RESUMEN
The non-cholinergic molecular targets of organophosphate (OP) compounds have recently been investigated to explain their role in the generation of non-neurological diseases, such as immunotoxicity and cancer. Here, we evaluated the effects of malathion and its dialkylphosphate (DAP) metabolites on the cytoskeleton components and organization of RAW264.7 murine macrophages as non-cholinergic targets of OP and DAPs toxicity. All OP compounds affected actin and tubulin polymerization. Malathion, dimethyldithiophosphate (DMDTP) dimethylthiophosphate (DMTP), and dimethylphosphate (DMP) induced elongated morphologies and the formation of pseudopods rich in microtubule structures, and increased filopodia formation and general actin disorganization in RAW264.7 cells and slightly reduced stress fibers in the human fibroblasts GM03440, without significantly disrupting the tubulin or vimentin cytoskeleton. Exposure to DMTP and DMP increased cell migration in the wound healing assay but did not affect phagocytosis, indicating a very specific modification in the organization of the cytoskeleton. The induction of actin cytoskeleton rearrangement and cell migration suggested the activation of cytoskeletal regulators such as small GTPases. We found that DMP slightly reduced Ras homolog family member A activity but increased the activities of Ras-related C3 botulinum toxin substrate 1 (Rac1) and cell division control protein 42 (Cdc42) from 5 min to 2 h of exposure. Chemical inhibition of Rac1 with NSC23766 reduced cell polarization and treatment with DMP enhanced cell migration, but Cdc42 inhibition by ML-141 completely inhibited the effects of DMP. These results suggest that methylated OP compounds, especially DMP, can modify macrophage cytoskeleton function and configuration via activation of Cdc42, which may represent a potential non-cholinergic molecular target for OP compounds.
Asunto(s)
Insecticidas , Malatión , Ratones , Humanos , Animales , Malatión/toxicidad , Malatión/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Actinas/metabolismo , Tubulina (Proteína)/metabolismo , Citoesqueleto de Actina/metabolismo , Insecticidas/toxicidad , Insecticidas/metabolismo , Movimiento Celular , Compuestos Organofosforados/metabolismo , Organofosfatos/metabolismoRESUMEN
Malathion is an insecticide that is used to control arboviruses and agricultural pests. Adolescents that are exposed to this insecticide are the most vulnerable as they are in the critical period of postnatal sexual development. This study aimed to evaluate whether malathion damage can affect sperm function and its respective mechanisms when adolescents are exposed during postnatal sexual development. Twenty-four male Wistar rats (PND 25) were divided into three experimental groups and treated daily for 40 d: control group (saline 0.9%), 10 mg/kg (M10 group), or 50 mg/kg (M50 group) of malathion. At PND 65, the rats were anesthetized and euthanized. Testicles were collected for the evaluation of gene expression. Sperm cells from the epididymis were used for evaluation of the oxidative profile or spermatic function. Data showed that a lower dose of malathion downregulated the gene expression of androgen receptors and testosterone converter enzyme 17-ß-HSD in the testis. The acrosomal integrity of sperm cells was compromised in the M50 group, but not the M10 group. The mitochondrial activity was not impaired by exposure. Finally, although no alterations in malondialdehyde and glutathione levels were observed, malathion, at both doses, increased antioxidant enzyme catalase activity and, at a higher dose, superoxide dismutase activity. The present study showed that low doses of malathion considered to be inoffensive are capable of impairing sperm quality and function through the downregulation of testicular genic expression of AR enzyme 17-ß-HSD and can damage the spermatic antioxidant profile during critical periods of development.
Asunto(s)
Insecticidas , Testículo , Animales , Masculino , Ratas , Antioxidantes , Expresión Génica , Insecticidas/toxicidad , Insecticidas/metabolismo , Malatión/toxicidad , Malatión/metabolismo , Ratas Wistar , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo , Semen/metabolismo , Espermatozoides , Testículo/metabolismo , 17-Hidroxiesteroide DeshidrogenasasRESUMEN
Biopurification systems (BPS) or biobeds have been developed to attenuate point-source contamination due to inappropriate pesticide handling or disposal of agricultural wastewaters. The biomixture used for this strategy should be able to remove different active ingredients but its efficiency can vary due to the constant load of pesticides from crop application programs. For that reason, the performance of biomixtures in conditions that mimic the real pesticide treatment before their implementation in field settings should be assayed. This study aimed to evaluate the removal and detoxifying capacity of a previously formulated biomixture (coconut fiber, 50% v/v; compost, 25%; and soil pre-exposed to pesticides, 25%) during a simulated cycle of pesticide application (93 days) for potato production. The scheme included a first application of linuron followed by a weekly alternated treatment of the mixtures chlorpyrifos/metalaxyl and malathion/dimethomorph, and antibiotics at day 72. The biomixture showed efficient removal of linuron (half-life <15 days), and a fluctuating transformation rate for the other compounds. A constant and sustained removal was observed for malathion and methalaxyl. In contrast, lower efficiency and accumulation was described for chlorpyrifos and dimethomorph. Following antibiotic treatment, changes on pesticide removal were observed only in the case of chlorpyrifos, whose removal was slightly enhanced. Furthermore, acute toxicity assays showed limited detoxification of the matrix, especially when compounds began to accumulate. Summarizing, our experiments showed that the proposed biomixture does not support a proper removal of the pesticides during the simulated application cycle of potato production. Further optimization of a biopurification system is required to guarantee the successful elimination of pesticide combinations when applied in field conditions.
Asunto(s)
Plaguicidas/metabolismo , Contaminantes Químicos del Agua/metabolismo , Agricultura , Biotransformación , Cloropirifos/metabolismo , Cocos , Linurona/metabolismo , Malatión/metabolismo , Morfolinas/metabolismo , Plaguicidas/toxicidad , Suelo/química , Clima Tropical , Aguas Residuales/química , Contaminantes Químicos del Agua/toxicidadRESUMEN
The objective of this study was to evaluate the capacity of two bacterial strains isolated, cultivated, and purified from agricultural soils of Veracruz, Mexico, for biodegradation and mineralisation of malathion (diethyl 2-(dimethoxyphosphorothioyl) succinate) and α- and ß-endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6-9-methano-2,4,3-benzodioxathiepine-3-oxide). The isolated bacterial strains were identified using biochemical and morphological characterization and the analysis of their 16S rDNA gene, as Enterobacter cloacae strain PMM16 (E1) and E. amnigenus strain XGL214 (M1). The E1 strain was able to degrade endosulfan, whereas the M1 strain was capable of degrading both pesticides. The E1 strain degraded 71.32% of α-endosulfan and 100% of ß-endosulfan within 24 days. The absence of metabolites, such as endosulfan sulfate, endosulfan lactone, or endosulfan diol, would suggest degradation of endosulfan isomers through non-oxidative pathways. Malathion was completely eliminated by the M1 strain. The major metabolite was butanedioic acid. There was a time-dependent increase in bacterial biomass, typical of bacterial growth, correlated with the decrease in pesticide concentration. The CO2 production also increased significantly with the addition of pesticides to the bacterial growth media, demonstrating that, under aerobic conditions, the bacteria utilized endosulfan and malathion as a carbon source. Here, two bacterial strains are shown to metabolize two toxic pesticides into non-toxic intermediates.
Asunto(s)
Bacterias/metabolismo , Endosulfano/metabolismo , Malatión/metabolismo , Microbiología del Suelo , Contaminantes del Suelo/metabolismo , Agricultura , Bacterias/genética , Biodegradación Ambiental , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Medios de Cultivo/metabolismo , Endosulfano/análogos & derivados , Insecticidas/metabolismo , Isomerismo , México , Plaguicidas/metabolismoRESUMEN
Esterases are a group of enzymes that are reportedly associated with acaricide resistance in Riphicephallus (Boophilus) microplus. A comparative analysis was made of the esterase patterns in malathion and deltamethrin-sensitive, tolerant and resistant tick groups, using non-denaturing polyacrylamide gel electrophoresis. Electrophoretical profiles revealed four bands of esterase activity against alpha-naphthyl acetate; which were dubbed EST-1 to EST-4. The EST-3 and EST-4 were detected in all strains and were classified as carboxylesterases (CaEs). The EST-2, classified as an acetylcholinesterase (AChE), was detected in all groups, but its staining intensity increased from susceptible to resistant groups, indicating an altered production according to the degree of resistance. EST-1, which was also classified as an AChE, was detected exclusively in tolerant and resistant groups to both acaricides, but displayed greater activity in the malathion-resistant group. These data suggest that these AChEs may represent an important detoxification strategy developed to overcome the effects of acaricides.
Asunto(s)
Acetilcolinesterasa/metabolismo , Resistencia a los Insecticidas , Malatión/metabolismo , Nitrilos/metabolismo , Piretrinas/metabolismo , Rhipicephalus/enzimología , Animales , Brasil , Femenino , Insecticidas/metabolismoRESUMEN
Malathion is a pesticide with high potential for human exposure. However, it is possible that during the malathion metabolism, there is generation of reactive oxygen species (ROS) and malathion may produce oxidative stress in intoxicated rats. The present study was therefore undertaken to determine malathion-induced lipid peroxidation (LPO), protein carbonylation and to determine whether malathion intoxication alters the antioxidant system in brain rats. Malathion was administered intraperitoneally in the acute and chronic protocols in the doses of 25, 50, 100 and 150 mg malathion/kg. The results showed that LPO in brain increased in both protocols. The increased oxidative stress resulted in an increased in the activity of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT), observed in cortex, striatum in the acute malathion protocol and hippocampus in the chronic malathion protocol. Our results demonstrated that malathion induced oxidative stress and modulated SOD and CAT activity in selective brain regions.
Asunto(s)
Encéfalo/metabolismo , Inhibidores de la Colinesterasa/metabolismo , Malatión/metabolismo , Estrés Oxidativo , Animales , Encéfalo/anatomía & histología , Catalasa/metabolismo , Humanos , Masculino , Ratas , Ratas Wistar , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismoRESUMEN
The acetylcholinesterase, carboxylesterase, and cytochrome P450 monooxygenase activities of three strains of Oryzaephilus srinamensis (L.) were examined to better understand biochemical mechanisms of resistance. The three strains were VOS49 and VOSCM, selected for resistance to malathion and chlorpyrifos-methyl, respectively, and VOS48, a standard susceptible strain. Cross-resistance to malathion and chlorpyrifos-methyl was confirmed in VOS49 and VOSCM. Acetylcholinesterase activity was not correlated to resistance among these strains. VOS49 and VOSCM showed elevated levels of carboxylesterase activity based on p-nitrophenylacetate, alpha-naphthyl acetate, or beta-naphthyl acetate substrates. PAGE zymograms showed major differences in caboxylesterase isozyme banding among strains. VOSCM had one strongly staining isozyme band. A band having the same Rf-value was very faint in VOS48. The VOS49 carboxylesterase banding pattern was different from both VOSCM and VOS48. Cytochrome P450 monooxygenase activity was based on cytochrome P450 content, aldrin epoxidase activity, and oxidation of organophosphate insecticides, all elevated in resistant strains. The monooxygenase activity varied with insecticide substrate and resistant strain, suggesting specific cytochromes P450 may exist for different insecticides. The monooxygenase activity of the VOS49 strain was much higher with malathion than chlorpyrifos-methyl as substrates, whereas VOSCM monooxygenase activity was higher with malathion than chlorpyrifos-methyl as substrates. Results are discussed in the context of resistance mechanisms to organophosphate insecticides in O. surinamensis.
Asunto(s)
Cloropirifos/análogos & derivados , Cloropirifos/metabolismo , Inhibidores de la Colinesterasa/metabolismo , Escarabajos/enzimología , Insecticidas/metabolismo , Malatión/metabolismo , Acetilcolinesterasa/metabolismo , Animales , Carboxilesterasa , Hidrolasas de Éster Carboxílico/metabolismo , Cloropirifos/farmacología , Inhibidores de la Colinesterasa/farmacología , Escarabajos/efectos de los fármacos , Sistema Enzimático del Citocromo P-450/metabolismo , Fenitrotión/metabolismo , Fenitrotión/farmacología , Resistencia a los Insecticidas , Insecticidas/farmacología , Dosificación Letal Mediana , Malatión/farmacologíaRESUMEN
1. LC50 of malathion, fenitrothion and lindane were determined in R. prolixus and T. infestans. R. prolixus was shown to be tolerant to malathion. 2. The penetration rate of (14C)-malathion into R. prolixus and T. infestans was similar. 3. Acetylcholinesterase from R. prolixus heads was 3.3-fold less sensitive to inhibition by malaoxon than the similar enzyme of T. infestans. 4. R. prolixus showed more activity of GSH-S-transferases against DCNB than T. infestans. 5. The in vitro degradation of (14C)-malathion demonstrated that R. prolixus is more active than T. infestans in carboxyester splitting to give alpha and beta monoacids. 6. The synergism of TPP and TOCP on malathion toxicity was higher in R. prolixus than in T. infestans. 7. Esterase activity against alpha and beta naphthyl acetates proved to be much lower in R. prolixus homogenates than in T. infestans homogenates. An inverse result was observed when PTA was the substrate.
Asunto(s)
Malatión/metabolismo , Rhodnius/metabolismo , Acetilcolinesterasa/metabolismo , Animales , Bioensayo , Radioisótopos de Carbono , Esterasas/metabolismo , Fenitrotión/metabolismo , Glutatión Transferasa/metabolismo , Hexaclorociclohexano/metabolismo , Resistencia a los Insecticidas/fisiología , Rhodnius/enzimologíaRESUMEN
Measurement of blood cholinesterase activity and of the urinary metabolites of fenitrothion (p-nitrocresol) and malathion (monocarboxylic acid) was used to assess the exposure to these insecticides of workers in the Haitian malaria control programme and of residents in the sprayed houses. Cholinesterase activity was significantly reduced at the end of the working week in 3 out of 28 fenitrothion workers. Urinary levels of p-nitrocresol (PNC) in the spraymen ranged from 2.2 to 25.2 mg/l. In fenitrothion workers who had no direct contact with spraying (weighers and supervisors), the cholinesterase activity remained >/= 75% of the normal control value, and the urinary PNC levels were relatively low. Urinary malathion monocarboxylic acid (MCA) levels at the end of the working week ranged between 1.1 and 5.3 mg/l in workers using malathion and their blood cholinesterase activity remained essentially normal. In both groups of workers the cholinesterase levels improved and the urinary excretion of metabolites decreased after 2 days of rest from the spraying operations. In the residents of the sprayed houses, low concentrations of PNC and MCA were detected in the urine 1 day after spraying and measurable but reduced levels were still present after 7 days. In all these cases the cholinesterase activity remained >/= 75% of the normal control value.