque reduction assay. The results showed that MgO NPs were safe at concentrations up to 250 µg/ml in the Razi Bovine kidney cell line. The treatments with NPs indicated that the MgO NPs exerted in vitro virucidal and antiviral activities. Plaque reduction assay revealed that MgO NPs can inhibit FMDV by more than 90% at the early stages of infection such as attachment and penetration but not after penetration. The results of this study suggested that NPs might be applied locally as an antiviral agent in early stages of infection in susceptible animals.


Asunto(s)
Antivirales/farmacología , Virus de la Fiebre Aftosa/efectos de los fármacos , Óxido de Magnesio/farmacología , Nanopartículas del Metal/química , Animales , Antivirales/química , Antivirales/toxicidad , Bovinos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Óxido de Magnesio/química , Óxido de Magnesio/toxicidad , Nanopartículas del Metal/toxicidad , Replicación Viral/efectos de los fármacos
19.
Ecotoxicol Environ Saf ; 122: 260-7, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26283286

RESUMEN

Magnesium oxide nanoparticles (MgONPs) are used in medicine, manufacturing and food industries. Because of their extensive application in our daily lives, environmental exposure to these nanoparticles is inevitable. The present study examined the effects of MgONPs on zebrafish (Danio rerio) early developmental stages. The results showed that, at different concentrations, MgONPs induced cellular apoptosis and intracellular reactive oxygen species. The hatching rate and survival of embryos decreased in a dose dependent manner. The 96-h LC50 value of MgONPs on zebrafish survival was 428 mg/l and the 48-h EC50 value of MgONPs on zebrafish embryo hatching rate was 175 mg/l. Moreover different types of malformation were observed in exposed embryos. The results demonstrate the toxic effects of MgONPs on zebrafish embryos and emphasize the need for further studies.


Asunto(s)
Embrión no Mamífero/efectos de los fármacos , Desarrollo Embrionario/efectos de los fármacos , Óxido de Magnesio/toxicidad , Nanopartículas/toxicidad , Pez Cebra/crecimiento & desarrollo , Animales , Apoptosis/efectos de los fármacos , Embrión no Mamífero/anomalías , Embrión no Mamífero/metabolismo , Embrión no Mamífero/patología , Larva/efectos de los fármacos , Larva/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Contaminantes Químicos del Agua/toxicidad
20.
Curr Top Med Chem ; 15(18): 1914-29, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25961521

RESUMEN

The knowledge on potential harmful effects of metallic nanomaterials lags behind their increased use in consumer products and therefore, the safety data on various nanomaterials applicable for risk assessment are urgently needed. In this study, 11 metal oxide nanoparticles (MeOx NPs) prepared using flame pyrolysis method were analyzed for their toxicity against human alveolar epithelial cells A549, human epithelial colorectal cells Caco2 and murine fibroblast cell line Balb/c 3T3. The cell lines were exposed for 24 h to suspensions of 3-100 µg/mL MeOx NPs and cellular viability was evaluated using. Neutral Red Uptake (NRU) assay. In parallel to NPs, toxicity of soluble salts of respective metals was analyzed, to reveal the possible cellular effects of metal ions shedding from the NPs. The potency of MeOx to produce reactive oxygen species was evaluated in the cell-free assay. The used three cell lines showed comparable toxicity responses to NPs and their metal ion counterparts in the current test setting. Six MeOx NPs (Al2O3, Fe3O4, MgO, SiO2, TiO2, WO3) did not show toxic effects below 100 µg/mL. For five MeOx NPs, the averaged 24 h IC50 values for the three mammalian cell lines were 16.4 µg/mL for CuO, 22.4 µg/mL for ZnO, 57.3 µg/mL for Sb2O3, 132.3 µg/mL for Mn3O4 and 129 µg/mL for Co3O4. Comparison of the dissolution level of MeOx and the toxicity of soluble salts allowed to conclude that the toxicity of CuO, ZnO and Sb2O3 NPs was driven by release of metal ions. The toxic effects of Mn3O4 and Co3O4 could be attributed to the ROS-inducing ability of these NPs. All the NPs were internalized by the cells according to light microscopy studies but also proven by TEM, and internalization of Co3O4 NPs seemed to be most prominent in this aspect. In conclusion, this work provides valuable toxicological data for a library of 11 MeOx NPs. Combining the knowledge on toxic or non-toxic nature of nanomaterials may be used for safe-by-design approach.


Asunto(s)
Óxido de Aluminio/toxicidad , Óxido Ferrosoférrico/toxicidad , Óxido de Magnesio/toxicidad , Nanopartículas/toxicidad , Óxidos/toxicidad , Dióxido de Silicio/toxicidad , Titanio/toxicidad , Tungsteno/toxicidad , Óxido de Aluminio/química , Animales , Células 3T3 BALB , Células CACO-2 , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Óxido Ferrosoférrico/química , Humanos , Óxido de Magnesio/química , Ratones , Ratones Endogámicos BALB C , Nanopartículas/química , Óxidos/química , Tamaño de la Partícula , Dióxido de Silicio/química , Relación Estructura-Actividad , Propiedades de Superficie , Titanio/química , Tungsteno/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA