Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.123
1.
Int J Med Sci ; 21(6): 1016-1026, 2024.
Article En | MEDLINE | ID: mdl-38774755

Introduction: Breast cancer results from tissue degradation caused by environmental and genetic factors that affect cells in the body. Matrix metalloproteinases, such as MMP-2 and MMP-9, are considered potential putative markers for tumor diagnosis in clinical validation due to their easy detection in body fluids. In addition, recent reports have suggested multiple roles for MMPs, rather than simply degeneration of the extracellular matrix, which comprises mobilizing growth factors and processing surface molecules. Methods: In this study, the chemotherapeutic effects of anthraquinone (AQ) extracted from edible mushrooms (Pleurotus ostreatus Jacq. ex Fr.) cells was examined in MCF-7 breast cancer cells. The cytotoxic potential and oxidative stress induced by purified anthraquinone were assessed in MCF-7 cells using MTT and ROS estimation assays. Gelatin Zymography, and DNA fragmentation assays were performed to examine MMP expression and apoptotic induction in the MCF-7 cells treated with AQ. The genes crucial for mutations were examined, and the mutated RNA knockout plausibility was analyzed using the CRISPR spcas9 genome editing software. Results: MCF-7 cells were attenuated in a concentration-dependent manner by the administration of AQ purified from P. ostreatus compared with the standard anticancer drug paclitaxel. AQ supplementation decreased oxidative stress and mitochondrial impairment in MCF-7 cells. Treatment with AQ and AQ with paclitaxel consistently decreased the expression of crucial marker genes such as MMP2 and MMP9. The mutated genes MMP2, MMP7, and MMP9 were assessed and observed to reveal four putative gene knockdown potentials for breast cancer treatment. Conclusions: The synergistic application of AQ and paclitaxel exerted a strong inhibitory effect on the MCF-7 breast cancer cells. Extensive studies are imperative to better understand the action of bioactive mixes on the edible oyster fungus P. ostreatus. The gene knockout potential detected by CRISPR SpCas9 will aid in elite research into anticancer treatments.


Anthraquinones , Apoptosis , Breast Neoplasms , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Pleurotus , Humans , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Anthraquinones/pharmacology , MCF-7 Cells , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Female , Apoptosis/drug effects , Apoptosis/genetics , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 2/metabolism , Pleurotus/chemistry , Gene Expression Regulation, Neoplastic/drug effects , Oxidative Stress/drug effects
2.
Cell Death Dis ; 15(5): 310, 2024 May 02.
Article En | MEDLINE | ID: mdl-38697967

Breast cancer (BC) is the most common cancer and the leading cause of cancer-related deaths in women worldwide. The 5-year survival rate is over 90% in BC patients, but once BC cells metastasis into distal organs, it is dramatically decreasing to less than 30%. Especially, triple-negative breast cancer (TNBC) patients usually lead to poor prognosis and survival because of metastasis. Understanding the underline mechanisms of TNBC metastasis is a critical issue. Non-coding RNAs, including of lncRNAs and microRNAs, are non-protein-coding transcripts and have been reported as important regulators in TNBC metastasis. However, the underline mechanisms for non-coding RNAs regulating TNBC metastasis remain largely unclear. Here, we found that lncRNA MIR4500HG003 was highly expressed in highly metastatic MDA-MB-231 TNBC cells and overexpression of MIR4500HG003 enhanced metastasis ability in vitro and in vivo and promoted MMP9 expression. Furthermore, we found MIR4500HG003 physically interacted with miR-483-3p and reporter assay showed miR-483-3p attenuated MMP9 expression. Importantly, endogenous high expressions of MIR4500HG003 were correlated with tumor recurrence in TNBC patients with tumor metastasis. Taken together, our findings suggested that MIR4500HG003 promotes metastasis of TNBC through miR-483-3p-MMP9 signaling axis and may be used as potential prognostic marker for TNBC patients.


Gene Expression Regulation, Neoplastic , Matrix Metalloproteinase 9 , MicroRNAs , Neoplasm Metastasis , RNA, Long Noncoding , Triple Negative Breast Neoplasms , Humans , MicroRNAs/metabolism , MicroRNAs/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Female , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Cell Line, Tumor , Animals , Mice , Mice, Nude , Cell Movement/genetics , Mice, Inbred BALB C
3.
Aging (Albany NY) ; 16(9): 8320-8335, 2024 May 08.
Article En | MEDLINE | ID: mdl-38728254

Exosomal long non-coding RNAs (LncRNAs) play a crucial role in the pathogenesis of cerebrovascular diseases. However, the expression profiles and functional significance of exosomal LncRNAs in intracranial aneurysms (IAs) remain poorly understood. Through high-throughput sequencing, we identified 1303 differentially expressed LncRNAs in the plasma exosomes of patients with IAs and healthy controls. Quantitative real-time polymerase chain reaction (qRT-PCR) verification confirmed the differential expression of LncRNAs, the majority of which aligned with the sequencing results. ATP1A1-AS1 showed the most significant upregulation in the disease group. Importantly, subsequent in vitro experiments validated that ATP1A1-AS1 overexpression induced a phenotype switching in vascular smooth muscle cells, along with promoting apoptosis and upregulating MMP-9 expression, potentially contributing to IAs formation. Furthermore, expanded-sample validation affirmed the high diagnostic value of ATP1A1-AS1. These findings suggest that ATP1A1-AS1 is a potential therapeutic target for inhibiting IAs progression and serves as a valuable clinical diagnostic marker.


Apoptosis , Exosomes , Intracranial Aneurysm , Myocytes, Smooth Muscle , Phenotype , RNA, Long Noncoding , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Humans , Apoptosis/genetics , Intracranial Aneurysm/genetics , Intracranial Aneurysm/metabolism , Intracranial Aneurysm/pathology , Intracranial Aneurysm/blood , Exosomes/metabolism , Exosomes/genetics , Male , Myocytes, Smooth Muscle/metabolism , Middle Aged , Female , Sodium-Potassium-Exchanging ATPase/genetics , Sodium-Potassium-Exchanging ATPase/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Case-Control Studies
4.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 311-318, 2024 Apr.
Article Zh | MEDLINE | ID: mdl-38710515

Objective To investigate the effects of mitochondrial transcription factor A (TFAM) on mitochondrial function, autophagy, proliferation, invasion, and migration in cervical cancer HeLa cells and osteosarcoma U2OS cells. Methods TFAM small-interfering RNA (si-TFAM) was transfected to HeLa and U2OS cells for downregulating TFAM expression. Mito-Tracker Red CMXRos staining combined with laser confocal microscopy was used to detect mitochondrial membrane potential (MMP). MitoSOXTM Red labeling was used to test mitochondrial reactive oxygen species (mtROS) levels. The expression of mitochondrial DNA (mtDNA) was detected by real-time quantitative PCR. Changes in the number of autophagosomes were detected by immunofluorescence cytochemistry. Western blot analysis was used to detect the expressions of TFAM, autophagy microtubule associated protein 1 light chain 3A/B (LC3A/B), autophagy associated protein 2A (ATG2A), ATG2B, ATG9A, zinc finger transcription factor Snail, matrix metalloproteinase 2 (MMP2) and MMP9. CCK-8 assay and plate clony formation assay were used to detect cell proliferation, while TranswellTM assay and scratch healing assay were used to detect changes in cell invasion and migration. Results The downregulation of TFAM expression resulted in a decrease in MMP and mtDNA copy number, but an increase in mtROS production. The protein content of LC3A/B decreased significantly compared to the control group and the number of autophagosomes in the cytoplasm decreased significantly. The expressions of ATG2B and ATG9A in the early stage of autophagy were significantly reduced. The expressions of Snail, MMP2 and MMP9 proteins in HeLa and U2OS cells were also decreased. The proliferation, invasion and migration ability of HeLa and U2OS cells were inhibited after being interfered with TFAM expression. Conclusion Downregulation of TFAM expression inhibits mitochondrial function, delays autophagy process and reduces the proliferation, invasion and migration ability of cervical cancer cells and osteosarcoma cells.


Autophagy , Cell Movement , Cell Proliferation , DNA-Binding Proteins , Mitochondrial Proteins , Neoplasm Invasiveness , Osteosarcoma , Transcription Factors , Uterine Cervical Neoplasms , Humans , Cell Movement/genetics , Osteosarcoma/genetics , Osteosarcoma/pathology , Osteosarcoma/metabolism , Cell Proliferation/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Autophagy/genetics , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Female , Uterine Cervical Neoplasms/genetics , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/metabolism , Cell Line, Tumor , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Membrane Potential, Mitochondrial/genetics , Reactive Oxygen Species/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Mitochondria/metabolism , Mitochondria/genetics , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , HeLa Cells , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics
5.
Sci Rep ; 14(1): 11355, 2024 05 18.
Article En | MEDLINE | ID: mdl-38762659

Matrix metalloproteinases (MMPs) had a variety of subtypes, which may be related to tumor invasion and angiogenesis, and the polymorphisms from MMPs have been also associated with the susceptibility to a variety of tumors, including prostate cancer (PCa). However, previous studies have not systematically analyzed the association between MMP and prostate cancer, so we conducted systematic data collection and analyzed to evaluate the relationship among polymorphisms in MMPs and PCa susceptibility. We searched PubMed, Web of Science, Embase and Google Scholar for all papers published up to Apr 3rd, 2023, and systematically analyzed the relationship among MMP1-1607 2G/1G, MMP2-1306 T/C, MMP2-735 T/C, MMP7-181 G/A, MMP9-1562 T/C and PCa susceptibility using multiple comparative models and subgroup analyses. We found that MMP2-1306 T/C polymorphism showed associations with PCa susceptibility, with the Ethnicity subgroup (Asian) being more pronounced. Similarly, MMP9-1562 T/C has also had associations with PCa susceptibility. Our current study found that the polymorphisms of, MMP2-1306 T/C, and MMP9-1562 T/C had strong associations with PCa risk.


Genetic Predisposition to Disease , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Polymorphism, Single Nucleotide , Prostatic Neoplasms , Humans , Male , Prostatic Neoplasms/genetics , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinases/genetics , Risk Factors , Matrix Metalloproteinase 7/genetics , Matrix Metalloproteinase 1/genetics
6.
Mol Biol Rep ; 51(1): 646, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727931

BACKGROUND: Breast cancer (BC) is one of the most common cancers in the world. Despite the many advances that have been made in treating patients, many patients are still resistant to treatment. CD44 is one of the surface glycoproteins of BC cells that plays an important role in the proliferation of these cells and inhibition of their apoptosis. Therefore, targeting it can be a treatment way for BC patients. METHODS: In this study, the effect of anti-CD44 siRNA on the proliferation, apoptosis, and migration rate of MDA-MB-231 and 4T1 cells was investigated. The techniques used in this study were MTT assay, RT-PCR, and flow cytometry. RESULTS: The apoptosis and proliferation rates in CD44 siRNA-treated cells were higher and lower, respectively, compared to untreated cells. Also, cell migration was less in treated cells compared to untreated cells. CD44 siRNA also decreased the expression of CXCR4, c-myc, Vimentin, ROCK, and MMP-9. CONCLUSION: Finally, CD44 targeting can be a good treatment option to make BC cells more sensitive to apoptosis.


Apoptosis , Breast Neoplasms , Cell Movement , Cell Proliferation , Hyaluronan Receptors , RNA, Small Interfering , Hyaluronan Receptors/metabolism , Hyaluronan Receptors/genetics , Humans , Apoptosis/genetics , Cell Line, Tumor , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , RNA, Small Interfering/genetics , Cell Movement/genetics , Cell Proliferation/genetics , Cell Survival/genetics , Gene Expression Regulation, Neoplastic , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Vimentin/metabolism , Vimentin/genetics
7.
Mol Biol Rep ; 51(1): 518, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38622261

BACKGROUND: Cold atmospheric plasma (CAP) has been widely used in biomedical research, especially in vitro cancer therapy. Cutaneous squamous cell carcinoma (CSCC) is a malignant tumor originating from epidermal keratinocytes. However, the mechanism of CAP therapy on CSCC remains unclear. METHODS AND RESULTS: The animal models of CSCC induced by 7,12-dimethylbenz(a) anthracene (DMBA)/12-O-tetradecanoylphorbol-13-acetate (TPA) were constructed. For the CAP treatment group, after each TPA application, CAP was administered for 3 min twice weekly after drying. HE staining were used to detect the pathological status of tumor tissue in each group. The levels of PCNA, Bcl-2, Bax, MMP2 and MMP9 were evaluated by western blot and qPCR. TUNEL staining were used to detect apoptosis in tumor tissues. In vivo, serum samples were used for ELISA of total ROS. MTT assay was used to detect the viability of A431 cells. Western blot and qPCR were used to detect the levels of PCNA, Bcl-2, Bax, MMP2 and MMP9 in A431 cells. A431 cell proliferation was examined by colony formation assay. The proportions of apoptosis of A431 cells were detected by flow cytometry. Transwell assessed the ability of A431 cells migration and proliferation. We found that CAP could induce skin cancer cells apoptosis and inhibit the progress of skin cancer. Through experiments in vitro, reactive oxygen species (ROS) generated by N-acetylcysteine (NAC) and CAP inhibited the proliferation and migration of A431 skin cancer cells while promoting apoptosis. CONCLUSIONS: These evidences suggest the protective effect of CAP in CSCC, and CAP has the potential clinical application of CSCC.


Carcinoma, Squamous Cell , Plasma Gases , Skin Neoplasms , Animals , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/pathology , Reactive Oxygen Species/pharmacology , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Plasma Gases/pharmacology , Proliferating Cell Nuclear Antigen/genetics , bcl-2-Associated X Protein , Apoptosis , Cell Line, Tumor , Cell Proliferation
8.
Oncol Res ; 32(4): 737-752, 2024.
Article En | MEDLINE | ID: mdl-38560573

Kidney Renal Clear Cell Carcinoma (KIRC) is a malignant tumor that carries a substantial risk of morbidity and mortality. The MMP family assumes a crucial role in tumor invasion and metastasis. This study aimed to uncover the mechanistic relevance of the MMP gene family as a therapeutic target and diagnostic biomarker in Kidney Renal Clear Cell Carcinoma (KIRC) through a comprehensive approach encompassing both computational and molecular analyses. STRING, Cytoscape, UALCAN, GEPIA, OncoDB, HPA, cBioPortal, GSEA, TIMER, ENCORI, DrugBank, targeted bisulfite sequencing (bisulfite-seq), conventional PCR, Sanger sequencing, and RT-qPCR based analyses were used in the present study to analyze MMP gene family members to accurately determine a few hub genes that can be utilized as both therapeutic targets and diagnostic biomarkers for KIRC. By performing STRING and Cytohubba analyses of the 24 MMP gene family members, MMP2 (matrix metallopeptidase 2), MMP9 (matrix metallopeptidase 9), MMP12 (matrix metallopeptidase 12), and MMP16 (matrix metallopeptidase 16) genes were denoted as hub genes having highest degree scores. After analyzing MMP2, MMP9, MMP12, and MMP16 via various TCGA databases and RT-qPCR technique across clinical samples and KIRC cell lines, interestingly, all these hub genes were found significantly overexpressed at mRNA and protein levels in KIRC samples relative to controls. The notable effect of the up-regulated MMP2, MMP9, MMP12, and MMP16 was also documented on the overall survival (OS) of the KIRC patients. Moreover, targeted bisulfite-sequencing (bisulfite-seq) analysis revealed that promoter hypomethylation pattern was associated with up-regulation of hub genes (MMP2, MMP9, MMP12, and MMP16). In addition to this, hub genes were involved in various diverse oncogenic pathways. The MMP gene family members (MMP2, MMP9, MMP12, and MMP16) may serve as therapeutic targets and prognostic biomarkers in KIRC.


Carcinoma, Renal Cell , Kidney Neoplasms , Sulfites , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Matrix Metalloproteinase 12 , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 16 , Prognosis , Biomarkers, Tumor/genetics , Carcinoma, Renal Cell/pathology , Kidney/metabolism , Kidney/pathology
9.
Exp Dermatol ; 33(4): e15071, 2024 Apr.
Article En | MEDLINE | ID: mdl-38566477

Circular RNAs (circRNAs) play important roles in cancer occurrence and progression. To explore and elucidate the clinical significance of specific circular RNA in melanoma and its potential molecular mechanism. CircROR1 expression in melanoma cells and tissues was confirmed by qRT-PCR and ISH. qRT-PCR and Western blotting were performed to measure the levels of CCNE1, KAT2A, MMP9 and TIMP2. MTT, Transwell and wound healing assays were performed to evaluate cell proliferation, invasion and metastasis. A xenograft mouse model was established to further verify the CircROR1/CCNE1 axis in vivo. RNA pull-down and RIP assays were performed to detect the direct interaction KAT2A and CircROR1. A ChIP assay was used to investigate the enrichment of H3K9ac acetylation in the CCNE1 promoter. CircROR1 was significantly upregulated in metastatic melanoma cells and tissues, promoting proliferation, invasion and metastasis in vitro and tumour growth in vivo. CircROR1 overexpression increased CCNE1 and MMP9 protein expression and decreased TIMP2 protein expression. Functional rescue assays demonstrated that CircROR1 played a role in promoting malignant progression through CCNE1. CircROR1 specifically bound to the KAT2A protein without affecting its expression. CircROR1 overexpression increased the level of H3K9ac modification in the CCNE1 promoter region by recruiting KAT2A, thus upregulating CCNE1 expression. CircROR1 upregulates CCNE1 expression through KAT2A-mediated histone acetylation. Our research confirms the critical role of CircROR1 in melanoma invasion and metastasis, and CircROR1 could serve as a potential therapeutic target for melanoma treatment.


Melanoma , MicroRNAs , Humans , Animals , Mice , MicroRNAs/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Melanoma/metabolism , Cell Line, Tumor , RNA, Circular/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Cell Movement/genetics , Oncogene Proteins/genetics , Oncogene Proteins/metabolism , Cyclin E/metabolism , Histone Acetyltransferases/genetics , Histone Acetyltransferases/metabolism
10.
Cell Death Dis ; 15(4): 289, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38653973

GATA-binding protein 4 (GATA4) is recognized for its significant roles in embryogenesis and various cancers. Through bioinformatics and clinical data, it appears that GATA4 plays a role in breast cancer development. Yet, the specific roles and mechanisms of GATA4 in breast cancer progression remain elusive. In this study, we identify GATA4 as a tumor suppressor in the invasion and migration of breast cancer. Functionally, GATA4 significantly reduces the transcription of MMP9. On a mechanistic level, GATA4 diminishes MMP9 transcription by interacting with p65 at the NF-κB binding site on the MMP9 promoter. Additionally, GATA4 promotes the recruitment of HDAC1, amplifying the bond between p65 and HDAC1. This leads to decreased acetylation of p65, thus inhibiting p65's transcriptional activity on the MMP9 promoter. Moreover, GATA4 hampers the metastasis of breast cancer in vivo mouse model. In summary, our research unveils a novel mechanism wherein GATA4 curtails breast cancer cell metastasis by downregulating MMP9 expression, suggesting a potential therapeutic avenue for breast cancer metastasis.


Breast Neoplasms , Cell Movement , GATA4 Transcription Factor , Gene Expression Regulation, Neoplastic , Histone Deacetylase 1 , Matrix Metalloproteinase 9 , Neoplasm Invasiveness , Humans , GATA4 Transcription Factor/metabolism , GATA4 Transcription Factor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Female , Cell Movement/genetics , Histone Deacetylase 1/metabolism , Histone Deacetylase 1/genetics , Animals , Acetylation , Cell Line, Tumor , Mice , Transcription Factor RelA/metabolism , Transcription, Genetic , Promoter Regions, Genetic/genetics , Mice, Nude , Mice, Inbred BALB C
11.
Anticancer Res ; 44(5): 1845-1852, 2024 May.
Article En | MEDLINE | ID: mdl-38677770

BACKGROUND/AIM: Matrix metalloproteinase-9 (MMP-9) expression is upregulated in various diseases, including lung cancer. However, the role of MMP-9 genotype in lung cancer susceptibility remains uncertain. This study aimed to clarify the contribution of MMP-9 promoter rs3918242 genotypes to the risk of lung cancer in Taiwan. MATERIALS AND METHODS: The MMP-9 rs3918242 genotypes of 358 lung cancer patients and 716 healthy controls were determined using polymerase chain reaction-restriction fragment length polymorphism methodology. RESULTS: Individuals carrying the variant CT or TT genotype of MMP-9 rs3918242 did not demonstrate an increased risk of lung cancer compared to wild-type CC carriers [odds ratio (OR)=1.11 and 1.85, 95% confidence interval (95%CI)=0.82-1.48 and 0.91-3.76; p=0.5541 and 0.1280, respectively]. Moreover, individuals carrying the T allele did not show a higher lung cancer risk compared to those with the C allele (OR=1.21, 95%CI=0.95-1.54, p=0.1444). However, a significant association was observed between the MMP-9 rs3918242 TT genotype and lung cancer risk among non-smokers (OR=5.48, 95%CI=1.31-22.89, p=0.0181). CONCLUSION: The presence of the TT genotype for MMP-9 rs3918242 may indicate an elevated risk of lung cancer among non-smokers.


Genetic Predisposition to Disease , Genotype , Lung Neoplasms , Matrix Metalloproteinase 9 , Polymorphism, Single Nucleotide , Humans , Lung Neoplasms/genetics , Lung Neoplasms/epidemiology , Matrix Metalloproteinase 9/genetics , Male , Taiwan/epidemiology , Female , Middle Aged , Case-Control Studies , Aged , Risk Factors , Promoter Regions, Genetic , Alleles
12.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674053

Using different three-drug immunosuppressive treatment regimens in a rat model, we aimed to determine the effects of long-term therapy on metalloproteinase-2 and metalloproteinase-9 activity and the expression of their inhibitors, as well as to assess the morphology of the animals' cardiac tissue. Our results suggest that chronic use of immunosuppressive drugs disrupts the balance between the activity of MMPs and TIMPs. Depending on the type of drug regimen used, this leads to abnormalities in the cardiac structure, collagen fiber accumulation, or cardiomyocyte hypertrophy. The information obtained in the present study allows us to conclude that the chronic treatment of rats with the most common clinical immunosuppressive regimens may contribute to abnormalities in the myocardial structure and function. The results presented in this study may serve as a prelude to more in-depth analyses and additional research into the optimal selection of an immunosuppressive treatment with the lowest possible risk of cardiovascular complications for patients receiving organ transplants.


Immunosuppressive Agents , Matrix Metalloproteinase 2 , Matrix Metalloproteinase 9 , Myocardium , Animals , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Immunosuppressive Agents/pharmacology , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Rats , Myocardium/pathology , Myocardium/metabolism , Male , Rats, Wistar
13.
Aging (Albany NY) ; 16(8): 6852-6867, 2024 Apr 17.
Article En | MEDLINE | ID: mdl-38637126

BACKGROUND: Globally, ischemic stroke (IS) is ranked as the second most prevailing cause of mortality and is considered lethal to human health. This study aimed to identify genes and pathways involved in the onset and progression of IS. METHODS: GSE16561 and GSE22255 were downloaded from the Gene Expression Omnibus (GEO) database, merged, and subjected to batch effect removal using the ComBat method. The limma package was employed to identify the differentially expressed genes (DEGs), followed by enrichment analysis and protein-protein interaction (PPI) network construction. Afterward, the cytoHubba plugin was utilized to screen the hub genes. Finally, a ROC curve was generated to investigate the diagnostic value of hub genes. Validation analysis through a series of experiments including qPCR, Western blotting, TUNEL, and flow cytometry was performed. RESULTS: The analysis incorporated 59 IS samples and 44 control samples, revealing 226 DEGs, of which 152 were up-regulated and 74 were down-regulated. These DEGs were revealed to be linked with the inflammatory and immune responses through enrichment analyses. Overall, the ROC analysis revealed the remarkable diagnostic potential of ITGAM and MMP9 for IS. Quantitative assessment of these genes showed significant overexpression in IS patients. ITGAM modulation influenced the secretion of critical inflammatory cytokines, such as IL-1ß, IL-6, and TNF-α, and had a distinct impact on neuronal apoptosis. CONCLUSIONS: The inflammation and immune response were identified as potential pathological mechanisms of IS by bioinformatics and experiments. In addition, ITGAM may be considered a potential therapeutic target for IS.


Ischemic Stroke , Protein Interaction Maps , Humans , Ischemic Stroke/genetics , Protein Interaction Maps/genetics , Gene Expression Profiling , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Gene Regulatory Networks , Databases, Genetic , Apoptosis/genetics
14.
Mol Biol Rep ; 51(1): 540, 2024 Apr 20.
Article En | MEDLINE | ID: mdl-38642151

BACKGROUND: The MMP-9 is a known player in atherosclerosis, yet associations of the MMP-9 -1562 C/T variant (rs3918242) with various atherosclerotic phenotypes and tissue mRNA expression are still contradictory. This study aimed to investigate the MMP-9 -1562 C/T variant, its mRNA and protein expression in carotid plaque (CP) tissue, as a risk factor for CP presence and as a marker of different plaque phenotypes (hyperechoic and hypoechoic) in patients undergoing carotid endarterectomy. The MnSOD as an MMP-9 negative regulator was also studied in relation to CP phenotypes. METHODS AND RESULTS: Genotyping of 770 participants (285 controls/485 patients) was done by tetra-primer ARMS PCR. The MMP-9 mRNA expression in 88 human CP tissues was detected by TaqMan® technology. The protein levels of MMP-9 and MnSOD were assessed by Western blot analysis. The MMP-9 -1562 C/T variant was not recognized as a risk factor for plaque presence or in predisposing MMP-9 mRNA and protein levels in plaque tissue. Patients with hypoechoic plaques had significantly lower MMP-9 mRNA and protein levels than those with hyperechoic plaque (p = 0.008, p = 0.003, respectively). MnSOD protein level was significantly higher in hypoechoic plaque compared to hyperechoic (p = 0.039). MMP-9 protein expression in CP tissue was significantly affected by sex and plaque type interaction (p = 0.009). CONCLUSIONS: Considering the differences of MMP-9 mRNA and protein expression in CP tissue regarding different plaque phenotypes and the observed sex-specific effect, the role of MMP-9 in human atherosclerotic plaques should be further elucidated.


Atherosclerosis , Carotid Artery Diseases , Matrix Metalloproteinase 9 , Plaque, Atherosclerotic , Female , Humans , Male , Atherosclerosis/genetics , Carotid Arteries , Carotid Artery Diseases/genetics , Carotid Artery Diseases/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism
15.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1429-1437, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38621926

This study aims to explore the mechanism of aqueous extract of Strychni Semen(SA) in relieving pain in the rat model of rheumatoid arthritis(RA) via Toll-like receptor 4(TLR4)/tumor necrosis factor-α(TNF-α)/matrix metalloproteinase-9(MMP-9) signaling pathway. Firstly, the main chemical components of Strychni Semen were searched against TCMSP, TCMID, ETCM, and related literature, and the main targets of the chemical components were retrieved from TargetNet and SwissTargetPrediction. The main targets of RA and pain were searched against GeneCards, Online Mendelian Inheritance in Man(OMIM), and Therapeutic Target Database(TTD). Venny 2.1.0 was used to obtain the common targets shared by Strychni Semen, RA, and pain, and STRING and Cytoscape 3.6.1 were used to build the protein-protein interaction network. Then, molecular docking was carried out in AutoDock Vina. Finally, the rat model of type Ⅱ collagen-induced arthritis(CIA) was established. The up-down method and acetone method were employed to examine the mechanical pain threshold and cold pain threshold of rats, and the pain-relieving effect of SA on CIA rats was evaluated comprehensively. Hematoxylin-eosin(HE) staining was employed to evaluate the histopathological changes of joints in CIA rats. The expression levels of key target proteins was determined by immunohistochemistry and Western blot, and the mRNA levels of key targets were determined by real-time fluorescence quantitative polymerase chain reaction(real-time PCR). The results of network prediction showed that Strychni Semen may act on the TLR4/TNF-α/MMP-9 signaling pathway to exert the pain-relieving effect. The results of molecular docking showed that brucine, the main active component of SA, had strong binding ability to TLR4, TNF-α, and MMP-9. The results of animal experiments showed that SA improved the mechanical and cold pain sensitivity(P<0.05, P<0.01) and reduced the joint histopathological score of CIA rats(P<0.01). In addition, medium and high doses of SA down-regulated the protein and mRNA levels of TNF-α, TLR4, and MMP-9(P<0.05,P<0.01). In conclusion, SA alleviated the mechanical pain sensitivity, cold pain sensitivity, and joint histopathological changes in CIA rats by inhibiting the over activation of TLR4/TNF-α/MMP-9 signaling pathway.


Arthritis, Rheumatoid , Tumor Necrosis Factor-alpha , Humans , Rats , Animals , Tumor Necrosis Factor-alpha/genetics , Matrix Metalloproteinase 9/genetics , Semen , Molecular Docking Simulation , Toll-Like Receptor 4/genetics , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Signal Transduction , Pain/drug therapy , RNA, Messenger
16.
Sci Rep ; 14(1): 6291, 2024 03 15.
Article En | MEDLINE | ID: mdl-38491124

Hedyotis diffusa Willd (HDW) possesses heat-clearing, detoxification, anti-cancer, and anti-inflammatory properties. However, its effects on rheumatoid arthritis (RA) remain under-researched. In this study, we identified potential targets of HDW and collected differentially expressed genes of RA from the GEO dataset GSE77298, leading to the construction of a drug-component-target-disease regulatory network. The intersecting genes underwent GO and KEGG analysis. A PPI protein interaction network was established in the STRING database. Through LASSO, RF, and SVM-RFE algorithms, we identified the core gene MMP9. Subsequent analyses, including ROC, GSEA enrichment, and immune cell infiltration, correlated core genes with RA. mRNA-miRNA-lncRNA regulatory networks were predicted using databases like TargetScan, miRTarBase, miRWalk, starBase, lncBase, and the GEO dataset GSE122616. Experimental verification in RA-FLS cells confirmed HDW's regulatory impact on core genes and their ceRNA expression. We obtained 11 main active ingredients of HDW and 180 corresponding targets, 2150 RA-related genes, and 36 drug-disease intersection targets. The PPI network diagram and three machine learning methods screened to obtain MMP9, and further analysis showed that MMP9 had high diagnostic significance and was significantly correlated with the main infiltrated immune cells, and the molecular docking verification also showed that MMP9 and the main active components of HDW were well combined. Next, we predicted 6 miRNAs and 314 lncRNAs acting on MMP9, and two ceRNA regulatory axes were obtained according to the screening. Cellular assays indicated HDW inhibits RA-FLS cell proliferation and MMP9 protein expression dose-dependently, suggesting HDW might influence RA's progression by regulating the MMP9/miR-204-5p/MIAT axis. This innovative analytical thinking provides guidance and reference for the future research on the ceRNA mechanism of traditional Chinese medicine in the treatment of RA.


Arthritis, Rheumatoid , Hedyotis , MicroRNAs , RNA, Long Noncoding , Network Pharmacology , RNA, Long Noncoding/genetics , Matrix Metalloproteinase 9/genetics , Molecular Docking Simulation , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Computational Biology , MicroRNAs/genetics
17.
J Tradit Chin Med ; 44(2): 362-372, 2024 Apr.
Article En | MEDLINE | ID: mdl-38504542

OBJECTIVE: To investigate the mechanism by which Sini decoction (, SND) improves renal fibrosis (Rf) in rats based on transforming growth factor ß1/Smad (TGF-ß1/Smad) signaling pathway. METHODS: Network pharmacology was applied to obtain potentially involved signaling pathways in SND's improving effects on Rf. The targets of SND drug components and the targets of Rf were obtained by searching databases, such as the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCSMP) and GeenCard. The intersection targets of two searches were obtained and underwent signaling pathway analysis using a Venn diagram. Then experimental pharmacology was utilized to prove and investigate the effects of SND on target proteins in the TGF-ß1/Smad signaling pathway. The Rf rat model was established by unilateral ureteral occlusion (UUO). The expression levels of transforming growth factor, matrix metalloproteinase-9 (MMP-9), matrix metal protease-2 (MMP-2), connective tissue growth factor (CTGF), and tissue inhibitor of metalloproteinase-1 (TIMP-1) were determined by Masson staining of rat renal tissue, and immunohistochemical methods. The expression levels of Smad3, Smad2, and Smad7 in renal tissue were determined by Western blotting (WB). The mechanism of the improving effects of SND on Rf was investigated based on TGF-ß1/Smad signaling pathway. RESULTS: A total of 12 drug components of Fuzi (Radix Aconiti Lateralis Preparata), 5 drug components of Ganjiang (Rhizoma Zingiber), and 9 drug components of Gancao (Radix Glycy et Rhizoma) were obtained from the database search, and 207 shared targets were found. A total of 1063 Rf targets were found in the database search. According to the Venn diagram, in total, 96 intersection targets were found in two database searches. The metabolic pathways involved included TGF-ß signaling pathway, phosphatidylinositol-3-kinase/serine-threonine protein kinase signaling (PI3K/Akt) pathway, and hypoxia-inducible factor-1 (HIF-1) signaling pathway. Masson staining analysis showed that compared with the model group, the renal interstitial collagen deposition levels in the SSN and SND groups were significantly lower (P < 0.05). Immunohistochemical analysis, compared with the control group, the positive cell area expression levels of MMP-9/TIMP-1 and MMP-2/TIMP-1 in the kidney tissue of the model group were significantly decreased (P < 0.05, P < 0.01), and the positive cell area expression levels of CTGF and TGF-ß1 were significantly increased (P < 0.01). Compared with the model group, the positive cell area expression levels of MMP-9/TIMP-1 and MMP-2/TIMP-1 in the kidney tissue of the SSN and SND groups were significantly increased (P < 0.05, P < 0.01), and the positive cell area expression levels of CTGF and TGF-ß1 in the kidney tissue were significantly decreased (P < 0.05, P < 0.01). WB results showed that the SSN group and the SND group could reduce the expression of Smad2 and Smad3 (P < 0.05) and increase the expression of Smad7 (P < 0.05).


Drugs, Chinese Herbal , Kidney Diseases , Transforming Growth Factor beta1 , Rats , Animals , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/metabolism , Matrix Metalloproteinase 2/genetics , Matrix Metalloproteinase 9/genetics , Tissue Inhibitor of Metalloproteinase-1/genetics , Network Pharmacology , Phosphatidylinositol 3-Kinases , Rats, Sprague-Dawley , Kidney Diseases/drug therapy , Kidney Diseases/genetics , Kidney Diseases/metabolism , Fibrosis
18.
Rom J Morphol Embryol ; 65(1): 45-52, 2024.
Article En | MEDLINE | ID: mdl-38527983

BACKGROUND: Matrix metalloproteinase (MMP)1, MMP9, MMP11, and MMP13 are overexpressed in malignant melanoma (MM), being associated with tumor invasive phase, metastases, and more aggressive neoplastic phenotypes. AIM: The main objective of the current study was to correlate the expression of the MMPs with the evolution of MM toward distant metastasis. PATIENTS, MATERIALS AND METHODS: We designed a retrospective cohort study, including 13 patients with metastatic MM. Data concerning age, sex, localization of the primary lesion and metastasis, and histological and immunohistochemical features (intensity of expression and percent of positive cells for MMPs) were statistically processed. RESULTS: The time between the diagnosis of primitive melanoma and the diagnosis of metastasis ranged between 0 and 73 months, with a mean value of 18.3 months. The metastases rich in MMP1- and MMP9-positive cells occurred earlier than the metastases with low levels of positive cells. The mean period until metastasis was shorter for the MMP1-expressing tumors than the ones without MMP1 expression. MMP13 expression in the tumor and its metastasis was significantly linked with the time until the metastasis occurrence. CONCLUSIONS: This study emphasizes the roles of MMP1, MMP9, and MMP13 in the process of metastasis in melanoma and the opportunity to use them as therapeutic targets and surveillance molecules.


Matrix Metalloproteinase 13 , Matrix Metalloproteinase 1 , Matrix Metalloproteinase 9 , Melanoma , Humans , Matrix Metalloproteinase 1/genetics , Matrix Metalloproteinase 1/metabolism , Matrix Metalloproteinase 11/genetics , Matrix Metalloproteinase 11/metabolism , Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Melanoma/genetics , Melanoma/metabolism , Retrospective Studies
19.
Chin J Nat Med ; 22(3): 212-223, 2024 Mar.
Article En | MEDLINE | ID: mdl-38553189

Cyathulae Radix, a traditional Chinese medicine and a common vegetable, boasts a history spanning millennia. It enhances bone density, boosts metabolism, and effectively alleviates osteoporosis-induced pain. Despite its historical use, the molecular mechanisms behind Cyathulae Radix's impact on osteoporosis remain unexplored. In this study, we investigated the effects and mechanisms of Cyathulae Radix ethanol extract (CEE) in inhibiting osteoporosis and osteoclastogenesis. Eight-week-old female mice underwent ovariectomy and were treated with CEE for eight weeks. Micro-computed tomography (micro-CT) assessed histomorphometric parameters, bone tissue staining observed distal femur histomorphology, and three-point bending tests evaluated tibia mechanical properties. Enzyme-linked immunosorbent assay (ELISA) measured serum estradiol (E2), receptor activator for nuclear factor B ligand (RANKL), and osteoprotegerin (OPG) levels. Osteoclastogenesis-related markers were analyzed via Western blotting (WB) and quantitative real-time polymerase chain reaction (qRT-PCR). Additionally, CEE effects on RANKL-induced osteoclast formation and bone resorption were investigated in vitro using tartrate-resistant acid phosphatase (TRAP) staining, qRT-PCR, and WB assay. Compared with the ovariectomy (OVX) group, CEE treatment enhanced trabecular bone density, maximal load-bearing capacity, and various histomorphometric parameters. Serum E2 and OPG levels significantly increased, while Receptor activator of nuclear factor-κB (RANK) decreased in the CEE group. CEE downregulated matrix metallopeptidase 9 (MMP-9), Cathepsin K (CTSK), and TRAP gene and protein expression. In bone marrow macrophages (BMMs), CEE reduced mature osteoclasts, bone resorption pit areas, and MMP-9, CTSK, and TRAP expression during osteoclast differentiation. Compared with DMSO treatment, CEE markedly inhibited RANK, TNF receptor associated factor 6 (TRAF6), Proto-oncogene c-Fos (c-Fos), Nuclear factor of activated T-cells cytoplasmic 1 (NFATc1) expressions, and Extracellular regulated protein kinases (ERK), c-Jun N-terminal kinase (JNK), NF-kappa B-p65 (p65) phosphorylation in osteoclasts. In conclusion, CEE significantly inhibits OVX-induced osteoporosis and RANKL-induced osteoclastogenesis, potentially through modulating the Estrogen Receptor (ER)/RANK/NFATc1 signaling pathway.


Bone Resorption , Osteoporosis , Female , Mice , Animals , Humans , Osteoclasts/metabolism , X-Ray Microtomography , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , Bone Resorption/drug therapy , Bone Resorption/genetics , Bone Resorption/metabolism , Osteoporosis/drug therapy , RANK Ligand/metabolism , RANK Ligand/pharmacology , Cell Differentiation , NF-kappa B/genetics , NF-kappa B/metabolism , Ovariectomy
20.
J Cell Mol Med ; 28(7): e18171, 2024 Apr.
Article En | MEDLINE | ID: mdl-38506084

SRC-1 functions as a transcriptional coactivator for steroid receptors and various transcriptional factors. Notably, SRC-1 has been implicated in oncogenic roles in multiple cancers, including breast cancer and prostate cancer. Previous investigations from our laboratory have established the high expression of SRC-1 in human HCC specimens, where it accelerates HCC progression by enhancing Wnt/beta-catenin signalling. In this study, we uncover a previously unknown role of SRC-1 in HCC metastasis. Our findings reveal that SRC-1 promotes HCC metastasis through the augmentation of MMP-9 expression. The knockdown of SRC-1 effectively mitigated HCC cell metastasis both in vitro and in vivo by suppressing MMP-9 expression. Furthermore, we observed a positive correlation between SRC-1 mRNA levels and MMP-9 mRNA levels in limited and larger cohorts of HCC specimens from GEO database. Mechanistically, SRC-1 operates as a coactivator for NF-κB and AP-1, enhancing MMP-9 promoter activity in HCC cells. Higher levels of SRC-1 and MMP-9 expression are associated with worse overall survival in HCC patients. Treatment with Bufalin, known to inhibit SRC-1 expression, significantly decreased MMP-9 expression and inhibited HCC metastasis in both in vitro and in vivo settings. Our results demonstrated the pivotal role of SRC-1 as a critical modulator in HCC metastasis, presenting a potential therapeutic target for HCC intervention.


Carcinoma, Hepatocellular , Liver Neoplasms , Male , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Nuclear Receptor Coactivator 1/genetics , Nuclear Receptor Coactivator 1/metabolism , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , RNA, Messenger , Neoplasm Invasiveness/genetics , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic
...