Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 3.690
1.
Tomography ; 10(5): 789-805, 2024 May 19.
Article En | MEDLINE | ID: mdl-38787020

The aim of this study was to show for the first time that low-frequency 3D-transmitted ultrasound tomography (3D UT, volography) can differentiate breast tissue types using tissue properties, accurately measure glandular and ductal volumes in vivo, and measure variation over time. Data were collected for 400 QT breast scans on 24 women (ages 18-71), including four (4) postmenopausal subjects, 6-10 times over 2+ months of observation. The date of onset of menopause was noted, and the cases were further subdivided into three (3) classes: pre-, post-, and peri-menopausal. The ducts and glands were segmented using breast speed of sound, attenuation, and reflectivity images and followed over several menstrual cycles. The coefficient of variation (CoV) for glandular tissue in premenopausal women was significantly larger than for postmenopausal women, whereas this is not true for the ductal CoV. The glandular standard deviation (SD) is significantly larger in premenopausal women vs. postmenopausal women, whereas this is not true for ductal tissue. We conclude that ducts do not appreciably change over the menstrual cycle in either pre- or post-menopausal subjects, whereas glands change significantly over the cycle in pre-menopausal women, and 3D UT can differentiate ducts from glands in vivo.


Breast , Imaging, Three-Dimensional , Menstrual Cycle , Ultrasonography, Mammary , Humans , Female , Adult , Menstrual Cycle/physiology , Middle Aged , Aged , Breast/diagnostic imaging , Young Adult , Ultrasonography, Mammary/methods , Imaging, Three-Dimensional/methods , Adolescent , Mammary Glands, Human/diagnostic imaging
2.
Breast Cancer Res ; 26(1): 79, 2024 May 15.
Article En | MEDLINE | ID: mdl-38750574

BACKGROUND: Mammographic density (MD) has been shown to be a strong and independent risk factor for breast cancer in women of European and Asian descent. However, the majority of Asian studies to date have used BI-RADS as the scoring method and none have evaluated area and volumetric densities in the same cohort of women. This study aims to compare the association of MD measured by two automated methods with the risk of breast cancer in Asian women, and to investigate if the association is different for premenopausal and postmenopausal women. METHODS: In this case-control study of 531 cases and 2297 controls, we evaluated the association of area-based MD measures and volumetric-based MD measures with breast cancer risk in Asian women using conditional logistic regression analysis, adjusting for relevant confounders. The corresponding association by menopausal status were assessed using unconditional logistic regression. RESULTS: We found that both area and volume-based MD measures were associated with breast cancer risk. Strongest associations were observed for percent densities (OR (95% CI) was 2.06 (1.42-2.99) for percent dense area and 2.21 (1.44-3.39) for percent dense volume, comparing women in highest density quartile with those in the lowest quartile). The corresponding associations were significant in postmenopausal but not premenopausal women (premenopausal versus postmenopausal were 1.59 (0.95-2.67) and 1.89 (1.22-2.96) for percent dense area and 1.24 (0.70-2.22) and 1.96 (1.19-3.27) for percent dense volume). However, the odds ratios were not statistically different by menopausal status [p difference = 0.782 for percent dense area and 0.486 for percent dense volume]. CONCLUSIONS: This study confirms the associations of mammographic density measured by both area and volumetric methods and breast cancer risk in Asian women. Stronger associations were observed for percent dense area and percent dense volume, and strongest effects were seen in postmenopausal individuals.


Asian People , Breast Density , Breast Neoplasms , Mammography , Humans , Female , Breast Neoplasms/epidemiology , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/pathology , Breast Neoplasms/etiology , Case-Control Studies , Middle Aged , Adult , Risk Factors , Mammography/methods , Aged , Postmenopause , Premenopause , Odds Ratio , Mammary Glands, Human/abnormalities , Mammary Glands, Human/diagnostic imaging , Mammary Glands, Human/pathology
3.
Cells ; 13(10)2024 May 19.
Article En | MEDLINE | ID: mdl-38786098

Breast cancer develops upon sequential acquisition of driver mutations in mammary epithelial cells; however, how these mutations collaborate to transform normal cells remains unclear in most cases. We aimed to reconstitute this process in a particular case. To this end, we combined the activated form of the PI 3-kinase harboring the H1047R mutation with the inactivation of the histone lysine methyl-transferase KMT2D in the non-tumorigenic human mammary epithelial cell line MCF10A. We found that PI 3-kinase activation promoted cell-cycle progression, especially when growth signals were limiting, as well as cell migration, both in a collective monolayer and as single cells. Furthermore, we showed that KMT2D inactivation had relatively little influence on these processes, except for single-cell migration, which KMT2D inactivation promoted in synergy with PI 3-kinase activation. The combination of these two genetic alterations induced expression of the ARPC5L gene that encodes a subunit of the Arp2/3 complex. ARPC5L depletion fully abolished the enhanced migration persistence exhibited by double-mutant cells. Our reconstitution approach in MCF10A has thus revealed both the cell function and the single-cell migration, and the underlying Arp2/3-dependent mechanism, which are synergistically regulated when KMT2D inactivation is combined with the activation of the PI 3-kinase.


Actin-Related Protein 2-3 Complex , Cell Movement , Epithelial Cells , Histone-Lysine N-Methyltransferase , Phosphatidylinositol 3-Kinases , Humans , Cell Movement/genetics , Epithelial Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Actin-Related Protein 2-3 Complex/metabolism , Actin-Related Protein 2-3 Complex/genetics , Female , Mammary Glands, Human/metabolism , Mammary Glands, Human/cytology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasm Proteins/genetics , Mutation/genetics , Cell Line
4.
J Vis Exp ; (207)2024 May 03.
Article En | MEDLINE | ID: mdl-38767371

The mammary gland is a fundamental structure of the breast and plays an essential role in reproduction. Human mammary epithelial cells (HMECs), which are the origin cells of breast cancer and other breast-related inflammatory diseases, have garnered considerable attention. However, isolating and culturing primary HMECs in vitro for research purposes has been challenging due to their highly differentiated, keratinized nature and their short lifespan. Therefore, developing a simple and efficient method to isolate and culture HMECs is of great scientific value for the study of breast biology and breast-related diseases. In this study, we successfully isolated primary HMECs from small amounts of mammary tissue by digestion with a mixture of enzymes combined with an initial culture in 5% fetal bovine serum-DMEM containing the Rho-associated kinase (ROCK) inhibitor Y-27632, followed by culture expansion in serum-free keratinocyte medium. This approach selectively promotes the growth of epithelial cells, resulting in an optimized cell yield. The simplicity and convenience of this method make it suitable for both laboratory and clinical research, which should provide valuable insights into these important areas of study.


Cell Culture Techniques , Epithelial Cells , Mammary Glands, Human , Humans , Epithelial Cells/cytology , Female , Mammary Glands, Human/cytology , Cell Culture Techniques/methods , Amides/pharmacology , Pyridines/pharmacology , Cytological Techniques/methods , rho-Associated Kinases/antagonists & inhibitors
5.
J Mammary Gland Biol Neoplasia ; 29(1): 11, 2024 May 18.
Article En | MEDLINE | ID: mdl-38761238

The transcription factor STAT3 is activated by multiple cytokines and other extrinsic factors. It plays a key role in immune and inflammatory responses and, when dysregulated, in tumourigenesis. STAT3 is also an indispensable mediator of the cell death process that occurs during post-lactational regression of the mammary gland, one of the most dramatic examples of physiological cell death in adult mammals. During this involution of the gland, STAT3 powerfully enhances the lysosomal system to efficiently remove superfluous milk-producing mammary epithelial cells via a lysosomal-mediated programmed cell death pathway. The lysosome is a membrane-enclosed  cytoplasmic organelle that digests and recycles cellular waste, with an important role as a signalling centre that monitors cellular metabolism. Here, we describe key strategies for investigating the role of STAT3 in regulating lysosomal function using a mammary epithelial cell culture model system. These include protocols for lysosome enrichment and enzyme activity assays, in addition to microscopic analyses of the vesicular compartment in cell lines. Collectively, these approaches provide the tools to investigate multiple aspects of lysosome biogenesis and function, and to define both direct and indirect roles for STAT3.


Epithelial Cells , Lysosomes , Mammary Glands, Animal , STAT3 Transcription Factor , Lysosomes/metabolism , STAT3 Transcription Factor/metabolism , Female , Animals , Epithelial Cells/metabolism , Mammary Glands, Animal/metabolism , Mammary Glands, Animal/cytology , Humans , Mammary Glands, Human/metabolism , Mammary Glands, Human/cytology , Mice , Signal Transduction
6.
J Mammary Gland Biol Neoplasia ; 29(1): 9, 2024 May 02.
Article En | MEDLINE | ID: mdl-38695983

Improved screening and treatment have decreased breast cancer mortality, although incidence continues to rise. Women at increased risk of breast cancer can be offered risk reducing treatments, such as tamoxifen, but this has not been shown to reduce breast cancer mortality. New, more efficacious, risk-reducing agents are needed. The identification of novel candidates for prevention is hampered by a lack of good preclinical models. Current patient derived in vitro and in vivo models cannot fully recapitulate the complexities of the human tissue, lacking human extracellular matrix, stroma, and immune cells, all of which are known to influence therapy response. Here we describe a normal breast explant model utilising a tuneable hydrogel which maintains epithelial proliferation, hormone receptor expression, and residency of T cells and macrophages over 7 days. Unlike other organotypic tissue cultures which are often limited by hyper-proliferation, loss of hormone signalling, and short treatment windows (< 48h), our model shows that tissue remains viable over 7 days with none of these early changes. This offers a powerful and unique opportunity to model the normal breast and study changes in response to various risk factors, such as breast density and hormone exposure. Further validation of the model, using samples from patients undergoing preventive therapies, will hopefully confirm this to be a valuable tool, allowing us to test novel agents for breast cancer risk reduction preclinically.


Cell Proliferation , Humans , Female , Cell Proliferation/physiology , Breast/pathology , Breast Neoplasms/pathology , Breast Neoplasms/prevention & control , Hydrogels , Mammary Glands, Human/pathology , Macrophages/metabolism , Macrophages/immunology
7.
Biomed Res Int ; 2024: 8544837, 2024.
Article En | MEDLINE | ID: mdl-38803515

The loss of RAB25 expression-RAS superfamily of GTPase characteristic of numerous breast cancers-corresponds with H-RAS point mutations, particularly in triple-negative breast cancers (TNBC), a subtype associated with a poor prognosis. To address the poorly understood factors dictating the progression of TNBC tumors, we examine the cooperative effects that loss of RAB25 expression in human mammary epithelial cell (HMEC) lines with H-RAS mutations confers in tumorigenesis. HMECs were immortalized by transduction with LXSN CDK4 R24C, a mutant form of cyclin-dependent kinase, followed by transduction with hTERT, a catalytic subunit of the telomerase enzyme. We found that with the loss of RAB25 and overexpression of mutant H-RAS61L, immortal HMECs transformed toward anchorage-independent growth and acquired an increased ability to migrate. Furthermore, cells express low CD24, high CD44, and low claudin levels, indicating stem-like properties upon transformation. Besides, loss of RAB25 and overexpression of H-RAS61L resulted in increased expression of transcription factors Snail and Slug that drive these cells to lose E-cadherin and undergo epithelial-mesenchymal transition (EMT). This study confirms that loss of RAB25 and overexpression of mutant H-RAS can drive HMECs toward a mesenchymal stem-like state. Our findings reveal that RAB25 functions as a tumor suppressor gene, and loss of RAB25 could serve as a novel biomarker of the claudin-low type of TNBC.


Cell Transformation, Neoplastic , Claudins , Epithelial Cells , Epithelial-Mesenchymal Transition , rab GTP-Binding Proteins , Humans , rab GTP-Binding Proteins/metabolism , rab GTP-Binding Proteins/genetics , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Epithelial Cells/metabolism , Epithelial-Mesenchymal Transition/genetics , Claudins/genetics , Claudins/metabolism , Female , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Oncogenes/genetics , Snail Family Transcription Factors/metabolism , Snail Family Transcription Factors/genetics , Mutation/genetics
8.
Nat Commun ; 15(1): 3288, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38627401

Lactation insufficiency affects many women worldwide. During lactation, a large portion of mammary gland alveolar cells become polyploid, but how these cells balance the hyperproliferation occurring during normal alveologenesis with terminal differentiation required for lactation is unknown. Here, we show that DNA damage accumulates due to replication stress during pregnancy, activating the DNA damage response. Modulation of DNA damage levels in vivo by intraductal injections of nucleosides or DNA damaging agents reveals that the degree of DNA damage accumulated during pregnancy governs endoreplication and milk production. We identify a mechanism involving early mitotic arrest through CDK1 inactivation, resulting in a heterogeneous alveolar population with regards to ploidy and nuclei number. The inactivation of CDK1 is mediated by the DNA damage response kinase WEE1 with homozygous loss of Wee1 resulting in decreased endoreplication, alveologenesis and milk production. Thus, we propose that the DNA damage response to replication stress couples proliferation and endoreplication during mammary gland alveologenesis. Our study sheds light on mechanisms governing lactogenesis and identifies non-hormonal means for increasing milk production.


Alveolar Epithelial Cells , Mammary Glands, Human , Pregnancy , Animals , Female , Humans , Endoreduplication , Mammary Glands, Animal , Lactation/genetics , Milk
9.
Wiad Lek ; 77(2): 247-253, 2024.
Article En | MEDLINE | ID: mdl-38592985

OBJECTIVE: Aim: based on a retrospective analysis, the relationship between external genital endometriosis and comorbid breast pathology was established and risk factors were identified, their comparison and the formation of a prognostic risk criterion were determined. PATIENTS AND METHODS: Materials and Methods: to address the objectives of the study, a retrospective analysis of 470 cases of patients treated for external genital endometriosis after surgical treatment and comorbid breast pathology was conducted. The control group included 30 healthy non-pregnant women. Statistical processing was performed on a personal computer using the statistical software package Statistica 10. RESULTS: Results: As a result of the analysis, the age of the patients ranged from 23 to 40 years. The average age of patients in the study group was (32.2}1.18) years, and in the control group (31.1}1.35) (p>0.05). The groups were homogeneous in terms of age (p>0.05), marital status (p>0.05) and level of education (p>0.05). Close relatives in 208 (44.25}2.18) % (OR=8.86; 95 % CI: (0.68-10.53); p<0.002) cases suffered from benign (hormone-dependent) tumours and tumour-like diseases of the uterus and appendages in isolation or in various combinations (fibroids, adenomyosis, endometrial hyperplasia). It was also found that 102 (21.70}1.67) % of patients had endometriosis, which may indicate a genetic predisposition to this disease. In the closest relatives of EM patients: in 118 (25.10}2.01) % of the examined parents, breast problems were noted, in 66 (14.04}1.12) % - diabetes mellitus, and in 98 (20.85}1.22) % thyroid diseases were detected, which in total amounted to (60.00}2.23) % (OR=9.12; 95 % CI: (0.58-11.54); p<0.002). Early menarche almost tripled the risk of EM (OR=2.72; 95% CI: (1.02-5.11); p<0.002), and menstrual irregularities doubled it (OR=2.04; 95% CI: (1.09-3.14); p<0.05), higher education, urban residents - 2.2 times higher (OR= 2.27; 95 % CI: (1.11-3.63); p<0.05), diseases of the gastrointestinal tract and hepatobiliary complex - 5.2 times higher (OR=5.27; 95 % CI: (1.89-12.03); p<0.05), frequently recurrent inflammatory diseases of the appendages - 3 times higher (OR=3.14; 95 % CI: (0.91-5.14); p<0.05), dysmetabolic manifestations (thyroid dysfunction) - 5 times higher (OR=5.11; 95 % CI: (1.61-9.503); p<0.002). CONCLUSION: Conclusions: Thus, in endometriosis and dyshormonal diseases of the mammary glands, menstrual and generative function disorders, along with clinical symptoms of pelvic pain, dysmenorrhoea, autonomic nervous system disorders and sexual dysfunction, are significant components of this problem, initiating comorbidity processes in target organs in the setting of hormonal maladaptation. Therefore, these comorbidities become a trigger for the activation of systemic hormonal imbalance and become an urgent interdisciplinary problem that requires further study.


Endometriosis , Mammary Glands, Human , Female , Humans , Infant , Young Adult , Adult , Endometriosis/epidemiology , Mammary Glands, Human/pathology , Retrospective Studies , Risk Factors , Comorbidity , Prognosis
10.
Pathol Oncol Res ; 30: 1611376, 2024.
Article En | MEDLINE | ID: mdl-38572338

Mammary-like vulvar adenocarcinoma (MLVA) is an exceedingly rare subtype of vulvar adenocarcinoma that shares features with mammary gland tissue. Due to its rarity and lack of consensus, MLVA presents diagnostic challenges to pathologists. We present the case of a 59-year-old female with an ulcerated mass on the right side of the external genitalia, diagnosed as MLVA. Comprehensive immunohistochemistry (IHC) and gene sequencing studies were performed to characterize the tumor. IHC analysis revealed triple expression of hormonal receptors (estrogen receptor, progesterone receptor, and HER2), supporting the mammary gland origin of the tumor. Gene sequencing identified unique genetic mutations associated with the expression of hormonal markers. One fusion gene (ERBB2-NAGLU) has not been reported in any tumors, and other mutations with unique mutation types have not been previously reported in MLVA. Our findings shed light on the molecular characteristics of MLV and may help improve the diagnosis and treatment of this rare type of vulvar adenocarcinoma.


Adenocarcinoma , Mammary Glands, Human , Vulvar Neoplasms , Female , Humans , Middle Aged , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Adenocarcinoma/pathology , Vulvar Neoplasms/genetics , Vulvar Neoplasms/metabolism , Vulvar Neoplasms/pathology , Breast/pathology , High-Throughput Nucleotide Sequencing
11.
Biomater Adv ; 160: 213847, 2024 Jun.
Article En | MEDLINE | ID: mdl-38657288

Three-dimensional (3D) organoid models have been instrumental in understanding molecular mechanisms responsible for many cellular processes and diseases. However, established organic biomaterial scaffolds used for 3D hydrogel cultures, such as Matrigel, are biochemically complex and display significant batch variability, limiting reproducibility in experiments. Recently, there has been significant progress in the development of synthetic hydrogels for in vitro cell culture that are reproducible, mechanically tuneable, and biocompatible. Self-assembling peptide hydrogels (SAPHs) are synthetic biomaterials that can be engineered to be compatible with 3D cell culture. Here we investigate the ability of PeptiGel® SAPHs to model the mammary epithelial cell (MEC) microenvironment in vitro. The positively charged PeptiGel®Alpha4 supported MEC viability, but did not promote formation of polarised acini. Modifying the stiffness of PeptiGel® Alpha4 stimulated changes in MEC viability and changes in protein expression associated with altered MEC function, but did not fully recapitulate the morphologies of MECs grown in Matrigel. To supply the appropriate biochemical signals for MEC organoids, we supplemented PeptiGels® with laminin. Laminin was found to require negatively charged PeptiGel® Alpha7 for functionality, but was then able to provide appropriate signals for correct MEC polarisation and expression of characteristic proteins. Thus, optimisation of SAPH composition and mechanics allows tuning to support tissue-specific organoids.


Cell Culture Techniques, Three Dimensional , Collagen , Drug Combinations , Epithelial Cells , Hydrogels , Laminin , Peptides , Proteoglycans , Laminin/pharmacology , Laminin/chemistry , Hydrogels/chemistry , Hydrogels/pharmacology , Proteoglycans/pharmacology , Proteoglycans/chemistry , Collagen/chemistry , Collagen/pharmacology , Peptides/pharmacology , Peptides/chemistry , Epithelial Cells/drug effects , Epithelial Cells/cytology , Humans , Female , Cell Culture Techniques, Three Dimensional/methods , Cell Survival/drug effects , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Mammary Glands, Human/cytology , Organoids/drug effects , Organoids/cytology , Cell Culture Techniques/methods
12.
Mol Nutr Food Res ; 68(9): e2300703, 2024 May.
Article En | MEDLINE | ID: mdl-38676329

Botanicals and herbal supplements contain a diverse array of polyphenols that may affect mammary gland function and promote galactagogue activity. This scoping review is conducted to identify scientific literature elucidating how polyphenols affect mammary gland biology and cellular mechanisms critical for lactation. A literature search of PubMed and Medline reviews relevant studies in dairy animals, rodent models, and cultured mammary epithelial cells that are published from January 2010 until July 2023, to ascertain effects of polyphenols on mechanisms regulating milk production and composition. The PRISMA-ScR (Preferred Reporting Items for Systematic Reviews and Meta-Analyses for Scoping Review) strategy is applied and 80 studies on polyphenols and their implications on milk production and composition are included in this review. Limited information delineating effects of polyphenols on the molecular pathways that affect lactation are found, although available information suggests modulation of Stat5 signaling/differentiation, Stat3 signaling/remodeling, mTOR and insulin signaling/energy production, and nuclear factor kappa beta (NFκß) signaling/oxidative stress and inflammation may play roles. A profound lack of mechanistic information underscores the critical need for further research to understand the impact of botanical supplements and polyphenols on milk production and composition in humans to establish maternal nutritional guidelines to support lactation and breastfeeding goals.


Galactogogues , Lactation , Polyphenols , Lactation/drug effects , Polyphenols/pharmacology , Female , Humans , Galactogogues/pharmacology , Animals , Dietary Supplements , Mammary Glands, Animal/drug effects , Signal Transduction/drug effects , Mammary Glands, Human/drug effects , Mammary Glands, Human/metabolism
13.
Anim Sci J ; 95(1): e13940, 2024.
Article En | MEDLINE | ID: mdl-38545696

Lactation is a characteristic physiological function of mammals and is important for nourishing infants and the dairy industry; however, the molecular mechanisms underlying the function remain to be elucidated. A technique to directly evaluate the quantity and quality of milk in mice is necessary for the study of the lactation mechanism in vivo. By measuring the changes in milk amount after different durations of milk accumulation (0-24 h) using a ductal cannulation technique and oxytocin supplementation, we estimated the milk production rate at a single mammary gland level. In addition, collected milk was available to assess milk quality, including creamatocrit, osmolarity, and concentrations of ions, lactose, and total protein. Moreover, as a proof of principle, the effects of intraductal administration of a hypertonic solution to the abdominal mammary gland were examined. This stimulation increased milk amount, possibly by osmosis, compared with the contralateral control gland. These results demonstrated that this method is useful for examining the lactation ability and mechanisms in vivo. Studies using this method will contribute to the further understanding of lactation mechanisms in mammals.


Mammary Glands, Human , Milk , Humans , Female , Mice , Animals , Milk/metabolism , Lactation/physiology , Mammals , Mammary Glands, Animal/metabolism
14.
Medicine (Baltimore) ; 103(12): e36263, 2024 Mar 22.
Article En | MEDLINE | ID: mdl-38517996

This study utilized network pharmacology to investigate the effects of Xiaoyaosan (XYS) on the intervention of hyperplasia of mammary glands (HMG) by targeting specific genes and signaling pathways. The active ingredients and targets of XYS, which consisted of 8 traditional Chinese medicines (TCM), were identified using TCMSP. The gene targets associated with HMG were obtained from the GeneCards Database, and the intersection data between the 2 was integrated. Cytoscape 3.8.1 software was used to construct a network diagram illustrating the relationship between compounds, drug active ingredients, target proteins, and the disease. The protein-protein interaction network diagram was generated using STRING, and the core targets were analyzed. A total of 133 active ingredients in XYS and 7662 active ingredient targets were identified. Among them, 6088 targets were related to HMG, and 542 were common targets between the active ingredients and the disease. The protein-protein interaction (PPI) core network contained 15 targets, with 5 key targets playing a crucial role. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses have indicated that XYS has the potential to treat HMG by interfering with the AGE-RAGE signaling pathway in diabetic complications, the MAPK signaling pathway, and the PI3K-Akt signaling pathway. Additionally, molecular docking studies have shown excellent binding properties between the drug components and key targets. Thus, this study provides a theoretical foundation for a better understanding of the pharmacological mechanism and clinical application of XYS in the comprehensive treatment of HMG.


Drugs, Chinese Herbal , Mammary Glands, Human , Humans , Network Pharmacology , Hyperplasia , Molecular Docking Simulation , Phosphatidylinositol 3-Kinases , Medicine, Chinese Traditional , Drugs, Chinese Herbal/pharmacology , Drugs, Chinese Herbal/therapeutic use
15.
J Mammary Gland Biol Neoplasia ; 29(1): 7, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38539019

This article offers a comprehensive perspective on the transformative role of organoid technology on mammary gland biology research across a diverse array of mammalian species.The mammary gland's unique development and regenerative capabilities render this organ an ideal model for studying developmental evolution, stem cell behavior, and regenerative processes. The discussion extends to the use of cross-species mammary organoids to address key biological inquiries in evolution, tissue regeneration, cancer research, and lactation, highlighting the limitations of traditional mouse models and the benefits of incorporating a more diverse range of animal models.Advances in organoid biology have been critical in overcoming ethical and practical constraints of in-vivo studies, especially in human research. The generation of human and mouse mammary organoids that faithfully recapitulate in-vivo tissues marks a significant stride in this field. Parallel capabilities are now emerging for other mammals, as well.Utilizing mammary organoids from various species has the potential to make invaluable contributions to our understanding of mammary gland biology, with implications for regenerative medicine, cancer research, and lactation studies, thereby contributing to advancements in human health, agriculture, and nutrition science.


Mammary Glands, Human , Female , Mice , Humans , Animals , Lactation , Models, Animal , Organoids , Mammary Glands, Animal , Mammals
16.
Cancer Med ; 13(3): e7053, 2024 Feb.
Article En | MEDLINE | ID: mdl-38426622

INTRODUCTION: Macrophages are innate immune cells that are associated with extensive phenotypic and functional plasticity and contribute to normal development, tissue homeostasis, and diseases such as cancer. In this review, we discuss the heterogeneity of tissue resident macrophages in the normal mammary gland and tumor-associated macrophages in breast cancer. Tissue resident macrophages are required for mammary gland development, where they have been implicated in promoting extracellular matrix remodeling, apoptotic clearance, and cellular crosstalk. In the context of cancer, tumor-associated macrophages are key drivers of growth and metastasis via their ability to promote matrix remodeling, angiogenesis, lymphangiogenesis, and immunosuppression. METHOD: We identified and summarized studies in Pubmed that describe the phenotypic and functional heterogeneity of macrophages and the implications of targeting individual subsets, specifically in the context of mammary gland development and breast cancer. We also identified and summarized recent studies using single-cell RNA sequencing to identify and describe macrophage subsets in human breast cancer samples. RESULTS: Advances in single-cell RNA sequencing technologies have yielded nuances in macrophage heterogeneity, with numerous macrophage subsets identified in both the normal mammary gland and breast cancer tissue. Macrophage subsets contribute to mammary gland development and breast cancer progression in differing ways, and emerging studies highlight a role for spatial localization in modulating their phenotype and function. CONCLUSION: Understanding macrophage heterogeneity and the unique functions of each subset in both normal mammary gland development and breast cancer progression may lead to more promising targets for the treatment of breast cancer.


Breast Neoplasms , Mammary Glands, Human , Animals , Humans , Female , Mammary Glands, Human/pathology , Breast Neoplasms/pathology , Mammary Glands, Animal/pathology , Breast/pathology , Macrophages
18.
Cancer Sci ; 115(5): 1576-1586, 2024 May.
Article En | MEDLINE | ID: mdl-38468443

While loss of function (LOF) of retinoblastoma 1 (RB1) tumor suppressor is known to drive initiation of small-cell lung cancer and retinoblastoma, RB1 mutation is rarely observed in breast cancers at their initiation. In this study, we investigated the impact on untransformed mammary epithelial cells given by RB1 LOF. Depletion of RB1 in anon-tumorigenic MCF10A cells induced reversible growth arrest (quiescence) featured by downregulation of multiple cyclins and MYC, upregulation of p27KIP1, and lack of expression of markers which indicate cellular senescence or epithelial-mesenchymal transition (EMT). We observed a similar phenomenon in human mammary epithelial cells (HMEC) as well. Additionally, we found that RB1 depletion attenuated the activity of RAS and the downstream MAPK pathway in an RBL2/p130-dependent manner. The expression of farnesyltransferase ß, which is essential for RAS maturation, was found to be downregulated following RB1 depletion also in an RBL2/p130-dependent manner. These findings unveiled an unexpected mechanism whereby normal mammary epithelial cells resist to tumor initiation upon RB1 LOF.


Down-Regulation , Epithelial Cells , Retinoblastoma Binding Proteins , Signal Transduction , ras Proteins , Humans , Epithelial Cells/metabolism , Female , Retinoblastoma Binding Proteins/metabolism , Retinoblastoma Binding Proteins/genetics , ras Proteins/metabolism , ras Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Epithelial-Mesenchymal Transition/genetics , Mammary Glands, Human/metabolism , Mammary Glands, Human/pathology , Mammary Glands, Human/cytology , Cell Line, Tumor , Retinoblastoma Protein/metabolism , Retinoblastoma Protein/genetics , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Cyclin-Dependent Kinase Inhibitor p27/genetics
19.
Int J Mol Sci ; 25(5)2024 Feb 20.
Article En | MEDLINE | ID: mdl-38473712

Canine-mammary-gland tumors (CMTs) are prevalent in female dogs, with approximately 50% of them being malignant and often presenting as inoperable owing to their size or metastasis. Owing to poor outcomes, effective alternatives to conventional chemotherapy for humans are necessary. Two estrogen receptors, estrogen receptor alpha (ERα) and estrogen receptor beta (ERß), which act in opposition to each other, are involved, and CMT growth involves ERα through the phosphoinositide 3-kinases (PI3K)/AKT pathway. In this study, we aimed to identify the synergistic anti-cancer effects of ERB-041, an ERß agonist, and genistein, an isoflavonoid from soybeans known to have ERß-specific pseudo-estrogenic actions, on CMT-U27 and CF41.Mg CMT cell lines. ERB-041 and genistein synergistically inhibited cell proliferation and increased the number of annexin V-positive cells in both cell lines. Furthermore, we observed a synergistic increase in the Bax/Bcl-2 ratio and cleaved caspase-3 expression. Additionally, cell-cycle arrest occurred through the synergistic regulation of cyclin D1 and cyclin-dependent kinase 4 (CDK4). We also found a synergistic decrease in the expression of ERα, and the expression of proteins involved in the PI3K/AKT pathway, including p-PI3K, phosphatase and tensin homolog (PTEN), AKT, and mechanistic target of rapamycin (mTOR). In conclusion, ERB-041 and genistein exhibited a synergistic anticancer effect on CMTs, suggesting that cotreatment with ERB-041 and genistein is a promising treatment for CMTs.


Mammary Glands, Human , Oxazoles , Receptors, Estrogen , Dogs , Animals , Female , Humans , Receptors, Estrogen/metabolism , Genistein/pharmacology , Estrogen Receptor beta/genetics , Estrogen Receptor alpha/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Down-Regulation , Mammary Glands, Human/metabolism , Estrogens/metabolism
20.
PeerJ ; 12: e17077, 2024.
Article En | MEDLINE | ID: mdl-38500523

Background: Metastatic disease resulting from mammary gland tumors (MGTs) is a known cause of death among dogs and cats. Keys to successful prevention and management strategies involve the accurate recording of diagnostic data. Methods: This retrospective study reviewed the epidemiology and classification of canine mammary gland tumors (CMTs) and feline mammary gland tumors (FMTs), as well as the factors including sex, age, and breed related to the occurrence of these tumors. Accordingly, 1,736 tumor biopsy cases were reported from 2012 to 2019 at Chiang Mai University Small Animal Hospital, Thailand, with 1,639 canine tumor biopsy cases and 97 feline tumor biopsy cases. Results: The proportion of CMTs was reported at 24.5% (401/1,639) for all canine tumor biopsy cases. Benign and malignant tumors were reported at 14.5% (58/401) and 85.5% (343/401) for all CMT cases, respectively. The mean age of dogs affected by benign CMTs was 9.0 ± 3.0 years, which was significantly lower than for malignant CMTs at 9.9 ± 2.8 years (P = 0.0239). According to histopathological classification, benign mixed tumors and simple carcinoma types were highest among benign and malignant CMT cases, respectively. Moreover, female dogs were at significantly higher risk of developing mammary gland tumors (OR = 45.8, 95% CI [3.9-86.0], P < 0.0001) than male dogs, as well as older dogs (>8 years) (OR = 1.7, 95% CI [1.2-2.2], P = 0.0001) compared to young ones (≤8 years). The proportion of FMTs was 37.1% (36/97) for all feline tumor biopsy cases. Benign and malignant tumors for all FMTs were reported at 16.7% (6/36) and 83.3% (30/36), respectively. According to histopathological classifications, adenoma and simple carcinoma were present in the highest proportion among benign and malignant FMTs, respectively. Female cats were at a significantly higher risk of developing mammary gland tumors than male cats (OR = 25.7, 95% CI [3.9-272.8], P < 0.0001). Conclusions and clinical importance: There was a high proportion of MGT cases compared with other tumor cases reported in a secondary care hospital in Chiang Mai, Thailand from 2012 to 2019, and malignant tumor biopsies have been more frequently observed than benign tumor biopsies in both CMT and FMT cases. The resulting data originating from this study can be an aid for veterinary oncologists in better educating clients and planning treatment and prevention strategies and it can be used as a basis for further experimental studies in the oncology section.


Carcinoma , Cat Diseases , Dog Diseases , Mammary Glands, Human , Mammary Neoplasms, Animal , Sweat Gland Neoplasms , Humans , Cats , Dogs , Animals , Male , Female , Child , Cat Diseases/epidemiology , Thailand/epidemiology , Retrospective Studies , Mammary Glands, Human/pathology , Secondary Care , Dog Diseases/diagnosis , Carcinoma/pathology , Biopsy/veterinary , Mammary Neoplasms, Animal/epidemiology , Hospitals
...