Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 398
Filtrar
1.
Planta ; 260(3): 68, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39120651

RESUMEN

MAIN CONCLUSION: MpMYB02, a regulator of marchantin accumulation, also acts as a key regulator of oil body formation. MpMYB02 induces the expression of MpSYP12B and promotes oil body formation, subsequently leading to marchantin accumulation. The oil body observed in Marchantia polymorpha is a cellular organelle surrounded by a unit membrane, accumulating various secondary metabolites such as marchantins and terpenes. We observed that oil body formation is regulated by MpMYB02, a key regulator of marchantin accumulation. In the Mpmyb02 mutant, no oil bodies were observed, although idioblast-like cells were present in the gemma. We introduced MpMYB02-glucocorticoid receptor (GR), a steroid-inducible transcriptional activator, into Mpmyb02 and assessed the effect of dexamethasone (DEX) on oil body formation. Following DEX treatment, transformed liverworts began forming oil bodies within 12 h. During the initial stages of oil body development, we observed the aggregation of small globular structures. DEX treatment upregulated several genes implicated in oil body formation, including MpSYP12B. Our findings underscore that MpMYB02 plays a crucial role not only in marchantin accumulation but also in oil body formation.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Marchantia , Proteínas de Plantas , Marchantia/genética , Marchantia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Dexametasona/farmacología , Aceites de Plantas/metabolismo
2.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39133134

RESUMEN

Rho/Rac of plant (ROP) GTPases are plant-specific proteins that function as molecular switches, activated by guanine nucleotide exchange factors (GEFs) and inactivated by GTPase-activating proteins (GAPs). The bryophyte Marchantia polymorpha contains single copies of ROP (MpROP), GEFs [ROPGEF and SPIKE (SPK)] and GAPs [ROPGAP and ROP ENHANCER (REN)]. MpROP regulates the development of various tissues and organs, such as rhizoids, gemmae and air chambers. The ROPGEF KARAPPO (MpKAR) is essential for gemma initiation, but the functions of other ROP regulatory factors are less understood. This study focused on two GAPs: MpROPGAP and MpREN. Mpren single mutants showed defects in thallus growth, rhizoid tip growth, gemma development, and air-chamber formation, whereas Mpropgap mutants showed no visible abnormalities. However, Mpropgap Mpren double mutants had more severe phenotypes than the Mpren single mutants, suggesting backup roles of MpROPGAP in processes involving MpREN. Overexpression of MpROPGAP and MpREN resulted in similar gametophyte defects, highlighting the importance of MpROP activation/inactivation cycling (or balancing). Thus, MpREN predominantly, and MpROPGAP as a backup, regulate gametophyte development, likely by controlling MpROP activation in M. polymorpha.


Asunto(s)
Marchantia , Proteínas de Plantas , Marchantia/genética , Marchantia/metabolismo , Marchantia/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas , Mutación/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Organogénesis de las Plantas/genética , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/genética
3.
EMBO J ; 43(18): 4092-4109, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39090438

RESUMEN

The phenylpropanoid pathway is one of the plant metabolic pathways most prominently linked to the transition to terrestrial life, but its evolution and early functions remain elusive. Here, we show that activity of the t-cinnamic acid 4-hydroxylase (C4H), the first plant-specific step in the pathway, emerged concomitantly with the CYP73 gene family in a common ancestor of embryophytes. Through structural studies, we identify conserved CYP73 residues, including a crucial arginine, that have supported C4H activity since the early stages of its evolution. We further demonstrate that impairing C4H function via CYP73 gene inactivation or inhibitor treatment in three bryophyte species-the moss Physcomitrium patens, the liverwort Marchantia polymorpha and the hornwort Anthoceros agrestis-consistently resulted in a shortage of phenylpropanoids and abnormal plant development. The latter could be rescued in the moss by exogenous supply of p-coumaric acid, the product of C4H. Our findings establish the emergence of the CYP73 gene family as a foundational event in the development of the plant phenylpropanoid pathway, and underscore the deep-rooted function of the C4H enzyme in embryophyte biology.


Asunto(s)
Proteínas de Plantas , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Marchantia/genética , Marchantia/metabolismo , Ácidos Cumáricos/metabolismo , Transcinamato 4-Monooxigenasa/metabolismo , Transcinamato 4-Monooxigenasa/genética , Anthocerotophyta/genética , Anthocerotophyta/metabolismo , Bryopsida/genética , Bryopsida/metabolismo , Bryopsida/crecimiento & desarrollo , Bryopsida/enzimología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Filogenia , Embryophyta/genética , Embryophyta/metabolismo , Propionatos/metabolismo , Propanoles/metabolismo , Evolución Molecular , Regulación de la Expresión Génica de las Plantas
4.
Methods Mol Biol ; 2841: 225-239, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39115782

RESUMEN

The endomembrane system in plants is composed of interconnected membrane organelles that contribute to intracellular structure and function. These organelles include the endoplasmic reticulum (ER), Golgi apparatus, vacuole, trans-Golgi network, and prevacuolar compartment or multivesicular body. Through vesicle-mediated transport, secreted proteins are synthesized in the ER and subsequently transported along the secretory pathway to the vacuole or outside of cells to fulfill specialized functions. Genetic screening is a crucial method for studying plant protein secretion. It entails identifying phenotypic differences resulting from genetic mutations, such as ethyl methanesulfonate, T-DNA insertion, and RNAi, to investigate gene function and discover mutants with specific traits or gene functions. Significant progress has been achieved in the study of plant protein secretion through genetic screening. In this protocol, we provide a step-by-step guide to studying the protein secretion pathway using a genetic screen approach. We use the example of the free 1 suppressor of Arabidopsis thaliana and oil body mutants of Marchantia polymorpha. Additionally, we offer an overview of genetic screening and briefly summarize the emerging technologies in the field of protein secretion research.


Asunto(s)
Arabidopsis , Pruebas Genéticas , Proteínas de Plantas , Transporte de Proteínas , Arabidopsis/genética , Arabidopsis/metabolismo , Pruebas Genéticas/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Retículo Endoplásmico/metabolismo , Mutación , Marchantia/genética , Marchantia/metabolismo , Aparato de Golgi/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
5.
Plant Physiol Biochem ; 215: 109042, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39173366

RESUMEN

Manganese (Mn) is considered as an essential element for plant growth. Mn starvation has been shown to affect photosystem II, the site of the Mn4CaO5 cluster responsible for water oxidation. Less is known on the effect of Mn starvation on photosystem I. Here we studied the effects of Mn deficiency in vivo on redox changes of P700 and plastocyanin (Pc) in the liverwort Marchantia polymorpha using the KLAS-NIR spectrophotometer. Far-red illumination is used to excite preferentially photosystem I, thus facilitating cyclic electron transport. Under Mn starvation, we observed slower oxidation of P700 and a decrease in the Pc signal relative to P700. The lower Pc content under Mn deficiency was confirmed by western blots. Re-reduction kinetics of P700+ and Pc+ were faster in Mn deficient thalli than in the control. The above findings show that the kinetics studied under Mn deficiency not only depend on the number of available reductants but also on how quickly electrons are transferred from stromal donors via the intersystem chain to Pc+ and P700+. We suggest that under Mn deficiency a structural reorganization of the thylakoid membrane takes place favoring the formation of supercomplexes between ferredoxin, cytochrome b6f complex, Pc and photosystem I, and thus an enhanced cyclic electron transport.


Asunto(s)
Manganeso , Marchantia , Fotosíntesis , Complejo de Proteína del Fotosistema I , Marchantia/metabolismo , Marchantia/genética , Manganeso/metabolismo , Manganeso/deficiencia , Transporte de Electrón , Fotosíntesis/fisiología , Complejo de Proteína del Fotosistema I/metabolismo , Oxidación-Reducción , Plastocianina/metabolismo , Cinética , Tilacoides/metabolismo
6.
Plant Cell ; 36(9): 3824-3837, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39041486

RESUMEN

Germline fate determination is a critical event in sexual reproduction. Unlike animals, plants specify the germline by reprogramming somatic cells at the late stages of their development. However, the genetic basis of germline fate determination and how it evolved during the land plant evolution are still poorly understood. Here, we report that the plant homeodomain finger protein GERMLINE IDENTITY DETERMINANT (GLID) is a key regulator of the germline specification in liverwort, Marchantia polymorpha. Loss of the MpGLID function causes failure of germline initiation, leading to the absence of sperm and egg cells. Remarkably, the overexpression of MpGLID in M. polymorpha induces the ectopic formation of cells with male germline cell features exclusively in male thalli. We further show that MpBONOBO (BNB), with an evolutionarily conserved function, can induce the formation of male germ cell-like cells through the activation of MpGLID by directly binding to its promoter. The Arabidopsis (Arabidopsis thaliana) MpGLID ortholog, MALE STERILITY1 (AtMS1), fails to replace the germline specification function of MpGLID in M. polymorpha, demonstrating that a derived function of MpGLID orthologs has been restricted to tapetum development in flowering plants. Collectively, our findings suggest the presence of the BNB-GLID module in complex ancestral land plants that has been retained in bryophytes, but rewired in flowering plants for male germline fate determination.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Marchantia , Proteínas de Plantas , Marchantia/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Células Germinativas de las Plantas/metabolismo , Arabidopsis/genética , Plantas Modificadas Genéticamente
7.
New Phytol ; 243(6): 2295-2310, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39056290

RESUMEN

The NPR proteins function as salicylic acid (SA) receptors in Arabidopsis thaliana. AtNPR1 plays a central role in SA-induced transcriptional reprogramming whereby positively regulates SA-mediated defense. NPRs are found in the genomes of nearly all land plants. However, we know little about the molecular functions and physiological roles of NPRs in most plant species. We conducted phylogenetic and alignment analyses of NPRs from 68 species covering the significant lineages of land plants. To investigate NPR functions in bryophyte lineages, we generated and characterized NPR loss-of-function mutants in the liverwort Marchantia polymorpha. Brassicaceae NPR1-like proteins have characteristically gained or lost functional residues identified in AtNPRs, pointing to the possibility of a unique evolutionary trajectory for the Brassicaceae NPR1-like proteins. We find that the only NPR in M. polymorpha, MpNPR, is not the master regulator of SA-induced transcriptional reprogramming and negatively regulates bacterial resistance in this species. The Mpnpr transcriptome suggested roles of MpNPR in heat and far-red light responses. We identify both Mpnpr and Atnpr1-1 display enhanced thermomorphogenesis. Interspecies complementation analysis indicated that the molecular properties of AtNPR1 and MpNPR are partially conserved. We further show that MpNPR has SA-binding activity. NPRs and NPR-associated pathways have evolved distinctively in diverged land plant lineages to cope with different terrestrial environments.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Marchantia , Filogenia , Proteínas de Plantas , Marchantia/genética , Marchantia/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Embryophyta/genética , Mutación/genética , Transducción de Señal , Secuencia Conservada , Ácido Salicílico/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
8.
Planta ; 260(2): 45, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965075

RESUMEN

MAIN CONCLUSION: Developing bryophytes differentially modify their plasmodesmata structure and function. Secondary plasmodesmata formation via twinning appears to be an ancestral trait. Plasmodesmata networks in hornwort sporophyte meristems resemble those of angiosperms. All land-plant taxa use plasmodesmata (PD) cell connections for symplasmic communication. In angiosperm development, PD networks undergo an extensive remodeling by structural and functional PD modifications, and by postcytokinetic formation of additional secondary PD (secPD). Since comparable information on PD dynamics is scarce for the embryophyte sister groups, we investigated maturating tissues of Anthoceros agrestis (hornwort), Physcomitrium patens (moss), and Marchantia polymorpha (liverwort). As in angiosperms, quantitative electron microscopy revealed secPD formation via twinning in gametophytes of all model bryophytes, which gives rise to laterally adjacent PD pairs or to complex branched PD. This finding suggests that PD twinning is an ancient evolutionary mechanism to adjust PD numbers during wall expansion. Moreover, all bryophyte gametophytes modify their existing PD via taxon-specific strategies resembling those of angiosperms. Development of type II-like PD morphotypes with enlarged diameters or formation of pit pairs might be required to maintain PD transport rates during wall thickening. Similar to angiosperm leaves, fluorescence redistribution after photobleaching revealed a considerable reduction of the PD permeability in maturating P. patens phyllids. In contrast to previous reports on monoplex meristems of bryophyte gametophytes with single initials, we observed targeted secPD formation in the multi-initial basal meristems of A. agrestis sporophytes. Their PD networks share typical features of multi-initial angiosperm meristems, which may hint at a putative homologous origin. We also discuss that monoplex and multi-initial meristems may require distinct types of PD networks, with or without secPD formation, to control maintenance of initial identity and positional signaling.


Asunto(s)
Plasmodesmos , Plasmodesmos/ultraestructura , Plasmodesmos/metabolismo , Briófitas/crecimiento & desarrollo , Briófitas/fisiología , Briófitas/ultraestructura , Bryopsida/crecimiento & desarrollo , Bryopsida/fisiología , Bryopsida/ultraestructura , Marchantia/genética , Marchantia/crecimiento & desarrollo , Marchantia/fisiología , Marchantia/ultraestructura , Células Germinativas de las Plantas/crecimiento & desarrollo , Anthocerotophyta/fisiología , Anthocerotophyta/metabolismo , Meristema/crecimiento & desarrollo , Meristema/ultraestructura , Meristema/fisiología
9.
Development ; 151(20)2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39041335

RESUMEN

The multicellular haploid stage of land plants develops from a single haploid cell produced by meiosis - the spore. Starting from a non-polar state, these spores develop polarity, divide asymmetrically and establish the first axis of symmetry. Here, we show that the nucleus migrates from the cell centroid to the basal pole during polarisation of the Marchantia polymorpha spore cell. A microtubule organising centre on the leading edge of the nucleus initiates a microtubule array between the nuclear surface and the cortex at the basal pole. Simultaneously, cortical microtubules disappear from the apical hemisphere but persist in the basal hemisphere. This is accompanied by the formation a dense network of fine actin filaments between the nucleus and the basal pole cortex. Experimental depolymerisation of either microtubules or actin filaments disrupts cellular asymmetry. These data demonstrate that the cytoskeleton reorganises during spore polarisation and controls the directed migration of the nucleus to the basal pole. The presence of the nucleus at the basal pole provides the cellular asymmetry for the asymmetric cell division that establishes the apical-basal axis of the plant.


Asunto(s)
Citoesqueleto de Actina , Núcleo Celular , Polaridad Celular , Marchantia , Microtúbulos , Esporas , Microtúbulos/metabolismo , Núcleo Celular/metabolismo , Citoesqueleto de Actina/metabolismo , Marchantia/metabolismo , Marchantia/genética , Marchantia/citología , Polaridad Celular/fisiología
10.
Cell ; 187(18): 4859-4876.e22, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39047726

RESUMEN

Chloroplast biogenesis is dependent on master regulators from the GOLDEN2-LIKE (GLK) family of transcription factors. However, glk mutants contain residual chlorophyll, indicating that other proteins must be involved. Here, we identify MYB-related transcription factors as regulators of chloroplast biogenesis in the liverwort Marchantia polymorpha and angiosperm Arabidopsis thaliana. In both species, double-mutant alleles in MYB-related genes show very limited chloroplast development, and photosynthesis gene expression is perturbed to a greater extent than in GLK mutants. Genes encoding enzymes of chlorophyll biosynthesis are controlled by MYB-related and GLK proteins, whereas those allowing CO2 fixation, photorespiration, and photosystem assembly and repair require MYB-related proteins. Regulation between the MYB-related and GLK transcription factors appears more extensive in A. thaliana than in M. polymorpha. Thus, MYB-related and GLK genes have overlapping as well as distinct targets. We conclude that MYB-related and GLK transcription factors orchestrate chloroplast development in land plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción , Cloroplastos/metabolismo , Cloroplastos/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Marchantia/genética , Marchantia/metabolismo , Fotosíntesis/genética , Clorofila/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Mutación , Biogénesis de Organelos
11.
Proc Natl Acad Sci U S A ; 121(30): e2318982121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39012828

RESUMEN

The mutualistic arbuscular mycorrhizal (AM) symbiosis arose in land plants more than 450 million years ago and is still widely found in all major land plant lineages. Despite its broad taxonomic distribution, little is known about the molecular components underpinning symbiosis outside of flowering plants. The ARBUSCULAR RECEPTOR-LIKE KINASE (ARK) is required for sustaining AM symbiosis in distantly related angiosperms. Here, we demonstrate that ARK has an equivalent role in symbiosis maintenance in the bryophyte Marchantia paleacea and is part of a broad AM genetic program conserved among land plants. In addition, our comparative transcriptome analysis identified evolutionarily conserved expression patterns for several genes in the core symbiotic program required for presymbiotic signaling, intracellular colonization, and nutrient exchange. This study provides insights into the molecular pathways that consistently associate with AM symbiosis across land plants and identifies an ancestral role for ARK in governing symbiotic balance.


Asunto(s)
Embryophyta , Regulación de la Expresión Génica de las Plantas , Micorrizas , Proteínas de Plantas , Simbiosis , Simbiosis/genética , Micorrizas/fisiología , Micorrizas/genética , Embryophyta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Marchantia/genética , Marchantia/microbiología , Filogenia
12.
Cell Rep ; 43(7): 114463, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38985675

RESUMEN

Foliar pigmentation patterns vary among plant species and growth conditions. In this study, we utilize hyperspectral imaging to assess foliar pigmentation in the bryophyte Marchantia polymorpha under nutrient stress and identify associated genetic factors. Using singular value decomposition (SVD) for feature selection, we quantitate color variations induced by deficiencies in phosphate, nitrate, magnesium, calcium, and iron. Pseudo-colored thallus images show that disrupting MpWRKY10 causes irregular pigmentation with auronidin accumulation. Transcriptomic profiling shows that MpWRKY10 regulates phenylpropanoid pathway enzymes and R2R3-MYB transcription factors during phosphate deficiency, with MpMYB14 upregulation preceding pigment accumulation. MpWRKY10 is downregulated in older, pigmented thalli under phosphate deficiency but maintained in young thalli, where it suppresses pigmentation genes. This downregulation is absent in pigmented thalli due to aging. Comparative transcriptome analysis suggests similar WRKY and MYB roles in nutrient response and pigmentation in red-leaf lettuce, alluding to conserved genetic factors controlling foliar pigmentation patterns under nutrient deficiency.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Imágenes Hiperespectrales , Marchantia , Pigmentación , Proteínas de Plantas , Pigmentación/genética , Marchantia/genética , Marchantia/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Imágenes Hiperespectrales/métodos , Hojas de la Planta/metabolismo , Hojas de la Planta/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
13.
Cell Rep ; 43(7): 114466, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38985681

RESUMEN

Meristems are crucial for organ formation, but our knowledge of their molecular evolution is limited. Here, we show that AINTEGUMENTA (MpANT) in the euANT branch of the APETALA2-like transcription factor family is essential for meristem development in the nonvascular plant Marchantia polymorpha. MpANT is expressed in the thallus meristem. Mpant mutants show defects to maintain meristem identity and undergo meristem duplication, while MpANT overexpressers show ectopic thallus growth. MpANT directly upregulates MpGRAS9 in the SHORT-ROOT (SHR) branch of the GRAS family. In the vascular plant Arabidopsis thaliana, the euANT-branch genes PLETHORAs (AtPLTs) and AtANT are involved in the formation and maintenance of root/shoot apical meristems and lateral organ primordia, and AtPLTs directly target SHR-branch genes. In addition, euANTs bind through a similar DNA-binding motif to many conserved homologous genes in M. polymorpha and A. thaliana. Overall, the euANT pathway has an evolutionarily conserved role in meristem development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Marchantia , Meristema , Proteínas de Plantas , Meristema/metabolismo , Meristema/crecimiento & desarrollo , Marchantia/genética , Marchantia/metabolismo , Marchantia/crecimiento & desarrollo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética
14.
Plant Cell Physiol ; 65(8): 1298-1309, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38822700

RESUMEN

Marchantia polymorpha has become an important model system for comparative studies and synthetic biology. The systematic characterization of genetic elements would make heterologous gene expression more predictable in this test bed for gene circuit assembly and bioproduction. Yet, the toolbox of genetic parts for Marchantia includes only a few constitutive promoters that need benchmarking to assess their utility. We compared the expression patterns of previously characterized and new constitutive promoters. We found that driving expression with the double enhancer version of the cauliflower mosaic virus 35S promoter (pro35S × 2) provided the highest yield of proteins, although it also inhibits the growth of transformants. In contrast, promoters derived from the Marchantia genes for ETHYLENE RESPONSE FACTOR 1 and the CLASS II HOMEODOMAIN-LEUCINE ZIPPER protein drove expression to higher levels across all tissues without a growth penalty and can provide intermediate levels of gene expression. In addition, we showed that the cytosol is the best subcellular compartment to target heterologous proteins for higher levels of expression without a significant growth burden. To demonstrate the potential of these promoters in Marchantia, we expressed RUBY, a polycistronic betalain synthesis cassette linked by P2A sequences, to demonstrate coordinated expression of metabolic enzymes. A heat-shock-inducible promoter was used to further mitigate growth burdens associated with high amounts of betalain accumulation. We have expanded the existing tool kit for gene expression in Marchantia and provided new resources for the Marchantia research community.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Marchantia , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Transgenes , Marchantia/genética , Marchantia/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caulimovirus/genética
15.
Nat Plants ; 10(6): 1027-1038, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38831045

RESUMEN

In bryophytes, sexual reproduction necessitates the release of motile sperm cells from a gametophyte into the environment. Since 1856, this process, particularly in liverworts, has been known to depend on water. However, the molecular mechanism underlying this phenomenon has remained elusive. Here we identify the plasma membrane protein MpMLO1 in Marchantia polymorpha, a model liverwort, as critical for sperm discharge from antheridia. The MpMLO1-expressing tip cells among the sperm-wrapping jacket cells undergo programmed cell death upon antheridium maturation to facilitate sperm discharge after the application of water and even hypertonic solutions. The absence of MpMLO1 leads to reduced cytoplasmic Ca2+ levels in tip cells, preventing cell death and consequently sperm discharge. Our findings reveal that MpMLO1-mediated programmed cell death in antheridial tip cells, regulated by cytosolic Ca2+ dynamics, is essential for sperm release, elucidating a key mechanism in bryophyte sexual reproduction and providing insights into terrestrial plant evolution.


Asunto(s)
Marchantia , Proteínas de Plantas , Marchantia/fisiología , Marchantia/genética , Marchantia/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Calcio/metabolismo , Reproducción/fisiología , Hepatophyta/fisiología , Hepatophyta/metabolismo , Hepatophyta/genética , Apoptosis
16.
New Phytol ; 243(4): 1406-1423, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38922903

RESUMEN

The GOLDEN2-LIKE (GLK) transcription factors act as a central regulatory node involved in both developmental processes and environmental responses. Marchantia polymorpha, a basal terrestrial plant with strategic evolutionary position, contains a single GLK representative that possesses an additional domain compared to spermatophytes. We analyzed the role of MpGLK in chloroplast biogenesis and development by altering its levels, preforming transcriptomic profiling and conducting chromatin immunoprecipitation. Decreased MpGLK levels impair chloroplast differentiation and disrupt the expression of photosynthesis-associated nuclear genes, while overexpressing MpGLK leads to ectopic chloroplast biogenesis. This demonstrates the MpGLK functions as a bona fide GLK protein, likely representing an ancestral GLK architecture. Altering MpGLK levels directly regulates the expression of genes involved in Chl synthesis and degradation, similar to processes observed in eudicots, and causes various developmental defects in Marchantia, including the formation of dorsal structures such as air pores and gemma cups. MpGLK, also directly activates MpMAX2 gene expression, regulating the timing of gemma cup development. Our study shows that MpGLK functions as a master regulator, potentially coupling chloroplast development with vegetative reproduction. This illustrates the complex regulatory networks governing chloroplast function and plant development communication and highlight the evolutionary conservation of GLK-mediated regulatory processes across plant species.


Asunto(s)
Cloroplastos , Regulación de la Expresión Génica de las Plantas , Marchantia , Proteínas de Plantas , Factores de Transcripción , Marchantia/genética , Marchantia/crecimiento & desarrollo , Marchantia/metabolismo , Cloroplastos/metabolismo , Cloroplastos/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Desarrollo de la Planta/genética , Fotosíntesis/genética
17.
Plant Cell Physiol ; 65(8): 1231-1244, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-38757817

RESUMEN

To adapt to a terrestrial habitat, the ancestors of land plants must have made several morphological and physiological modifications, such as a meristem allowing for three-dimensional growth, rhizoids for water and nutrient uptake, air pore complexes or stomata that permit air exchange, and a defense system to cope with oxidative stress that occurs frequently in a terrestrial habitat. To understand how the meristem was determined during land plant evolution, we characterized the function of the closest PLETHORA homolog in the liverwort Marchantia polymorpha, which we named MpPLT. Through a transgenic approach, we showed that MpPLT is expressed not only in the stem cells at the apical notch but also in the proliferation zone of the meristem, as well as in cells that form the air-pore complex and rhizoids. Using the CRISPR method we then created mutants for MpPLT and found that the mutants are not only defective in meristem maintenance but also compromised in air-pore complex and rhizoid development. Strikingly, at later developmental stages, numerous gemma-like structures were formed in Mpplt mutants, suggesting developmental arrest. Further experiments indicated that MpPLT promotes plant growth by regulating MpWOX, which shared a similar expression pattern to MpPLT, and genes involved in auxin and cytokinin signaling pathways. Through transcriptome analyses, we found that MpPLT also has a role in redox homeostasis and that this role is essential for plant growth. Taken together, these results suggest that MpPLT has a crucial role in liverwort growth and development and hence may have played a crucial role in early land plant evolution.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Homeostasis , Marchantia , Meristema , Oxidación-Reducción , Proteínas de Plantas , Marchantia/genética , Marchantia/crecimiento & desarrollo , Marchantia/metabolismo , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Mutación/genética , Ácidos Indolacéticos/metabolismo
18.
BMC Plant Biol ; 24(1): 399, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38745128

RESUMEN

BACKGROUND: Riccia fluitans, an amphibious liverwort, exhibits a fascinating adaptation mechanism to transition between terrestrial and aquatic environments. Utilizing nanopore direct RNA sequencing, we try to capture the complex epitranscriptomic changes undergone in response to land-water transition. RESULTS: A significant finding is the identification of 45 differentially expressed genes (DEGs), with a split of 33 downregulated in terrestrial forms and 12 upregulated in aquatic forms, indicating a robust transcriptional response to environmental changes. Analysis of N6-methyladenosine (m6A) modifications revealed 173 m6A sites in aquatic and only 27 sites in the terrestrial forms, indicating a significant increase in methylation in the former, which could facilitate rapid adaptation to changing environments. The aquatic form showed a global elongation bias in poly(A) tails, which is associated with increased mRNA stability and efficient translation, enhancing the plant's resilience to water stress. Significant differences in polyadenylation signals were observed between the two forms, with nine transcripts showing notable changes in tail length, suggesting an adaptive mechanism to modulate mRNA stability and translational efficiency in response to environmental conditions. This differential methylation and polyadenylation underline a sophisticated layer of post-transcriptional regulation, enabling Riccia fluitans to fine-tune gene expression in response to its living conditions. CONCLUSIONS: These insights into transcriptome dynamics offer a deeper understanding of plant adaptation strategies at the molecular level, contributing to the broader knowledge of plant biology and evolution. These findings underscore the sophisticated post-transcriptional regulatory strategies Riccia fluitans employs to navigate the challenges of aquatic versus terrestrial living, highlighting the plant's dynamic adaptation to environmental stresses and its utility as a model for studying adaptation mechanisms in amphibious plants.


Asunto(s)
Análisis de Secuencia de ARN , Transcriptoma , Secuenciación de Nanoporos , Marchantia/genética , Regulación de la Expresión Génica de las Plantas , ARN de Planta/genética , Adaptación Fisiológica/genética , Epigénesis Genética
19.
Plant Cell Environ ; 47(8): 3215-3226, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38736289

RESUMEN

Chloroplasts accumulate in regions of plant cells exposed to irradiation to maximize light reception for efficient photosynthesis. This response is mediated by the blue-light receptor phototropin. Upon the perception of blue light, phototropin is photoactivated, an unknown signal is transmitted from the photoactivated phototropin to distant chloroplasts, and the chloroplasts begin their directional movement. How activated phototropin initiates this signal transmission is unknown. Here, using the liverwort Marchantia polymorpha, we analysed whether increased photoactive phototropin levels mediate signal transmission and chloroplast behaviour during the accumulation response. The signal transmission rate was higher in transgenic cells overexpressing phototropin than in wild-type cells. However, the chloroplast directional movement was similar between wild-type and transgenic cells. Consistent with the observation, increasing the amount of photoactivated phototropin through higher blue-light intensity also accelerated signal transmission but did not affect chloroplast behaviour in wild-type cells. Photoactivation of phototropin under weak blue-light led to the greater protein level of phosphorylated phototropin in cells overexpressing phototropin than in wild-type cells, whereas the autophosphorylation level within each phototropin molecule was similar. These results indicate that the abundance of photoactivated phototropin modulates the signal transmission rate to distant chloroplasts but does not affect chloroplast behaviour during the accumulation response.


Asunto(s)
Cloroplastos , Luz , Marchantia , Fototropinas , Plantas Modificadas Genéticamente , Transducción de Señal , Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , Cloroplastos/fisiología , Fototropinas/metabolismo , Fototropinas/genética , Marchantia/fisiología , Marchantia/efectos de la radiación , Marchantia/genética , Marchantia/metabolismo , Fosforilación , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
20.
J R Soc Interface ; 21(214): 20240008, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38715319

RESUMEN

Multicellular organisms grow and acquire their shapes through the differential expansion and deformation of their cells. Recent research has addressed the role of cell and tissue mechanical properties in these processes. In plants, it is believed that growth rate is a function of the mechanical stress exerted on the cell wall, the thin polymeric layer surrounding cells, involving an effective viscosity. Nevertheless, recent studies have questioned this view, suggesting that cell wall elasticity sets the growth rate or that uptake of water is limiting for plant growth. To assess these issues, we developed a microfluidic device to quantify the growth rates, elastic properties and hydraulic conductivity of individual Marchantia polymorpha plants in a controlled environment with a high throughput. We characterized the effect of osmotic treatment and abscisic acid on growth and hydromechanical properties. Overall, the instantaneous growth rate of individuals is correlated with both bulk elastic modulus and hydraulic conductivity. Our results are consistent with a framework in which the growth rate is determined primarily by the elasticity of the wall and its remodelling, and secondarily by hydraulic conductivity. Accordingly, the coupling between the chemistry of the cell wall and the hydromechanics of the cell appears as key to set growth patterns during morphogenesis.


Asunto(s)
Pared Celular , Pared Celular/fisiología , Marchantia/crecimiento & desarrollo , Marchantia/fisiología , Ácido Abscísico/metabolismo , Modelos Biológicos , Fenómenos Biomecánicos , Desarrollo de la Planta/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA