Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 955
1.
Molecules ; 27(23)2022 Nov 30.
Article En | MEDLINE | ID: mdl-36500440

The rare-earth-free MnAlC alloy is currently considered a very promising candidate for permanent magnet applications due to its high anisotropy field and relatively high saturation magnetization and Curie temperature, besides being a low-cost material. In this work, we presented a simple fabrication route that allows for obtaining a magnetically enhanced bulk τ-MnAlC magnet. In the fabrication process, an electric arc-melting method was carried out to melt ingots of MnAlC alloys. A two-step solution treatment at 1200 °C and 1100 °C allowed us to synthesize a pure room-temperature ε-MnAlC ingot that completely transformed into τ-MnAlC alloy, free of secondary phases, after an annealing treatment at 550 °C for 30 min. The Rietveld refinements and magnetization measurements demonstrated that the quenched process produces a phase-segregated ε-MnAlC alloy that is formed by two types of ε-phases due to local fluctuation of the Mn. Room-temperature hysteresis loops showed that our improved τ-MnAlC alloy exhibited a remanent magnetization of 42 Am2/kg, a coercive field of 0.2 T and a maximum energy product, (BH)max, of 6.07 kJ/m3, which is higher than those reported in previous works using a similar preparation route. Experimental evidence demonstrated that the synthesis of a pure room-temperature ε-MnAlC played an important role in the suppression of undesirable phases that deteriorate the permanent magnet properties of the τ-MnAlC. Finally, magnetic images recorded by Lorentz microscopy allowed us to observe the microstructure and magnetic domain walls of the optimized τ-MnAlC. The presence of magnetic contrasts in all the observed grains allowed us to confirm the high-quality ferromagnetic behavior of the system.


Magnets , Metals, Rare Earth , Magnets/chemistry , Alloys/chemistry , Temperature , Magnetics
2.
J Mater Chem B ; 9(44): 9183-9190, 2021 11 17.
Article En | MEDLINE | ID: mdl-34698328

Magnetic hydrogels have demonstrated great potential in soft robots, drug delivery, and bioengineering, and their functions are usually determined by the deforming capability. However, most magnetic hydrogels are embedded with soft magnetic particles (e.g. Fe3O4), where the magnetic domains cannot be programmed and retained under external magnetic fields. Here, we present a strategy to prepare a microgel-reinforced magnetic hydrogel, embedded with hard magnetic NdFeB particles. These magnetic hydrogels show outstanding mechanical properties (ultimate stretching ratio >15 and fracture toughness >15 000 J m-2) and fast actuation speed under external magnetic fields. We use direct ink writing to fabricate magnetic hydrogels with sophisticated geometry and program their magnetization to achieve complex deformations. Fast, reversible, shape-changing structures have been demonstrated with printed magnetic hydrogels. It is hoped that this material system of hard magnetic hydrogels can open opportunities for wide applications.


Hydrogels/chemistry , Magnets/chemistry , Metal Nanoparticles/chemistry , Acrylic Resins/chemistry , Boron/chemistry , Iron/chemistry , Magnetic Phenomena , Materials Testing , Neodymium/chemistry , Printing, Three-Dimensional , Tensile Strength
3.
Int J Biol Macromol ; 190: 876-886, 2021 Nov 01.
Article En | MEDLINE | ID: mdl-34534582

Starch (St) was used as green and renewable matrix (> 80%, db) for the preparation of Zn-St-MOCP/nFe3O4 composite via bioextrusion. Bifunction of Fe3O4 NPs as magnet and pore-inducer was confirmed and could be more homogeneously embedded in the St-based framework with hierarchical porous structure via SEM-EDS mapping. For the nFe3O4-induced microstructure of Zn-St-MOCP/nFe3O4 composite, submicronic pores and nanopores were observed with Fe3O4 NPs onto the inner surface of micron channels. According to the XPS, XRD, FTIR, TGA analyses, it is probably due to the coordination between Fe3+/2+ and Zn2+/hydroxy groups and the recombination of St chains in crystalline/amorphous zones interfered by Fe3O4 NPs. Saturation magnetization value was measured with an excellent separation behavior. Seven kinetic equations were conducted for the fitting of dye adsorption data. Overall, the nFe3O4-assisted bioextrusion strategy is developed for the continuous fabrication of bio-based materials with rapid magnetic separation and hierarchical-pore architecture promising in practical adsorption.


Magnetite Nanoparticles/chemistry , Magnets/chemistry , Starch/chemistry , Adsorption , Crystallization , Kinetics , Methylene Blue/isolation & purification , Nanopores , Nonlinear Dynamics , Photoelectron Spectroscopy , Porosity , Spectrometry, X-Ray Emission , Thermodynamics , Water
4.
Biotechniques ; 71(4): 510-515, 2021 10.
Article En | MEDLINE | ID: mdl-34528832

Purity and integrity are two important criteria for any RNA extraction process to qualify the RNA for meaningful gene expression analysis. This study compares four commercially available RNA extraction kits using silica membrane and magnetic bead separation methods. The performance was evaluated in terms of both quantity (total RNA amount in µg/µl) and purity (260/280 ratio). The concentration and purity of each kit was significantly different from those of the others (p < 0.001). Although quantity obtained from Mag MAX is comparatively lower than QIAGEN, the quality is comparable as evident from real-time PCR performance. This study suggests that there are practical differences between these RNA extraction kits that should be taken into account while isolating RNA required for gene expression analysis.


Magnets/chemistry , Membranes, Artificial , RNA, Viral/isolation & purification , Reagent Kits, Diagnostic , Silicon Dioxide/chemistry , COVID-19/diagnosis , COVID-19/virology , COVID-19 Nucleic Acid Testing/methods , Gene Expression Profiling/methods , Humans , Polymerase Chain Reaction/methods , RNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification
5.
Anal Bioanal Chem ; 413(26): 6677-6685, 2021 Nov.
Article En | MEDLINE | ID: mdl-34487192

A magnetic beads (MBs)-assisted fluorescence aptasensing approach based on dual DNA tweezers and magnetic separation was established for the detection of ochratoxin A (OTA) and fumonisin B1 (FB1). A dual DNA tweezers structure with four ends linked with fluorophores (FAM, ROX) and quenchers (BHQ1, BHQ2) was designed, and produced the high initial fluorescence signals because of the long spatial distance between FAM and BHQ1, ROX, and BHQ2. Bio-aptamer/anti-aptamer of OTA and bio-aptamer/anti-aptamer of FB1 were respectively annealed to form dsDNA, and immobilized to MBs coated with streptavidin (SA). With the existence of OTA and FB1, OTA and FB1 preferentially bound with their respective bio-aptamers, which made anti-aptamers dissociate from dsDNA coupled on MBs. After magnetic separation, the dissociated anti-aptamers reacted with dual DNA tweezers, respectively, which made DNA tweezers close and the fluorescence was quenched. The linear ranges of approach for OTA and FB1 detection were 0.05-20 ng/mL and 0.1-40 ng/mL, respectively. The limit of detection for OTA and FB1 was 0.029 ng/mL and 0.061 ng/mL. The prepared MBs-assisted fluorescence aptasensing approach was applied to detect OTA and FB1 in spiked red wine and corn samples, which showed good recoveries between 92 and 106%.


Aptamers, Nucleotide/chemistry , Fumonisins/analysis , Ochratoxins/analysis , Wine/analysis , Zea mays/chemistry , Biosensing Techniques/methods , Fluorescence , Limit of Detection , Magnets/chemistry
6.
Anal Biochem ; 631: 114360, 2021 10 15.
Article En | MEDLINE | ID: mdl-34481802

To monitor the levels of protecting antibodies raised in the population in response to infection and/or to immunization with SARS-CoV-2, we need a technique that allows high throughput and low-cost quantitative analysis of human IgG antibodies reactive against viral antigens. Here we describe an ultra-fast, high throughput and inexpensive assay to detect SARS-CoV-2 seroconversion in humans. The assay is based on Ni2+ magnetic particles coated with His tagged SARS-CoV-2 antigens. A simple and inexpensive 96 well plate magnetic extraction/homogenization process is described which allows the simultaneous analysis of 96 samples and delivers results in 7 min with high accuracy.


Antibodies, Viral/blood , COVID-19 Serological Testing/methods , COVID-19/diagnosis , Immunoglobulin G/blood , SARS-CoV-2/isolation & purification , Antibodies, Viral/immunology , Antigens, Viral/blood , Antigens, Viral/immunology , COVID-19/blood , COVID-19/immunology , COVID-19 Serological Testing/economics , Enzyme-Linked Immunosorbent Assay/economics , Enzyme-Linked Immunosorbent Assay/methods , Humans , Immunoglobulin G/immunology , Magnets/chemistry , Nickel/chemistry , SARS-CoV-2/immunology , Sensitivity and Specificity , Seroconversion , Time Factors
7.
J Phys Chem Lett ; 12(32): 7854-7858, 2021 Aug 19.
Article En | MEDLINE | ID: mdl-34380316

This work uses electrochemical quartz crystal microbalance methods to demonstrate the enantiospecific interaction between a magnetized surface and a chiral amino acid. The enantiospecific adsorption of chiral molecules (cysteine is used as a model) on a ferromagnetic surface is shown to arise from the kinetics of adsorption and not from a thermodynamic stabilization. Measurements of the Gibbs free energy of adsorption for different chiral forms of cysteine and different electrode magnetization states show no significant differences, whereas measurements of the adsorption and desorption kinetics reveal a strong dependence on the magnetization state of the electrode surface. In addition, the enantioselectivity is shown to depend sensitively on the solution pH and the charge state of the chiral adsorbate.


Cysteine/chemistry , Magnets/chemistry , Adsorption , Electrochemical Techniques/instrumentation , Electrodes , Kinetics , Nickel/chemistry , Quartz Crystal Microbalance Techniques/instrumentation , Stereoisomerism , Thermodynamics
8.
Nat Commun ; 12(1): 5072, 2021 08 20.
Article En | MEDLINE | ID: mdl-34417473

In vivo bioprinting has recently emerged as a direct fabrication technique to create artificial tissues and medical devices on target sites within the body, enabling advanced clinical strategies. However, existing in vivo bioprinting methods are often limited to applications near the skin or require open surgery for printing on internal organs. Here, we report a ferromagnetic soft catheter robot (FSCR) system capable of in situ computer-controlled bioprinting in a minimally invasive manner based on magnetic actuation. The FSCR is designed by dispersing ferromagnetic particles in a fiber-reinforced polymer matrix. This design results in stable ink extrusion and allows for printing various materials with different rheological properties and functionalities. A superimposed magnetic field drives the FSCR to achieve digitally controlled printing with high accuracy. We demonstrate printing multiple patterns on planar surfaces, and considering the non-planar surface of natural organs, we then develop an in situ printing strategy for curved surfaces and demonstrate minimally invasive in vivo bioprinting of hydrogels in a rat model. Our catheter robot will permit intelligent and minimally invasive bio-fabrication.


Bioprinting , Catheters , Magnets/chemistry , Robotics , Animals , Cell Line , Elasticity , Electric Conductivity , Humans , Hydrogels/chemistry , Liver/diagnostic imaging , Rats, Sprague-Dawley , Swine , Tomography, X-Ray Computed , Viscosity
9.
Inorg Chem ; 60(17): 12719-12723, 2021 Sep 06.
Article En | MEDLINE | ID: mdl-34424680

The coexistence of field-induced blockage of the magnetization and significant magnetocaloric effects in the low-temperature region occurs in a mononuclear holmium(III) diethylenetriamine-N,N,N',N″,N″-pentaacetate complex, whose gadolinium(III) analogue is a commercial MRI contrast agent. Both properties make it a suitable candidate for cryogenic magnetic refrigeration, thus enlarging the variety of applications of this simple class of multifunctional molecular nanomagnets.


Coordination Complexes/chemistry , Holmium/chemistry , Magnets/chemistry , Pentetic Acid/chemistry , Refrigeration/methods , Cold Temperature , Magnetic Phenomena
10.
Anal Bioanal Chem ; 413(21): 5267-5278, 2021 Sep.
Article En | MEDLINE | ID: mdl-34331089

Highly selective glycopeptide enrichment is important before mass spectrometry analysis because of the ultra-low abundance of glycopeptides in the peptide mixtures. Herein, a UiO-66-NH2-based magnetic composite was prepared and used for the hydrophilic enrichment of glycopeptides. The composite was modified with phytic acid (PA) molecules by partially replacing 2-aminoterephthalic acid ligands in UiO-66-NH2, with electrostatic interactions also promoting this modification process. Based on the hydrophilicity of both the PA molecules and the UiO-66-NH2 skeleton, the resulting material, denoted as MUiO-66-NH2/PA, showed excellent dual hydrophilicity towards glycopeptide enrichment. Compared with pure UiO-66-NH2, the specific surface area and hydrophilicity of the prepared material were increased, and MUiO-66-NH2/PA exhibited good magnetic responsiveness to facilitate a convenient enrichment procedure. HRP and IgG were used as standard proteins to evaluate the glycopeptide enrichment properties, with 21 and 34 glycopeptides enriched from their tryptic digests. Furthermore, MUiO-66-NH2/PA showed outstanding sensitivity (1 fmol/µL) and selectivity (HRP/BSA = 1:1000), and achieved remarkable glycopeptide enrichment performance for practical human serum samples. Notably, MUiO-66-NH2/PA showed perfect reusability and stability, achieving enrichment performance after five cycles similar to that of the first use. This material can be used for glycopeptide enrichment to obtain further glycosylation information, providing the possibility for cancer treatment.


Glycopeptides/isolation & purification , Magnets/chemistry , Metal-Organic Frameworks/chemistry , Glycopeptides/analysis , Humans , Hydrophobic and Hydrophilic Interactions , Immunoglobulin G/chemistry , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
11.
Article En | MEDLINE | ID: mdl-34325307

Although parabens are useful due to their antiseptic properties, their widespread use has caused concerns regarding their potential toxicological effects. In this study, a novel magnetic solid-phase extraction combined with ultra-high-performance liquid chromatography-tandem mass spectrometry (MSPE-UHPLC-MS/MS) was developed, based on ordered magnetic mesoporous carbon (MMC), for paraben analysis. The MMC was prepared by soft-template synthesis, with a unique pore structure and a highly specific surface response, indicating potential as an excellent adsorbent. Several parameters affecting the paraben extraction efficiency were investigated and a novel method for paraben analysis in serum and urine samples using MSPE-UHPLCMS/MS was developed. The concentrations of methylparaben, ethylparaben, isopropylparaben, and propylparaben in these samples were 0.0380-4.36, 0.460-9.65, 0.0118-0.770, and 0.0363-0.641 µg/L, respectively, whereas isobutylparaben and butylparaben were not detected. Furthermore, satisfactory recoveries of 76.4-121% with relative standard deviations (n = 5) of 1.9-8.6% were obtained. Therefore, the developed MSPE-UHPLC-MS/MS method was efficient, highly sensitive, and reliable for analysing parabens in complex biological samples.


Chromatography, High Pressure Liquid/methods , Parabens/analysis , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods , Breast Neoplasms , Carbon/chemistry , Female , Humans , Limit of Detection , Linear Models , Magnets/chemistry , Parabens/chemistry , Parabens/isolation & purification , Reproducibility of Results
12.
Molecules ; 26(14)2021 Jul 15.
Article En | MEDLINE | ID: mdl-34299560

Environmental pollutants, such as mycotoxins, pesticides, and pharmaceuticals, are a group of contaminates that occur naturally, while others are produced from anthropogenic sources. With increased research on the adverse ecological and human health effects of these pollutants, there is an increasing need to regularly monitor their levels in food and the environment in order to ensure food safety and public health. The application of magnetic nanomaterials in the analyses of these pollutants could be promising and offers numerous advantages relative to conventional techniques. Due to their ability for the selective adsorption, and ease of separation as a result of magnetic susceptibility, surface modification, stability, cost-effectiveness, availability, and biodegradability, these unique magnetic nanomaterials exhibit great achievement in the improvement of the extraction of different analytes in food. On the other hand, conventional methods involve longer extraction procedures and utilize large quantities of environmentally unfriendly organic solvents. This review centers its attention on current applications of magnetic nanomaterials and their modifications in the extraction of pollutants in food commodities.


Magnets/chemistry , Mycotoxins/isolation & purification , Nanostructures/chemistry , Pesticides/isolation & purification , Pharmaceutical Preparations/isolation & purification , Solid Phase Extraction/methods , Animals , Environmental Pollutants/analysis , Environmental Pollutants/isolation & purification , Food Contamination/analysis , Food Safety , Humans , Mycotoxins/analysis , Pesticides/analysis , Pharmaceutical Preparations/analysis , Solid Phase Extraction/instrumentation
13.
J Chromatogr A ; 1645: 462074, 2021 May 24.
Article En | MEDLINE | ID: mdl-33848656

We prepared two-dimensional (2D) bimetallic metal-organic frameworks (Ni-ZIF-8) nanosheets by a simple solvent-free method at room temperature. The morphology and composition of Ni-ZIF-8 can be controlled through adding different amounts of Ni. And then, the 2D magnetic mesoporous nanosheets (Ni/ZnO@C) were synthesized by directly pyrolyzing Ni-ZIF-8 under argon atmosphere and explored as magnetic solid phase extraction (MSPE) adsorbents for the determination of nitroimidazole antibiotics (NIABs). Magnetic Ni nanoparticles embedded in carbon nanosheets uniformly resulted in high magnetization saturation of Ni/ZnO@C for easy separation. The Ni/ZnO@C can form hydrogen bond and π-π interaction with three NIABs resulting from their rich N-H containing imidazole, π-electron. Due to the high specific surface area and high mass transfer rate of 2D Ni/ZnO@C, the materials showed satisfactory adsorption capacity and rapid adsorption kinetics for NIABs. A rapid and effective method of Ni/ZnO@C-MSPE combined with high-performance liquid chromatography was proposed for the determination of NIABs. Several main parameters affecting MSPE were investigated. Under the optimal conditions, wide linear was achieved ranging from 0.1 to 500 µg⋅L-1 with a low detection limit of 0.025-0.05 µg⋅L-1. The established method has been successfully applied to analyze NIABs from environmental water samples with satisfactory recovery from 74.33 to 105.71%.


Anti-Bacterial Agents , Metal Nanoparticles/chemistry , Metal-Organic Frameworks/chemistry , Nitroimidazoles , Solid Phase Extraction/methods , Anti-Bacterial Agents/analysis , Anti-Bacterial Agents/isolation & purification , Carbon/chemistry , Chromatography, High Pressure Liquid/methods , Limit of Detection , Linear Models , Magnets/chemistry , Nanostructures/chemistry , Nickel/chemistry , Nitroimidazoles/analysis , Nitroimidazoles/isolation & purification
14.
ACS Appl Mater Interfaces ; 13(15): 17289-17299, 2021 Apr 21.
Article En | MEDLINE | ID: mdl-33827209

Bacterial/fungal biofilm-mediated persistent endodontic infections (PEIs) are one of the most frequent clinical lesions in the oral cavity, resulting in apical periodontitis and tooth damage caused by loss of minerals. The conventional root canal disinfectants are poorly bio-safe and harmful to teeth and tissues, making them ineffective in treating PEIs. The development of nanomaterials is emerging as a promising strategy to eradicate disease-related bacteria/fungi. Herein, glucose oxidase (GOx)-modified magnetic nanoparticles (MNPs) were synthesized via a facile and versatile route for investigating their effects on removing PEI-related bacterial/fungal biofilms. It is found that GOx was successfully immobilized on the MNPs by detecting the changes in the diameter, chemical functional group, charge, and magnetic response. Further, we demonstrate that GOx-modified MNPs (GMNPs) exhibit highly effective antibacterial activity against Enterococcus faecalis and Candida albicans. Moreover, the antibacterial/fungal activity of GMNPs is greatly dependent on their concentrations. Importantly, when placed in contact with bacterial/fungal biofilms, the dense biofilm matrix is destructed due to the movement of GMNPs induced by the magnetic field, the formation of reactive oxygen species, and nutrient starvation induced by GOx. Also, the in vitro experiment shows that the as-prepared GMNPs have excellent cytocompatibility and blood compatibility. Thus, GMNPs offer a novel strategy to treat bacteria/fungi-associated PEIs for potential clinical applications.


Biocompatible Materials/pharmacology , Biofilms/drug effects , Dental Pulp/drug effects , Dental Pulp/microbiology , Glucose Oxidase/metabolism , Magnets/chemistry , Nanoparticles/chemistry , Biocompatible Materials/chemistry , Candida albicans/drug effects , Enterococcus faecalis/drug effects , Materials Testing , Reactive Oxygen Species/metabolism
15.
ACS Appl Mater Interfaces ; 13(16): 19230-19243, 2021 Apr 28.
Article En | MEDLINE | ID: mdl-33852268

The selective isolation of bacteria from mixed populations has been investigated in varied applications ranging from differential pathogen identification in medical diagnostics and food safety to the monitoring of microbial stress dynamics in industrial bioreactors. Selective isolation techniques are generally limited to the confinement of small populations in defined locations, may be unable to target specific bacteria, or rely on immunomagnetic separation, which is not universally applicable. In this proof-of-concept work, we describe a novel strategy combining inducible bacterial lectin expression with magnetic glyconanoparticles (MGNPs) as a platform technology to enable selective bacterial isolation from cocultures. An inducible mutant of the type 1 fimbriae, displaying the mannose-specific lectin FimH, was constructed in Escherichia coli allowing for "on-demand" glycan-binding protein presentation following external chemical stimulation. Binding to glycopolymers was only observed upon fimbrial induction and was specific for mannosylated materials. A library of MGNPs was produced via the grafting of well-defined catechol-terminal glycopolymers prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization to magnetic nanoparticles. Thermal analysis revealed high functionalization (≥85% polymer by weight). Delivery of MGNPs to cocultures of fluorescently labeled bacteria followed by magnetic extraction resulted in efficient depletion of type 1 fimbriated target cells from wild-type or afimbriate E. coli. Extraction efficiency was found to be dependent on the molecular weight of the glycopolymers utilized to engineer the nanoparticles, with MGNPs decorated with shorter Dopa-(ManAA)50 mannosylated glycopolymers found to perform better than those assembled from a longer Dopa-(ManAA)200 analogue. The extraction efficiency of fimbriated E. coli was also improved when the counterpart strain did not harbor the genetic apparatus for the expression of the type 1 fimbriae. Overall, this work suggests that the modulation of the genetic apparatus encoding bacterial surface-associated lectins coupled with capture through MGNPs could be a versatile tool for the extraction of bacteria from mixed populations.


Escherichia coli/genetics , Escherichia coli/isolation & purification , Glycoproteins/chemistry , Lectins/genetics , Magnets/chemistry , Nanoparticles/chemistry , Bacterial Adhesion , Gene Expression , Glycoproteins/metabolism , Polymers/chemistry
16.
Food Chem ; 356: 129722, 2021 Sep 15.
Article En | MEDLINE | ID: mdl-33836357

Rutin (RT), a widely distributed natural flavonoid compound, has been generally utilized as an important active ingredient owing to its considerable biomedical and economic value. Inspired by the structure features of densely-packed bayberry and well-orientated honeycomb, a novel type of magnetic molecularly imprinted polymers (HB-TI-MMIPs) with abundant high-affinity and uniformly-distributed binding sites was rationally constructed for the selective enrichment of RT from Sophora japonica. The polymerization conditions, physicochemical properties, and adsorption performance of the imprinted nanomaterials were systematically investigated. The optimized HB-TI-MMIPs display a high adsorption capacity, fast adsorption rate, and satisfactory selectivity towards RT. Meanwhile, the proposed analytical methodology using HPLC, with HB-TI-MMIPs as adsorbents, successfully applied to enrich and detect RT from Sophora japonica with high recoveries (87.2-94.6%) and good RSDs (lower than 4.3%). Therefore, the fabricated HB-TI-MMIPs with a fast magnetic responsivity and desirable adsorption performance would be attractive in plant active ingredients extraction fields.


Biomimetics , Magnets/chemistry , Molecularly Imprinted Polymers/chemistry , Myrica , Rutin/chemistry , Sophora/chemistry , Adsorption , Rutin/isolation & purification , Surface Properties
17.
Sci Rep ; 11(1): 7609, 2021 04 07.
Article En | MEDLINE | ID: mdl-33828144

Out of 463 million people currently with diabetes, 232 million remain undiagnosed. Diabetes is a threat to human health, which could be mitigated via continuous self-monitoring of glucose. In addition to blood, interstitial fluid is considered to be a representative sample for glucose monitoring, which makes it highly attractive for wearable on-body sensing. However, new technologies are needed for efficient and noninvasive sampling of interstitial fluid through the skin. In this report, we introduce the use of Lorentz force and magnetohydrodynamics to noninvasively extract dermal interstitial fluid. Using porcine skin as an ex-vivo model, we demonstrate that the extraction rate of magnetohydrodynamics is superior to that of reverse iontophoresis. This work seeks to provide a safe, effective, and noninvasive sampling method to unlock the potential of wearable sensors in needle-free continuous glucose monitoring devices that can benefit people living with diabetes.


Blood Glucose Self-Monitoring/methods , Extracellular Fluid/chemistry , Glucose/analysis , Animals , Biosensing Techniques/instrumentation , Diabetes Mellitus/metabolism , Glucose/metabolism , Hydrodynamics , Magnets/chemistry , Models, Animal , Skin/metabolism , Skin Physiological Phenomena , Swine , Wearable Electronic Devices
18.
ACS Appl Mater Interfaces ; 13(13): 14995-15007, 2021 Apr 07.
Article En | MEDLINE | ID: mdl-33769803

A reasonable design of multifarious chemo- and biocatalytic functions within individual nano/microunits is urgently desired for high-performance cascade reactions but has heretofore remained elusive. Herein, glucose oxidase was functionalized with oligonucleotides and steadily chemisorbed on magnetic layered double hydroxides (mLDHs) to construct a multimodal catalytic platform for realizing divergent reactions with heterogeneous and biocatalytic steps. The flowerlike mLDHs served both as an enzyme support and a peroxidase mimic cooperating with enzymes for tandem catalysis. Oligo-DNA connected the enzymes to mLDHs like a bridge, and a stepwise ligand-exchange-assisted coordination mechanism was proposed to explain the robust interaction between DNA and mLDHs. More importantly, DNA significantly improved the bioactivity of the whole system. The acceleration mechanism was attributed to the diffusion tunnels for the substrate/product and enhanced substrates binding on mLDHs. The multimodal catalytic platform was applied for colorimetric and electrochemical sensing of glucose with a low limit of detection and high selectivity. The practical analysis capability of the ultrasensitive sensor was evaluated by detecting glucose in human serum and sweat, showing reliable results, satisfactory recovery, and excellent stability. The strategy of combining mLDHs and enzymes for cascade catalysis provides a universal approach to prepare chemo-enzyme hybrids with high performance, which holds great promise for applications in biosensors and industrial catalysis.


Biosensing Techniques/methods , Glucose/analysis , Hydroxides/chemistry , Oligonucleotides/chemistry , Biocatalysis , Blood Glucose/analysis , Colorimetry/methods , DNA/chemistry , Enzymes, Immobilized/chemistry , Glucose Oxidase/chemistry , Humans , Limit of Detection , Magnets/chemistry , Sweat/chemistry
19.
Molecules ; 26(4)2021 Feb 18.
Article En | MEDLINE | ID: mdl-33670480

One-pot reaction of the Schiff base N,N'-ethylene bis(salicylaldimine) (H2L), CoCl2.6H2O, and [Ph2SnCl2] in acetone produces the mixed valence CoIICoIII2 compound [CoIICoIII2(µ-L)2(Ph)2(µ-Cl)2]·(CH3)2CO·H2O (1). Our recent study already revealed that the same reaction mixtures in methanol or ethanol produced a heterometallic SnIVCoIII (2) or monometallic CoIII complex (3), respectively. Comparison of these organometallic systems shows that the 2,1-intermetallic Ph shift occurs in any of those solvents, but their relevant structural features (mononuclear, dinuclear-heterometallic, and trinuclear mixed valence) are solvent dependent. Geometrical structural rotation is also discussed among the related organometallic CoIICoIII2 systems. The AC magnetic susceptibility measurements indicate that 1 is a single molecule magnet (SMM), exhibiting a field-induced slow magnetic relaxation with two modes. The relaxation time for the low-frequency channel is as slow as τ~0.6 s at T = 2.0 K and BDC = 1.0 T.


Cobalt/chemistry , Magnets/chemistry , Solvents/chemistry , Crystallography, X-Ray , Electricity , Magnetic Fields , Molecular Conformation , Rotation , Temperature
20.
Biomed Chromatogr ; 35(8): e5128, 2021 Aug.
Article En | MEDLINE | ID: mdl-33780006

Because either trough or peak concentration at 2 h after administration is measured in routine therapeutic drug monitoring for cyclosporine A (CyA), a quantification method with a wide-range calibration curve capable of simultaneously measuring both concentrations is required. We developed a sensitive, wide-range and high-throughput quantification method for CyA in whole blood using ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), and compared patients' blood CyA levels measured by UPLC-MS/MS and antibody-conjugated magnetic immunoassay (ACMIA). Whole blood samples were prepared by solid-phase extraction using Oasis HLB µElution plate. The UPLC-MS/MS assay showed excellent linearity over a wide calibration range of 5-2500 ng/mL. Within-batch accuracy and precision as well as batch-to-batch accuracy and precision fulfilled the criteria of US Food and Drug Administration guidelines. The blood CyA concentrations measured by the UPLC-MS/MS assay correlated strongly with those measured by ACMIA. A Bland-Altman plot showed a fixed error between CyA concentrations measured by the two methods, and the concentrations measured by the UPLC-MS/MS method were consistently lower than those measured by ACMIA. We have succeeded to develop a sensitive, wide-range and high-throughput quantification method for CyA in whole blood using UPLC-MS/MS.


Chromatography, High Pressure Liquid/methods , Cyclosporine/blood , Immunoassay/methods , Tandem Mass Spectrometry/methods , Aged , Antibodies/chemistry , Cyclosporine/isolation & purification , Female , Humans , Linear Models , Magnets/chemistry , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity
...