Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.378
1.
Sci Rep ; 14(1): 12813, 2024 06 04.
Article En | MEDLINE | ID: mdl-38834719

Deep-sea coral assemblages are marine biodiversity hot spots. Because of their life history traits, deep-sea corals are highly vulnerable to the impacts of human activities such as fishing. The critically endangered "bamboo coral" Isidella elongata is a key structuring species of deep muddy bottoms that is susceptible to habitat destruction, particularly from trawling. A shallow population of this species was recently discovered by a multibeam and ROV survey offshore of the Asinara Island marine protected area (MPA) (northwestern Sardinia, NW Mediterranean Sea). This vulnerable marine assemblage has been found under healthy conditions at depths ranging from 110 to 298 m. Isidella elongata occurs on a muddy seafloor locally characterised by boulders associated with black coral species (Parantipathes larix and Antipathes dichotoma). The lush colonies of I. elongata seem to be related to natural protection from bottom trawling activity; nevertheless, the presence of lost fishing artisanal nets has been observed in the study area. These structuring species are indicators of vulnerable marine ecosystems, and their conservation is essential for preserving marine biodiversity. Therefore, enlarging the perimeter of the Asinara Island MPA into its deeper western waters is suggested to ensure the protection of these valuable and vulnerable marine ecosystems.


Anthozoa , Biodiversity , Conservation of Natural Resources , Islands , Animals , Mediterranean Sea , Conservation of Natural Resources/methods , Italy , Ecosystem , Fisheries
2.
Harmful Algae ; 135: 102648, 2024 May.
Article En | MEDLINE | ID: mdl-38830713

Reports of the benthic dinoflagellate Ostreopsis spp. have been increasing in the last decades, especially in temperate areas. In a context of global warming, evidences of the effects of increasing sea temperatures on its physiology and its distribution are still lacking and need to be investigated. In this study, the influence of temperature on growth, ecophysiology and toxicity was assessed for several strains of O. cf. siamensis from the Bay of Biscay (NE Atlantic) and O. cf. ovata from NW Mediterranean Sea. Cultures were acclimated to temperatures ranging from 14.5 °C to 32 °C in order to study the whole range of each strain-specific thermal niche. Acclimation was successful for temperatures ranging from 14.5 °C to 25 °C for O. cf. siamensis and from 19 °C to 32 °C for O. cf. ovata, with the highest growth rates measured at 22 °C (0.54-1.06 d-1) and 28 °C (0.52-0.75 d-1), respectively. The analysis of cellular content of pigments and lipids revealed some aspects of thermal acclimation processes in Ostreopsis cells. Specific capacities of O. cf. siamensis to cope with stress of cold temperatures were linked with the activation of a xanthophyll cycle based on diadinoxanthin. Lipids (neutral reserve lipids and polar ones) also revealed species-specific variations, with increases in cellular content noted under extreme temperature conditions. Variations in toxicity were assessed through the Artemia franciscana bioassay. For both species, a decrease in toxicity was observed when temperature dropped under the optimal temperature for growth. No PLTX-like compounds were detected in O. cf. siamensis strains. Thus, the main part of the lethal effect observed on A. franciscana was dependent on currently unknown compounds. From a multiclonal approach, this work allowed for defining specificities in the thermal niche and acclimation strategies of O. cf. siamensis and O. cf. ovata towards temperature. Potential impacts of climate change on the toxic risk associated with Ostreopsis blooms in both NW Mediterranean Sea and NE Atlantic coast is further discussed, taking into account variations in the geographic distribution, growth abilities and toxicity of each species.


Dinoflagellida , Global Warming , Temperature , Dinoflagellida/physiology , Dinoflagellida/growth & development , Mediterranean Sea , Harmful Algal Bloom , Animals , Acclimatization , Oceans and Seas
3.
PeerJ ; 12: e17425, 2024.
Article En | MEDLINE | ID: mdl-38832036

We report new data on non-indigenous invertebrates from the Mediterranean Sea (four ostracods and 20 molluscs), including five new records for the basin: the ostracods Neomonoceratina iniqua, Neomonoceratina aff. mediterranea, Neomonoceratina cf. entomon, Loxoconcha cf. gisellae (Arthropoda: Crustacea)-the first records of non-indigenous ostracods in the Mediterranean-and the bivalve Striarca aff. symmetrica (Mollusca). Additionally, we report for the first time Electroma vexillum from Israel, and Euthymella colzumensis, Joculator problematicus, Hemiliostraca clandestina, Pyrgulina nana, Pyrgulina microtuber, Turbonilla cangeyrani, Musculus aff. viridulus and Isognomon bicolor from Cyprus. We also report the second record of Fossarus sp. and of Cerithiopsis sp. cf. pulvis in the Mediterranean Sea, the first live collected specimens of Oscilla galilae from Cyprus and the northernmost record of Gari pallida in Israel (and the Mediterranean). Moreover, we report the earliest records of Rugalucina angela, Ervilia scaliola and Alveinus miliaceus in the Mediterranean Sea, backdating their first occurrence in the basin by 3, 5 and 7 years, respectively. We provide new data on the presence of Spondylus nicobaricus and Nudiscintilla aff. glabra in Israel. Finally, yet importantly, we use both morphological and molecular approaches to revise the systematics of the non-indigenous genus Isognomon in the Mediterranean Sea, showing that two species currently co-occur in the basin: the Caribbean I. bicolor, distributed in the central and eastern Mediterranean, and the Indo-Pacific I. aff. legumen, at present reported only from the eastern Mediterranean and whose identity requires a more in-depth taxonomic study. Our work shows the need of taxonomic expertise and investigation, the necessity to avoid the unfounded sense of confidence given by names in closed nomenclature when the NIS belong to taxa that have not enjoyed ample taxonomic work, and the necessity to continue collecting samples-rather than relying on visual censuses and bio-blitzes-to enable accurate detection of non-indigenous species.


Bivalvia , Animals , Mediterranean Sea , Bivalvia/classification , Crustacea/classification , Mollusca/classification , Israel , Animal Distribution , Introduced Species
4.
PeerJ ; 12: e17259, 2024.
Article En | MEDLINE | ID: mdl-38699194

Iron (Fe) plays a fundamental role in coral symbiosis, supporting photosynthesis, respiration, and many important enzymatic reactions. However, the extent to which corals are limited by Fe and their metabolic responses to inorganic Fe enrichment remains to be understood. We used respirometry, variable chlorophyll fluorescence, and O2 microsensors to investigate the impact of increasing Fe(III) concentrations (20, 50, and 100 nM) on the photosynthetic capacity of two Mediterranean coral species, Cladocora caespitosa and Oculina patagonica. While the bioavailability of inorganic Fe can rapidly decrease, we nevertheless observed significant physiological effects at all Fe concentrations. In C. caespitosa, exposure to 50 nM Fe(III) increased rates of respiration and photosynthesis, while the relative electron transport rate (rETR(II)) decreased at higher Fe(III) exposure (100 nM). In contrast, O. patagonica reduced respiration, photosynthesis rates, and maximum PSII quantum yield (Fv/Fm) across all iron enrichments. Both corals exhibited increased hypoxia (<50 µmol O2 L-1) within their gastric cavity at night when exposed to 50 and 100 nM Fe(III), leading to increased polyp contraction time and reduced O2 exchange with the surrounding water. Our results indicate that C. caespitosa, but not O. patagonica, might be limited in Fe for achieving maximal photosynthetic efficiency. Understanding the multifaceted role of iron in corals' health and their response to environmental change is crucial for effective coral conservation.


Anthozoa , Iron , Oxygen , Photosynthesis , Anthozoa/drug effects , Anthozoa/metabolism , Animals , Photosynthesis/drug effects , Iron/metabolism , Oxygen/metabolism , Mediterranean Sea , Symbiosis
5.
Sci Total Environ ; 932: 172943, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38714258

Despite their critical roles in marine ecosystems, only few studies have addressed the gut microbiome (GM) of cetaceans in a comprehensive way. Being long-living apex predators with a carnivorous diet but evolved from herbivorous ancestors, cetaceans are an ideal model for studying GM-host evolutionary drivers of symbiosis and represent a valuable proxy of overall marine ecosystem health. Here, we investigated the GM of eight different cetacean species, including both Odontocetes (toothed whales) and Mysticetes (baleen whales), by means of 16S rRNA-targeted amplicon sequencing. We collected faecal samples from free-ranging cetaceans circulating within the Pelagos Sanctuary (North-western Mediterranean Sea) and we also included publicly available cetacean gut microbiome sequences. Overall, we show a clear GM trajectory related to host phylogeny and taxonomy (i.e., phylosymbiosis), with remarkable GM variations which may reflect adaptations to different diets between baleen and toothed whales. While most samples were found to be infected by protozoan parasites of potential anthropic origin, we report that this phenomenon did not lead to severe GM dysbiosis. This study underlines the importance of both host phylogeny and diet in shaping the GM of cetaceans, highlighting the role of neutral processes as well as environmental factors in the establishment of this GM-host symbiosis. Furthermore, the presence of potentially human-derived protozoan parasites in faeces of free-ranging cetaceans emphasizes the importance of these animals as bioindicators of anthropic impact on marine ecosystems.


Gastrointestinal Microbiome , Animals , Cetacea/microbiology , RNA, Ribosomal, 16S , Phylogeny , Biological Evolution , Mediterranean Sea , Feces/microbiology , Diet , Symbiosis
6.
Proc Biol Sci ; 291(2023): 20240089, 2024 May.
Article En | MEDLINE | ID: mdl-38807517

Ecological resilience is the capability of an ecosystem to maintain the same structure and function and avoid crossing catastrophic tipping points (i.e. undergoing irreversible regime shifts). While fundamental for management, concrete ways to estimate and interpret resilience in real ecosystems are still lacking. Here, we develop an empirical approach to estimate resilience based on the stochastic cusp model derived from catastrophe theory. The cusp model models tipping points derived from a cusp bifurcation. We extend cusp in order to identify the presence of stable and unstable states in complex natural systems. Our Cusp Resilience Assessment (CUSPRA) has three characteristics: (i) it provides estimates on how likely a system is to cross a tipping point (in the form of a cusp bifurcation) characterized by hysteresis, (ii) it assesses resilience in relation to multiple external drivers and (iii) it produces straightforward results for ecosystem-based management. We validate our approach using simulated data and demonstrate its application using empirical time series of an Atlantic cod population and marine ecosystems in the North Sea and the Mediterranean Sea. We show that Cusp Resilience Assessment is a powerful method to empirically estimate resilience in support of a sustainable management of our constantly adapting ecosystems under global climate change.


Climate Change , Ecosystem , Animals , Gadus morhua/physiology , Mediterranean Sea , Models, Biological , Conservation of Natural Resources
7.
J Environ Manage ; 359: 121008, 2024 May.
Article En | MEDLINE | ID: mdl-38703654

Despite the high potential of seagrass restoration to reverse the trend of marine ecosystem degradation, there are still many limitations, especially when ecosystems are severely degraded. In particular, it is not known whether restoring polluted ecosystems can lead to potentially harmful effects associated with contaminant remobilisation. Here, we aimed to investigate the role of P. oceanica transplanted from a pristine meadow to a polluted site (Augusta Bay, Italy, Mediterranean Sea) in two seasons of the year, as a sink or source of trace elements to the environment. The main results showed i) higher accumulation of chromium (Cr), copper (Cu) and total mercury (THg) in plants transplanted in summer than in winter, as well as an increase in Cr and THg in plants from sites with higher trace element loads; ii) an increase in leaf phenolics and a decrease in rhizome soluble carbohydrates associated with As and THg accumulation, suggesting the occurrence of defence strategies to cope with pollution stress; iii) a different partitioning of trace elements between below- and above-ground tissues, with arsenic (As) and Cr accumulating in roots, whereas Cu and THg in both roots and leaves. These results suggest that P. oceanica transplanted to polluted sites can act as both a sink and a source, sequestering trace elements in the below-ground tissues thus reducing their bioavailability, but also potentially remobilising them. However, the amount of trace elements potentially exported from P. oceanica to the environment through transfer into food webs via leaves and detritus appeared to be low under the specific conditions of the study site. Although further research into seagrass restoration of polluted sites would improve current knowledge to support effective ecosystem-based coastal management, the benefits of restoring polluted sites through seagrass transplantation appear to outweigh the potential costs of inaction over time.


Alismatales , Ecosystem , Trace Elements , Trace Elements/analysis , Mediterranean Sea , Water Pollutants, Chemical , Italy , Arsenic/analysis
8.
Sci Total Environ ; 934: 173219, 2024 Jul 15.
Article En | MEDLINE | ID: mdl-38750738

Although seaweeds rank among the most productive vegetated habitats globally, their inclusion within Blue Carbon frameworks is at its onset, partially because they usually grow in rocky substrates and their organic carbon (Corg) is mostly exported and stored beyond their habitat and thus, demonstrating its long-term storage is challenging. Here, we studied the sedimentary Corg storage in macroalgal forests dominated by Gongolaria barbata and in adjacent seagrass Cymodocea nodosa mixed with Caulerpa prolifera algae meadows, and bare sand habitats in Mediterranean shallow coastal embayments. We characterized the biogeochemistry of top 30 cm sedimentary deposits, including sediment grain-size, organic matter and Corg contents, Corg burial rates and the provenance of sedimentary Corg throughout stable carbon isotopes (δ13Corg) and pyrolysis analyses. Sediment Corg stocks and burial rates (since 1950) in G. barbata forests (mean ± SE, 3.5 ± 0.2 kg Corg m-2 accumulated at 15.5 ± 1.6 g Corg m-2 y-1) fall within the range of those reported for traditional Blue Carbon Ecosystems. Although the main species contributing to sedimentary Corg stocks in all vegetated habitats examined was C. nodosa (36 ± 2 %), macroalgae contributed 49 % (19 ± 2 % by G. barbata and 30 ± 3 % by C. prolifera) based on isotope mixing model results. Analytical pyrolysis confirmed the presence of macroalgae-derived compounds in the sediments, including N-compounds and α-tocopherol linked to G. barbata and C. prolifera, respectively. The sedimentary Corg burial rate linked to macroalgae within the macroalgal forests examined ranged from 5.4 to 9.5 g Corg m-2 y-1 (7.4 ± 2 g Corg m-2 y-1). This study provides empirical evidence for the long-term (∼70 years) sequestration of macroalgae-derived Corg within and beyond seaweed forests in Mediterranean shallow coastal embayments and thereby, supports the inclusion of macroalgae in Blue Carbon frameworks.


Forests , Seaweed , Carbon Sequestration , Carbon/analysis , Mediterranean Sea , Environmental Monitoring , Ecosystem , Geologic Sediments/chemistry
9.
Mar Pollut Bull ; 203: 116497, 2024 Jun.
Article En | MEDLINE | ID: mdl-38796930

Marine litter poses a significant environmental challenge in the Saronikos Gulf, Greece. Employing an integrated approach, data from both beach and underwater sites were analyzed. The average litter density on beaches was 2.61 items m-2, with plastic being the most common material, notably small polystyrene fragments and cigarette butts. The western part of the Gulf exhibited higher litter density, mainly due to surface circulation patterns. Most beaches fell short of meeting Good Environmental Status criteria for marine litter. Higher litter densities were observed in autumn. Benthic litter density decreased with depth, being 23 times higher in shallower waters, with plastic being the predominant type. This extensive study offers crucial insights into the pollution status and litter distribution in the Saronikos Gulf, contributing significantly to the global understanding of marine litter distribution on coastal ecosystems. Such information is crucial for raising awareness, informing policy decisions, and driving environmental actions.


Environmental Monitoring , Plastics , Greece , Plastics/analysis , Ecosystem , Water Pollutants, Chemical/analysis , Mediterranean Sea
10.
Sci Rep ; 14(1): 9975, 2024 04 30.
Article En | MEDLINE | ID: mdl-38693309

Phytoplankton is a fundamental component of marine food webs and play a crucial role in marine ecosystem functioning. The phenology (timing of growth) of these microscopic algae is an important ecological indicator that can be utilized to observe its seasonal dynamics, and assess its response to environmental perturbations. Ocean colour remote sensing is currently the only means of obtaining synoptic estimates of chlorophyll-a (a proxy of phytoplankton biomass) at high temporal and spatial resolution, enabling the calculation of phenology metrics. However, ocean colour observations have acknowledged weaknesses compromising its reliability, while the scarcity of long-term in situ data has impeded the validation of satellite-derived phenology estimates. To address this issue, we compared one of the longest available in situ time series (20 years) of chlorophyll-a concentrations in the Eastern Mediterranean Sea (EMS), along with concurrent remotely-sensed observations. The comparison revealed a marked coherence between the two datasets, indicating the capability of satellite-based measurements in accurately capturing the phytoplankton seasonality and phenology metrics (i.e., timing of initiation, duration, peak and termination) in the studied area. Furthermore, by studying and validating these metrics we constructed a satellite-derived phytoplankton phenology atlas, reporting in detail the seasonal patterns in several sub-regions in coastal and open seas over the EMS. The open waters host higher concentrations from late October to April, with maximum levels recorded during February and lowest during the summer period. The phytoplankton growth over the Northern Aegean Sea appeared to initiate at least a month later than the rest of the EMS (initiating in late November and terminating in late May). The coastal waters and enclosed gulfs (such as Amvrakikos and Maliakos), exhibit a distinct seasonal pattern with consistently higher levels of chlorophyll-a and prolonged growth period compared to the open seas. The proposed phenology atlas represents a useful resource for monitoring phytoplankton growth periods in the EMS, supporting water quality management practices, while enhancing our current comprehension on the relationships between phytoplankton biomass and higher trophic levels (as a food source).


Chlorophyll A , Ecosystem , Phytoplankton , Seasons , Phytoplankton/growth & development , Phytoplankton/physiology , Mediterranean Sea , Chlorophyll A/analysis , Chlorophyll A/metabolism , Chlorophyll/analysis , Chlorophyll/metabolism , Biomass , Environmental Monitoring/methods , Remote Sensing Technology
11.
Mar Pollut Bull ; 203: 116470, 2024 Jun.
Article En | MEDLINE | ID: mdl-38728956

We investigated the health conditions of the Mediterranean mussel Mytilus galloprovincialis recruited in the CO2 vents system of Castello Aragonese at Ischia Island (Mediterranean Sea). Individuals of M. galloprovincialis were sampled in three sites along the pH gradient (8.10, 7.7 and up to <7.4). Untargeted metabolomics and biochemical endpoints related to energetic metabolism, oxidative stress/damage, neurotoxicity and immune defense were analyzed. Corrosion of the valves occurred at low pH. A separation of the metabolome was observed along the pH gradient. Metabolites belonging to amino acids, nucleosides, lipids and organic osmolytes were significantly reduced in the organisms from the most acidified sites. The content of reactive oxygen species and the activity of glutathione peroxidase were reduced in organisms from the acidified sites compared to ambient pH, and no oxidative damage was induced. Overall results suggested the presence of an energy cost underpinning long-term survival in acidified conditions for this species.


Energy Metabolism , Mytilus , Oxidative Stress , Animals , Hydrogen-Ion Concentration , Seawater/chemistry , Mediterranean Sea , Metabolome , Reactive Oxygen Species/metabolism , Ocean Acidification
12.
Sci Rep ; 14(1): 8360, 2024 04 10.
Article En | MEDLINE | ID: mdl-38600271

Seagrasses are undergoing widespread loss due to anthropogenic pressure and climate change. Since 1960, the Mediterranean seascape lost 13-50% of the areal extent of its dominant and endemic seagrass-Posidonia oceanica, which regulates its ecosystem. Many conservation and restoration projects failed due to poor site selection and lack of long-term monitoring. Here, we present a fast and efficient operational approach based on a deep-learning artificial intelligence model using Sentinel-2 data to map the spatial extent of the meadows, enabling short and long-term monitoring, and identifying the impacts of natural and human-induced stressors and changes at different timescales. We apply ACOLITE atmospheric correction to the satellite data and use the output to train the model along with the ancillary data and therefore, map the extent of the meadows. We apply noise-removing filters to enhance the map quality. We obtain 74-92% of overall accuracy, 72-91% of user's accuracy, and 81-92% of producer's accuracy, where high accuracies are observed at 0-25 m depth. Our model is easily adaptable to other regions and can produce maps in in-situ data-scarce regions, providing a first-hand overview. Our approach can be a support to the Mediterranean Posidonia Network, which brings together different stakeholders such as authorities, scientists, international environmental organizations, professionals including yachting agents and marinas from the Mediterranean countries to protect all P. oceanica meadows in the Mediterranean Sea by 2030 and increase each country's capability to protect these meadows by providing accurate and up-to-date maps to prevent its future degradation.


Alismatales , Ecosystem , Humans , Anthropogenic Effects , Climate Change , Artificial Intelligence , Remote Sensing Technology , Mediterranean Sea
13.
Glob Chang Biol ; 30(4): e17272, 2024 Apr.
Article En | MEDLINE | ID: mdl-38623753

Native biodiversity loss and invasions by nonindigenous species (NIS) have massively altered ecosystems worldwide, but trajectories of taxonomic and functional reorganization remain poorly understood due to the scarcity of long-term data. Where ecological time series are available, their temporal coverage is often shorter than the history of anthropogenic changes, posing the risk of drawing misleading conclusions on systems' current states and future development. Focusing on the Eastern Mediterranean Sea, a region affected by massive biological invasions and the largest climate change-driven collapse of native marine biodiversity ever documented, we followed the taxonomic and functional evolution of an emerging "novel ecosystem", using a unique dataset on shelled mollusks sampled in 2005-2022 on the Israeli shelf. To quantify the alteration of observed assemblages relative to historical times, we also analyzed decades- to centuries-old ecological baselines reconstructed from radiometrically dated death assemblages, time-averaged accumulations of shells on the seafloor that constitute natural archives of past community states. Against expectations, we found no major loss of native biodiversity in the past two decades, suggesting that its collapse had occurred even earlier than 2005. Instead, assemblage taxonomic and functional richness increased, reflecting the diversification of NIS whose trait structure was, and has remained, different from the native one. The comparison with the death assemblage, however, revealed that modern assemblages are taxonomically and functionally much impoverished compared to historical communities. This implies that NIS did not compensate for the functional loss of native taxa, and that even the most complete observational dataset available for the region represents a shifted baseline that does not reflect the actual magnitude of anthropogenic changes. While highlighting the great value of observational time series, our results call for the integration of multiple information sources on past ecosystem states to better understand patterns of biodiversity loss in the Anthropocene.


Biodiversity , Ecosystem , Mediterranean Sea , Time Factors , Climate Change
14.
Proc Natl Acad Sci U S A ; 121(15): e2320687121, 2024 Apr 09.
Article En | MEDLINE | ID: mdl-38557179

The Mediterranean Sea is a marine biodiversity hotspot already affected by climate-driven biodiversity collapses. Its highly endemic fauna is at further risk if global warming triggers an invasion of tropical Atlantic species. Here, we combine modern species occurrences with a unique paleorecord from the Last Interglacial (135 to 116 ka), a conservative analog of future climate, to model the future distribution of an exemplary subset of tropical West African mollusks, currently separated from the Mediterranean by cold upwelling off north-west Africa. We show that, already under an intermediate climate scenario (RCP 4.5) by 2050, climatic connectivity along north-west Africa may allow tropical species to colonize a by then largely environmentally suitable Mediterranean. The worst-case scenario RCP 8.5 leads to a fully tropicalized Mediterranean by 2100. The tropical Atlantic invasion will add to the ongoing Indo-Pacific invasion through the Suez Canal, irreversibly transforming the entire Mediterranean into a novel ecosystem unprecedented in human history.


Biodiversity , Ecosystem , Humans , Mediterranean Sea , Global Warming , Africa, Western
15.
Mar Environ Res ; 197: 106478, 2024 May.
Article En | MEDLINE | ID: mdl-38594093

Increasing impacts of both fisheries and climate change have resulted in shifts in the structure and functioning of marine communities. One recurrent observation is the rise of cephalopods as fish recede. This is generally attributed to the removal of main predators and competitors by fishing, while mechanistic evidence is still lacking. In addition, climate change may influence cephalopods due to their high environmental sensitivity. We aim to unveil the effects of different anthropogenic and environmental drivers at different scales focusing on the cephalopod community of the Western Mediterranean Sea. We investigate several ecological indicators offering a wide range of information about their ecology, and statistically relating them with environmental, biotic and fisheries drivers. Our results highlight non-linear changes of indicators along with spatial differences in their responses. Overall, the environment drivers have greater effects than biotic and local human impacts with contrasting effects of temperature across the geographic gradient. We conclude that cephalopods may be impacted by climate change in the future while not necessary through positive warming influence, which should make us cautious when referring to them as generalized winners of current changes.


Cephalopoda , Ecosystem , Animals , Humans , Cephalopoda/physiology , Mediterranean Sea , Climate Change , Fisheries
16.
PLoS One ; 19(4): e0300553, 2024.
Article En | MEDLINE | ID: mdl-38640124

The sea crossing from Libya to Italy is one of the world's most dangerous and politically contentious migration routes, and yet over half a million people have attempted the crossing since 2014. Leveraging data on aggregate migration flows and individual migration incidents, we estimate how migrants and smugglers have reacted to changes in the border enforcement regime, namely the rise in interceptions by the Libyan Coast Guard starting in 2017 and the corresponding decrease in the probability of rescue to Europe. We find support for a deterrence effect in which attempted crossings along the Central Mediterranean route declined, and a diversion effect in which some migrants substituted to the Western Mediterranean route. At the same time, smugglers adapted their tactics. Using a strategic model of the smuggler's choice of boat size, we estimate how smugglers trade off between the short-run payoffs to launching overcrowded boats and the long-run costs of making less successful crossing attempts under different levels of enforcement. Taken together, these analyses shed light on how the integration of incident- and flow-level datasets can inform ongoing migration policy debates and identify potential consequences of changing enforcement regimes.


Transients and Migrants , Humans , Mediterranean Sea , Europe , Italy , Libya
17.
Glob Chang Biol ; 30(4): e17249, 2024 Apr.
Article En | MEDLINE | ID: mdl-38572713

Warming as well as species introductions have increased over the past centuries, however a link between cause and effect of these two phenomena is still unclear. Here we use distribution records (1813-2023) to reconstruct the invasion histories of marine non-native macrophytes, macroalgae and seagrasses, in the Mediterranean Sea. We defined expansion as the maximum linear rate of spread (km year-1) and the accumulation of occupied grid cells (50 km2) over time and analyzed the relation between expansion rates and the species' thermal conditions at its native distribution range. Our database revealed a marked increase in the introductions and spread rates of non-native macrophytes in the Mediterranean Sea since the 1960s, notably intensifying after the 1990s. During the beginning of this century species velocity of invasion has increased to 26 ± 9 km2 year-1, with an acceleration in the velocity of invasion of tropical/subtropical species, exceeding those of temperate and cosmopolitan macrophytes. The highest spread rates since then were observed in macrophytes coming from native regions with minimum SSTs two to three degrees warmer than in the Mediterranean Sea. In addition, most non-native macrophytes in the Mediterranean (>80%) do not exceed the maximum temperature of their range of origin, whereas approximately half of the species are exposed to lower minimum SST in the Mediterranean than in their native range. This indicates that tropical/subtropical macrophytes might be able to expand as they are not limited by the colder Mediterranean SST due to the plasticity of their lower thermal limit. These results suggest that future warming will increase the thermal habitat available for thermophilic species in the Mediterranean Sea and continue to favor their expansion.


Introduced Species , Seaweed , Mediterranean Sea , Ecosystem , Temperature
18.
Sci Rep ; 14(1): 7785, 2024 04 02.
Article En | MEDLINE | ID: mdl-38565615

The golden coral Savalia savaglia is a long-living ecosystem engineer of Mediterranean circalittoral assemblages, able to induce necrosis of gorgonians' and black corals' coenenchyme and grow on their cleaned organic skeleton. Despite its rarity, in Boka Kotorska Bay (Montenegro) a shallow population of more than 1000 colonies was recorded close to underwater freshwater springs, which create very peculiar environmental conditions. In this context, the species was extremely abundant at two sites, while gorgonians were rare. The abundance and size of S. savaglia colonies and the diversity of the entire benthic assemblage were investigated by photographic sampling in a depth range of 0-35 m. Several living fragments of S. savaglia spread on the sea floor and small settled colonies (< 5 cm high) suggested a high incidence of asexual reproduction and a non-parasitic behaviour of this population. This was confirmed by studying thin sections of the basal portion of the trunk where the central core, generally represented by the remains of the gorgonian host skeleton, was lacking. The S. savaglia population of Boka Kotorska Bay forms the unique Mediterranean assemblage of the species deserving the definition of animal forest. Recently, temporary mitigation measures for anthropogenic impact were issued by the Government of Montenegro. Nevertheless, due to the importance of the sites the establishment of a permanent Marine Protected Area is strongly recommended.


Anthozoa , Ecosystem , Animals , Montenegro , Bays , Mediterranean Sea
19.
Plant Physiol Biochem ; 210: 108614, 2024 May.
Article En | MEDLINE | ID: mdl-38626655

Heat-priming improves plants' tolerance to a recurring heat stress event. The underlying molecular mechanisms of heat-priming are largely unknown in seagrasses. Here, ad hoc mesocosm experiments were conducted with two Mediterranean seagrass species, Posidonia oceanica and Cymodocea nodosa. Plants were first exposed to heat-priming, followed by a heat-triggering event. A comprehensive assessment of plant stress response across different levels of biological organization was performed at the end of the triggering event. Morphological and physiological results showed an improved response of heat-primed P. oceanica plants while in C. nodosa both heat- and non-primed plants enhanced their growth rates at the end of the triggering event. As resulting from whole transcriptome sequencing, molecular functions related to several cellular compartments and processes were involved in the response to warming of non-primed plants, while the response of heat-primed plants involved a limited group of processes. Our results suggest that seagrasses acquire a primed state during the priming event, that eventually gives plants the ability to induce a more energy-effective response when the thermal stress event recurs. Different species may differ in their ability to perform an improved heat stress response after priming. This study provides pioneer molecular insights into the emerging topic of seagrass stress priming and may benefit future studies in the field.


Alismatales , Transcriptome , Alismatales/genetics , Alismatales/metabolism , Transcriptome/genetics , Species Specificity , Heat-Shock Response/genetics , Heat-Shock Response/physiology , Gene Expression Regulation, Plant , Mediterranean Sea , Hot Temperature
20.
Mar Pollut Bull ; 202: 116403, 2024 May.
Article En | MEDLINE | ID: mdl-38677106

Trace metal contents and fluxes in downward particulate matter and dated sediment cores of the NW Alboran Sea are analysed in this study with the aim of assessing the role of the Atlantic inflow on their transport. Increases in Zn, Cu and Pb were detected in downward particulate matter collected by sediment traps after river flooding events and after the Aznalcollar mining spill. Their arrival coincided within the recently estimated time range for river particles discharged into the Gulf of Cádiz to reach the Alboran Sea, indicating that their transfer is enhanced during events of increased river inputs of contaminated particulate matter. This also suggests that the effects of potential tailing dam failures in the Gulf of Cádiz watersheds could reach the Alboran Sea. These trace metals also increased in the sediment cores from the continental rise since the second half of the 19th century, suggesting that contaminated particles have been continuously transferred towards the Mediterranean Sea since that time, when mining concessions and production increased in the SW Iberian Pyrite Belt.


Environmental Monitoring , Geologic Sediments , Metals , Particulate Matter , Water Pollutants, Chemical , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Mediterranean Sea , Particulate Matter/analysis , Metals/analysis , Atlantic Ocean , Mining
...