Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 9(1): 6725, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-31040353

RESUMEN

Acetyl-CoA carboxylases (ACCs) are enzyme complexes generally composed of three catalytic domains and distributed in all organisms. In prokaryotes and plastids of most plants, these domains are encoded in distinct subunits forming heteromeric complexes. Distinctively, cytosolic ACCs from eukaryotes and plastids of graminaceous monocots, are organized in a single multidomain polypeptide. Until now, no multidomain ACCs had been discovered in bacteria. Here, we show that a putative multidomain ACC in Saccharopolyspora erythraea is encoded by the sace_4237 gene, representing the first prokaryotic ACC homodimeric multidomain complex described. The SACE_4237 complex has both acetyl-CoA and propionyl-CoA carboxylase activities. Importantly, we demonstrate that sace_4237 is essential for S. erythraea survival as determined by the construction of a sace_4237 conditional mutant. Altogether, our results show that this prokaryotic homodimeric multidomain ACC provides malonyl-CoA for de novo fatty acid biosynthesis. Furthermore, the data presented here suggests that evolution of these enzyme complexes, from single domain subunits to eukaryotic multidomain ACCs, occurred in bacteria through domain fusion.


Asunto(s)
Ligasas de Carbono-Carbono/metabolismo , Ácidos Grasos/biosíntesis , Malonil Coenzima A/metabolismo , Saccharopolyspora/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ligasas de Carbono-Carbono/química , Ligasas de Carbono-Carbono/genética , Filogenia , Dominios Proteicos , Saccharopolyspora/genética , Saccharopolyspora/crecimiento & desarrollo
2.
FEBS J ; 285(23): 4494-4511, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30300504

RESUMEN

Iterative type I polyketide synthases (PKS) are megaenzymes essential to the biosynthesis of an enormously diverse array of bioactive natural products. Each PKS contains minimally three functional domains, ß-ketosynthase (KS), acyltransferase (AT), and acyl carrier protein (ACP), and a subset of reducing domains such as ketoreductase (KR), dehydratase (DH), and enoylreductase (ER). The substrate selection, condensation reactions, and ß-keto processing of the polyketide growing chain are highly controlled in a programmed manner. However, the structural features and mechanistic rules that orchestrate the iterative cycles, processing domains functionality, and chain termination in this kind of megaenzymes are often poorly understood. Here, we present a biochemical and functional characterization of the KS and the AT domains of a PKS from the mallard duck Anas platyrhynchos (ApPKS). ApPKS belongs to an animal PKS family phylogenetically more related to bacterial PKS than to metazoan fatty acid synthases. Through the dissection of the ApPKS enzyme into mono- to didomain fragments and its reconstitution in vitro, we determined its substrate specificity toward different starters and extender units. ApPKS AT domain can effectively transfer acetyl-CoA and malonyl-CoA to the ApPKS ACP stand-alone domain. Furthermore, the KS and KR domains, in the presence of Escherichia coli ACP, acetyl-CoA, and malonyl-CoA, showed the ability to catalyze the chain elongation and the ß-keto reduction steps necessary to yield a 3-hydroxybutyryl-ACP derivate. These results provide new insights into the catalytic efficiency and specificity of this uncharacterized family of PKSs.


Asunto(s)
Acetilcoenzima A/metabolismo , Malonil Coenzima A/metabolismo , Sintasas Poliquetidas/metabolismo , Acilación , Animales , Dominio Catalítico , Patos , Cinética , Filogenia , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Dominios Proteicos , Especificidad por Sustrato
3.
FEBS J ; 284(7): 1110-1125, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28222482

RESUMEN

Mycobacterium tuberculosis produces a large number of structurally diverse lipids that have been implicated in the pathogenicity, persistence and antibiotic resistance of this organism. Most building blocks involved in the biosynthesis of all these lipids are generated by acyl-CoA carboxylases whose subunit composition and physiological roles have not yet been clearly established. Inconclusive data in the literature refer to the exact protein composition and substrate specificity of the enzyme complex that produces the long-chain α-carboxy-acyl-CoAs, which are substrates involved in the last step of condensation mediated by the polyketide synthase 13 to synthesize mature mycolic acids. Here we have successfully reconstituted the long-chain acyl-CoA carboxylase (LCC) complex from its purified components, the α subunit (AccA3), the ε subunit (AccE5) and the two ß subunits (AccD4 and AccD5), and demonstrated that the four subunits are essential for its activity. Furthermore, we also showed by substrate competition experiments and the use of a specific inhibitor that the AccD5 subunit's role in the carboxylation of the long acyl-CoAs, as part of the LCC complex, was structural rather than catalytic. Moreover, AccD5 was also able to carboxylate its natural substrates, acetyl-CoA and propionyl-CoA, in the context of the LCC enzyme complex. Thus, the supercomplex formed by these four subunits has the potential to generate the main substrates, malonyl-CoA, methylmalonyl-CoA and α-carboxy-C24-26 -CoA, used as condensing units for the biosynthesis of all the lipids present in this pathogen.


Asunto(s)
Proteínas Bacterianas/metabolismo , Ligasas de Carbono-Carbono/metabolismo , Mycobacterium tuberculosis/metabolismo , Sintasas Poliquetidas/metabolismo , Subunidades de Proteína/metabolismo , Acetilcoenzima A/metabolismo , Acilcoenzima A/metabolismo , Proteínas Bacterianas/genética , Ligasas de Carbono-Carbono/genética , Clonación Molecular , Pruebas de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Cinética , Malonil Coenzima A/metabolismo , Mycobacterium tuberculosis/genética , Ácidos Micólicos/metabolismo , Sintasas Poliquetidas/genética , Ingeniería de Proteínas , Subunidades de Proteína/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
4.
Artículo en Inglés | MEDLINE | ID: mdl-19171199

RESUMEN

The shuttle system that mediates the transport of fatty acids across the mitochondrial membrane in invertebrates has received little attention. Carnitine O-palmitoyltransferase I (EC 2.3.1.21; CPT I) is a key component of this system that in vertebrates controls long-chain fatty acid beta-oxidation. To gain knowledge on the acyltransferases in aquatic arthropods, physical, kinetic, regulatory and immunological properties of CPT of the midgut gland mitochondria of Macrobrachium borellii were assayed. CPT I optimum conditions were 34 degrees C and pH=8.0. Kinetic analysis revealed a Km for carnitine of 2180+/-281 microM and a Km for palmitoyl-CoA of 98.9+/-8.9 microM, while V(max) were 56.5+/-6.6 and 36.7+/-4.8 nmol min(-1) mg protein(-1), respectively. A Hill coefficient, n~1, indicate a Michaelis-Menten behavior. The CPT I activity was sensitive to regulation by malonyl-CoA, with an IC(50) of 25.2 microM. Electrophoretic and immunological analyses showed that a 66 kDa protein with an isoelectric point of 5.1 cross-reacted with both rat liver and muscle-liver anti CPT I polyclonal antibodies, suggesting antigenic similarity with the rat enzymes. Although CPT I displayed kinetic differences with insect and vertebrates, prawn showed a high capacity for energy generation through beta-oxidation of long-chain fatty acids.


Asunto(s)
Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Carnitina O-Palmitoiltransferasa/metabolismo , Malonil Coenzima A/farmacología , Palaemonidae/enzimología , Animales , Carnitina O-Palmitoiltransferasa/inmunología , Sistema Digestivo/enzimología , Relación Dosis-Respuesta a Droga , Cinética , Malonil Coenzima A/metabolismo , Mitocondrias/enzimología , Ratas , Sensibilidad y Especificidad , Temperatura
5.
Mol Microbiol ; 68(4): 987-96, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18384517

RESUMEN

Bacteria stringently regulate the synthesis of their membrane phospholipids, but the responsible regulatory mechanisms are incompletely understood. Bacillus subtilis FabF, the target of the mycotoxin cerulenin, catalyses the condensation of malonyl-ACP with acyl-ACP to extend the growing acyl chain by two carbons. Here we show that B. subtilis strains containing the fabF1 allele, which codes for the cerulenin-insensitive protein FabF[I108F], overexpressed several genes involved in fatty acid and phospholipid biosynthesis (the fap regulon) and had significantly elevated levels of malonyl-CoA. These results pinpointed FabF[I108F] as responsible for the increased malonyl-CoA production, which in turn acts as an inducer of the fap regulon by impairing the binding of the FapR repressor to its DNA targets. Synthesis of acyl-ACPs by a cell-free fatty acid system prepared from fabF1 cells showed the accumulation of short- and medium-chain acyl-ACPs. These results indicate that the acyl-ACP chain length acceptance of FabF[I108F] is biased towards shorter acyl-ACPs. We also provide evidence that upregulation of FabF[I108F] is essential for survival and for resistance to cerulenin of fabF1 cells. These findings indicate that malonyl-CoA is a key molecule to monitor lipid metabolism functioning and trigger appropriate genetic and biochemical adjustments to relieve dysfunctions of this essential metabolic pathway.


Asunto(s)
3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/metabolismo , Bacillus subtilis/enzimología , Regulación Bacteriana de la Expresión Génica , Metabolismo de los Lípidos/genética , Malonil Coenzima A/genética , Proteínas Represoras/metabolismo , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/efectos de los fármacos , 3-Oxoacil-(Proteína Transportadora de Acil) Sintasa/genética , Bacillus subtilis/genética , Cerulenina/farmacología , Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Malonil Coenzima A/metabolismo , Fosfolípidos/genética , Fosfolípidos/metabolismo , Regulón , Proteínas Represoras/genética
6.
EMBO J ; 25(17): 4074-83, 2006 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-16932747

RESUMEN

Malonyl-CoA is an essential intermediate in fatty acid synthesis in all living cells. Here we demonstrate a new role for this molecule as a global regulator of lipid homeostasis in Gram-positive bacteria. Using in vitro transcription and binding studies, we demonstrate that malonyl-CoA is a direct and specific inducer of Bacillus subtilis FapR, a conserved transcriptional repressor that regulates the expression of several genes involved in bacterial fatty acid and phospholipid synthesis. The crystal structure of the effector-binding domain of FapR reveals a homodimeric protein with a thioesterase-like 'hot-dog' fold. Binding of malonyl-CoA promotes a disorder-to-order transition, which transforms an open ligand-binding groove into a long tunnel occupied by the effector molecule in the complex. This ligand-induced modification propagates to the helix-turn-helix motifs, impairing their productive association for DNA binding. Structure-based mutations that disrupt the FapR-malonyl-CoA interaction prevent DNA-binding regulation and result in a lethal phenotype in B. subtilis, suggesting this homeostatic signaling pathway as a promising target for novel chemotherapeutic agents against Gram-positive pathogens.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/química , Lípidos/biosíntesis , Malonil Coenzima A/química , Pliegue de Proteína , Proteínas Represoras/biosíntesis , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Dimerización , Malonil Coenzima A/genética , Malonil Coenzima A/metabolismo , Modelos Moleculares , Mutación , Unión Proteica , Conformación Proteica , Proteínas Represoras/genética
7.
Dev Cell ; 4(5): 663-72, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12737802

RESUMEN

Bacterial cells exert exquisite control over the biosynthesis of their membrane lipids, but the mechanisms are obscure. We describe the identification and purification from Bacillus subtilis of a transcription factor, FapR, that controls the expression of many genes involved in fatty acid and phospholipid metabolism (the fap regulon). Expression of this fap regulon is influenced by antibiotics that specifically inhibit the fatty acid biosynthetic pathway. We show that FapR negatively regulates fap expression and that the effects of antibiotics on fap expression are mediated by FapR. We further show that decreasing the cellular levels of malonyl-CoA, an essential molecule for fatty acid elongation, inhibits expression of the fap regulon and that this effect is FapR dependent. Our results indicate that control of FapR by the cellular pools of malonyl-CoA provides a mechanism for sensing the status of fatty acid biosynthesis and to adjust the expression of the fap regulon accordingly.


Asunto(s)
Bacillus subtilis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Lípidos de la Membrana/biosíntesis , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Secuencia de Bases , División Celular , Secuencia Conservada/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/aislamiento & purificación , Ácidos Grasos/biosíntesis , Ácidos Grasos/química , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica , Malonil Coenzima A/metabolismo , Lípidos de la Membrana/química , Datos de Secuencia Molecular , Regiones Promotoras Genéticas/genética , Homología de Secuencia de Aminoácido , Factores de Tiempo , Factores de Transcripción/química , Factores de Transcripción/aislamiento & purificación , Transcripción Genética
8.
Appl Environ Microbiol ; 67(9): 4166-76, 2001 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-11526020

RESUMEN

Two genes, accB and accE, that form part of the same operon, were cloned from Streptomyces coelicolor A3(2). AccB is homologous to the carboxyl transferase domain of several propionyl coezyme A (CoA) carboxylases and acyl-CoA carboxylases (ACCases) of actinomycete origin, while AccE shows no significant homology to any known protein. Expression of accB and accE in Escherichia coli and subsequent in vitro reconstitution of enzyme activity in the presence of the biotinylated protein AccA1 or AccA2 confirmed that AccB was the carboxyl transferase subunit of an ACCase. The additional presence of AccE considerably enhanced the activity of the enzyme complex, suggesting that this small polypeptide is a functional component of the ACCase. The impossibility of obtaining an accB null mutant and the thiostrepton growth dependency of a tipAp accB conditional mutant confirmed that AccB is essential for S. coelicolor viability. Normal growth phenotype in the absence of the inducer was restored in the conditional mutant by the addition of exogenous long-chain fatty acids in the medium, indicating that the inducer-dependent phenotype was specifically related to a conditional block in fatty acid biosynthesis. Thus, AccB, together with AccA2, which is also an essential protein (E. Rodriguez and H. Gramajo, Microbiology 143:3109-3119, 1999), are the most likely components of an ACCase whose main physiological role is the synthesis of malonyl-CoA, the first committed step of fatty acid synthesis. Although normal growth of the conditional mutant was restored by fatty acids, the cultures did not produce actinorhodin or undecylprodigiosin, suggesting a direct participation of this enzyme complex in the supply of malonyl-CoA for the synthesis of these secondary metabolites.


Asunto(s)
Ligasas de Carbono-Carbono/genética , Ligasas de Carbono-Carbono/metabolismo , Malonil Coenzima A/metabolismo , Streptomyces/enzimología , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Genes Esenciales , Datos de Secuencia Molecular , Mutación , Operón , Streptomyces/genética , Streptomyces/crecimiento & desarrollo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA