Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 211
Filtrar
1.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38928190

RESUMEN

The study of the physiological and pathophysiological processes under extreme conditions facilitates a better understanding of the state of a healthy organism and can also shed light on the pathogenesis of diseases. In recent years, it has become evident that gravitational stress affects both the whole organism and individual cells. We have previously demonstrated that simulated microgravity inhibits proliferation, induces apoptosis, changes morphology, and alters the surface marker expression of megakaryoblast cell line MEG-01. In the present work, we investigate the expression of cell cycle cyclins in MEG-01 cells. We performed several experiments for 24 h, 72 h, 96 h and 168 h. Flow cytometry and Western blot analysis demonstrated that the main change in the levels of cyclins expression occurs under conditions of simulated microgravity after 96 h. Thus, the level of cyclin A expression showed an increase in the RPM group during the first 4 days, followed by a decrease, which, together with the peak of cyclin D, may indicate inhibition of the cell cycle in the G2 phase, before mitosis. In addition, based on the data obtained by PCR analysis, we were also able to see that both cyclin A and cyclin B expression showed a peak at 72 h, followed by a gradual decrease at 96 h. STED microscopy data also confirmed that the main change in cyclin expression of MEG-01 cells occurs at 96 h, under simulated microgravity conditions, compared to static control. These results suggested that the cell cycle disruption induced by RPM-simulated microgravity in MEG-01 cells may be associated with the altered expression of the main regulators of the cell cycle. Thus, these data implicate the development of cellular stress in MEG-01 cells, which may be important for proliferating human cells exposed to microgravity in real space.


Asunto(s)
Ciclo Celular , Ciclinas , Simulación de Ingravidez , Humanos , Línea Celular , Ciclinas/metabolismo , Ciclinas/genética , Células Progenitoras de Megacariocitos/metabolismo , Células Progenitoras de Megacariocitos/citología , Ciclina A/metabolismo , Ciclina A/genética , Proliferación Celular , Ciclina B/metabolismo , Ciclina B/genética
2.
Cell ; 187(12): 3090-3107.e21, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38749423

RESUMEN

Platelet dysregulation is drastically increased with advanced age and contributes to making cardiovascular disorders the leading cause of death of elderly humans. Here, we reveal a direct differentiation pathway from hematopoietic stem cells into platelets that is progressively propagated upon aging. Remarkably, the aging-enriched platelet path is decoupled from all other hematopoietic lineages, including erythropoiesis, and operates as an additional layer in parallel with canonical platelet production. This results in two molecularly and functionally distinct populations of megakaryocyte progenitors. The age-induced megakaryocyte progenitors have a profoundly enhanced capacity to engraft, expand, restore, and reconstitute platelets in situ and upon transplantation and produce an additional platelet population in old mice. The two pools of co-existing platelets cause age-related thrombocytosis and dramatically increased thrombosis in vivo. Strikingly, aging-enriched platelets are functionally hyper-reactive compared with the canonical platelet populations. These findings reveal stem cell-based aging as a mechanism for platelet dysregulation and age-induced thrombosis.


Asunto(s)
Envejecimiento , Plaquetas , Diferenciación Celular , Células Madre Hematopoyéticas , Trombosis , Animales , Células Madre Hematopoyéticas/metabolismo , Plaquetas/metabolismo , Trombosis/patología , Trombosis/metabolismo , Ratones , Humanos , Megacariocitos/metabolismo , Ratones Endogámicos C57BL , Células Progenitoras de Megacariocitos/metabolismo , Masculino
3.
Biochim Biophys Acta Gen Subj ; 1868(6): 130610, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38527572

RESUMEN

Polyamines not only play essential roles in cell growth and function of living organisms but are also released into the extracellular space and function as regulators of chemical transduction, although the cells from which they are released and their mode of release are not well understood. The vesicular polyamine transporter (VPAT), encoded by the SLC18B1 is responsible for the vesicular storage of spermine and spermidine, followed by their vesicular release from secretory cells. Focusing on VPAT will help identify polyamine-secreting cells and new polyamine functions. In this study, we investigated the possible involvement of VPAT in vesicular release of polyamines in MEG-01 clonal megakaryoblastic cells and platelets. RT-PCR, western blotting, and immunohistochemistry revealed VPAT expression in MEG-01 cells. MEG-01 cells secreted polyamines upon A23187 stimulation in the presence of Ca2+, which is temperature-dependent and sensitive to bafilomycin A1. A23187-induced polyamine secretion from MEG-01 cells was reduced by treatment with reserpine, VPAT inhibitors, or VPAT RNA interference. Platelets also expressed VPAT, displaying a punctate distribution, and released spermidine upon A23187 and thrombin stimulation. These findings have demonstrated VPAT-mediated vesicular polyamine release from MEG-01 cells, suggesting the presence of similar vesicular polyamine release mechanisms in platelets.


Asunto(s)
Plaquetas , Poliaminas , Plaquetas/metabolismo , Humanos , Poliaminas/metabolismo , Espermidina/metabolismo , Espermidina/farmacología , Megacariocitos/metabolismo , Células Progenitoras de Megacariocitos/metabolismo , Células Progenitoras de Megacariocitos/citología
4.
Sci Rep ; 13(1): 22553, 2023 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110522

RESUMEN

The use of megakaryoblastic leukemia MEG-01 cells can help reveal the mechanisms of thrombopoiesis. However, conventional in vitro activation of platelet release from MEG-01 cells requires thrombopoietin, which is costly. Here, we aim to develop a more straightforward and affordable method. Synchronization of the MEG-01 cells was initially performed using serum-free culture, followed by spontaneous cell differentiation in the presence of serum. Different stages of megakaryoblast differentiation were classified based on cell morphology, DNA content, and cell cycle. The MEG-01 cells released platelet-like particles at a level comparable to that of the thrombopoietin-activated MEG-01 cells. The platelet-like particles were distinguishable from PLP-derived extracellular vesicles and could express P-selectin following ADP activation. Importantly, the platelet-like particles induced fibrin clotting in vitro using platelet-poor plasma. Therefore, this thrombopoietin-independent cell synchronization method is an effective and straightforward method for studying megakaryopoiesis and thrombopoiesis.


Asunto(s)
Megacariocitos , Trombopoyetina , Megacariocitos/metabolismo , Trombopoyetina/farmacología , Trombopoyetina/metabolismo , Células Progenitoras de Megacariocitos , Plaquetas , Trombopoyesis
5.
PLoS One ; 18(9): e0291662, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37729123

RESUMEN

OBJECTIVES: In myelodysplastic syndromes (MDS), neoplastic myeloblast (CD34+CD13+CD33+ cells) numbers often increase over time, leading to secondary acute myeloid leukemia (AML). In recent studies, blasts in some MDS patients have been found to express a megakaryocyte-lineage molecule, CD41, and such patients show extremely poor prognosis. This is the first study to evaluate whether myeloblasts transition to CD41+ blasts over time and to investigate the detailed immunophenotypic features of CD41+ blasts in MDS. METHODS: We performed a retrospective cohort study, in which time-dependent changes in blast immunophenotypes were analyzed using multidimensional flow cytometry (MDF) in 74 patients with MDS and AML (which progressed from MDS). RESULTS: CD41+ blasts (at least 20% of CD34+ blasts expressing CD41) were detected in 12 patients. In five of these 12 patients, blasts were CD41+ from the first MDF analysis. In the other seven patients, myeloblasts (CD34+CD33+CD41- cells) transitioned to megakaryoblasts (CD34+CD41+ cells) over time, which was often accompanied by disease progression (including leukemic transformation). These CD41+ patients were more frequently observed among patients with monosomal and complex karyotypes. CD41+ blasts were negative for the erythroid antigen, CD235a, and positive for CD33 in all cases, but CD33 expression levels were lower in three cases when compared with CD34+CD41- blasts. Among the five CD41+ patients who underwent extensive immunophenotyping, CD41+ blasts all expressed CD61, but two cases had reduced CD42b expression, three had reduced/absent CD13 expression, and three also expressed CD7. CONCLUSIONS: Myeloblasts become megakaryoblastic over time in some MDS patients, and examining the megakaryocyte lineage (not only as a diagnostic work-up but also as follow-up) is needed to detect CD41+ MDS. The immunophenotypic features revealed in this study may have diagnostic relevance for CD41+ MDS patients.


Asunto(s)
Células Precursoras de Granulocitos , Síndromes Mielodisplásicos , Humanos , Inmunofenotipificación , Células Progenitoras de Megacariocitos , Estudios Retrospectivos , Antígenos CD34
6.
Naunyn Schmiedebergs Arch Pharmacol ; 396(11): 3101-3110, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37162543

RESUMEN

Acute megakaryocytic leukemia (AMKL) is a rare neoplasm caused by abnormal megakaryoblasts. Megakaryoblasts keep dividing and avoid undergoing polyploidization to escape maturation. Small-molecule probes inducing polyploidization of megakaryocytic leukemia cells accelerate the differentiation of megakaryocytes. This study aims to determine that Rho kinase (ROCK) inhibition on megakaryoblasts enhances polyploidization and the inhibition of ROCK1 by fasudil benefits AMKL mice. The study investigated fasudil on the megakaryoblast cells in vitro and in vivo. With the differentiation and apoptosis induction, fasudil was used to treat 6133/MPLW515L mice, and the differentiation level was evaluated. Fasudil could reduce proliferation and promote the polyploidization of megakaryoblasts. Meanwhile, fasudil reduced the disease burden of 6133/MPLW515L AMKL mice at a dose that is safe for healthy mice. Combination therapy of ROCK1 inhibitor fasudil and reported clinical AURKA inhibitor MLN8237 achieved a better antileukemia effect in vivo, which alleviated hepatosplenomegaly and promoted the differentiation of megakaryoblast cells. ROCK1 inhibitor fasudil is a good proliferation inhibitor and polyploidization inducer of megakaryoblast cells and might be a novel rationale for clinical AMKL treatment.


Asunto(s)
Leucemia Megacarioblástica Aguda , Megacariocitos , Animales , Ratones , Megacariocitos/fisiología , Leucemia Megacarioblástica Aguda/tratamiento farmacológico , Leucemia Megacarioblástica Aguda/genética , Células Progenitoras de Megacariocitos , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/uso terapéutico , Quinasas Asociadas a rho
7.
Leuk Res ; 120: 106920, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35872339

RESUMEN

Acute megakaryoblastic leukaemia (AMKL) is characterized by expansion of megakaryoblasts, which are hyper-proliferative cells that fail to undergo differentiation. Insight to the cell-cycle regulation revealed important events in early or late megakaryocytes (MKs) maturation; the cyclin-dependent kinases 4 and 6 (CDK4/6) have been reported to participate in the development of progenitor megakaryocytes, mainly by promoting cell cycle progression and DNA polyploidization. However, it remains unclear whether the continuous proliferation, but not differentiation, of megakaryoblasts is related to an aberrant regulation of CDK4/6 in AMKL. Here, we found that CDK4/6 were up regulated in patients with AMKL, and persistently maintained at a high level during the differentiation of abnormal megakaryocytes in vitro, according to a database and western blot. Additionally, AMKL cells were exceptionally reliant on the cell cycle regulators CDK4 or 6, as blocking their activity using an inhibitor or short hairpin RNA (shRNA) significantly reduced the proliferation of 6133/MPL megakaryocytes, reduced DNA polyploidy, induced apoptosis, decreased the level of phosphorylated retinoblastoma protein (p-Rb), and activation of caspase 3. Additionally, CDK4/6 inhibitors and shRNA reduced the numbers of leukemia cells in the liver and bone marrow (BM), alleviated hepatosplenomegaly, and prolonged the survival of AMKL-transplanted mice. These results suggested that blocking the activity of CDK4/6 may represent an effective approach to control megakaryoblasts in AMKL.


Asunto(s)
Leucemia Megacarioblástica Aguda , Animales , Ciclinas , ADN , Leucemia Megacarioblástica Aguda/tratamiento farmacológico , Leucemia Megacarioblástica Aguda/genética , Células Progenitoras de Megacariocitos , Ratones , ARN Interferente Pequeño
8.
Genome Med ; 14(1): 16, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35172892

RESUMEN

BACKGROUND: Understanding the host genetic architecture and viral immunity contributes to the development of effective vaccines and therapeutics for controlling the COVID-19 pandemic. Alterations of immune responses in peripheral blood mononuclear cells play a crucial role in the detrimental progression of COVID-19. However, the effects of host genetic factors on immune responses for severe COVID-19 remain largely unknown. METHODS: We constructed a computational framework to characterize the host genetics that influence immune cell subpopulations for severe COVID-19 by integrating GWAS summary statistics (N = 969,689 samples) with four independent scRNA-seq datasets containing healthy controls and patients with mild, moderate, and severe symptom (N = 606,534 cells). We collected 10 predefined gene sets including inflammatory and cytokine genes to calculate cell state score for evaluating the immunological features of individual immune cells. RESULTS: We found that 34 risk genes were significantly associated with severe COVID-19, and the number of highly expressed genes increased with the severity of COVID-19. Three cell subtypes that are CD16+monocytes, megakaryocytes, and memory CD8+T cells were significantly enriched by COVID-19-related genetic association signals. Notably, three causal risk genes of CCR1, CXCR6, and ABO were highly expressed in these three cell types, respectively. CCR1+CD16+monocytes and ABO+ megakaryocytes with significantly up-regulated genes, including S100A12, S100A8, S100A9, and IFITM1, confer higher risk to the dysregulated immune response among severe patients. CXCR6+ memory CD8+ T cells exhibit a notable polyfunctionality including elevation of proliferation, migration, and chemotaxis. Moreover, we observed an increase in cell-cell interactions of both CCR1+ CD16+monocytes and CXCR6+ memory CD8+T cells in severe patients compared to normal controls among both PBMCs and lung tissues. The enhanced interactions of CXCR6+ memory CD8+T cells with epithelial cells facilitate the recruitment of this specific population of T cells to airways, promoting CD8+T cell-mediated immunity against COVID-19 infection. CONCLUSIONS: We uncover a major genetics-modulated immunological shift between mild and severe infection, including an elevated expression of genetics-risk genes, increase in inflammatory cytokines, and of functional immune cell subsets aggravating disease severity, which provides novel insights into parsing the host genetic determinants that influence peripheral immune cells in severe COVID-19.


Asunto(s)
Linfocitos T CD8-positivos/virología , COVID-19/genética , COVID-19/patología , Monocitos/virología , Análisis de la Célula Individual/métodos , COVID-19/inmunología , Biología Computacional/métodos , Proteínas Ligadas a GPI/metabolismo , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Humanos , Células Progenitoras de Megacariocitos/inmunología , Células Progenitoras de Megacariocitos/virología , Monocitos/metabolismo , Sitios de Carácter Cuantitativo , Receptores CCR1/inmunología , Receptores CCR1/metabolismo , Receptores CXCR6/inmunología , Receptores CXCR6/metabolismo , Receptores de IgG/metabolismo , Análisis de Secuencia de ARN , Índice de Severidad de la Enfermedad
9.
Blood ; 139(22): 3233-3244, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35108353

RESUMEN

Fetal and neonatal megakaryocyte progenitors are hyperproliferative compared with adult progenitors and generate a large number of small, low-ploidy megakaryocytes. Historically, these developmental differences have been interpreted as "immaturity." However, more recent studies have demonstrated that the small, low-ploidy fetal and neonatal megakaryocytes have all the characteristics of adult polyploid megakaryocytes, including the presence of granules, a well-developed demarcation membrane system, and proplatelet formation. Thus, rather than immaturity, the features of fetal and neonatal megakaryopoiesis reflect a developmentally unique uncoupling of proliferation, polyploidization, and cytoplasmic maturation, which allows fetuses and neonates to populate their rapidly expanding bone marrow and blood volume. At the molecular level, the features of fetal and neonatal megakaryopoiesis are the result of a complex interplay of developmentally regulated pathways and environmental signals from the different hematopoietic niches. Over the past few years, studies have challenged traditional paradigms about the origin of the megakaryocyte lineage in both fetal and adult life, and the application of single-cell RNA sequencing has led to a better characterization of embryonic, fetal, and adult megakaryocytes. In particular, a growing body of data suggests that at all stages of development, the various functions of megakaryocytes are not fulfilled by the megakaryocyte population as a whole, but rather by distinct megakaryocyte subpopulations with dedicated roles. Finally, recent studies have provided novel insights into the mechanisms underlying developmental disorders of megakaryopoiesis, which either uniquely affect fetuses and neonates or have different clinical presentations in neonatal compared with adult life.


Asunto(s)
Megacariocitos , Trombopoyesis , Adulto , Médula Ósea , Feto , Humanos , Recién Nacido , Células Progenitoras de Megacariocitos , Megacariocitos/metabolismo , Trombopoyesis/genética
10.
Stem Cell Res Ther ; 13(1): 54, 2022 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-35123563

RESUMEN

BACKGROUND: Ex vivo production of induced megakaryocytes (MKs) and platelets from stem cells is an alternative approach for supplying transfusible platelets. However, it is difficult to generate large numbers of MKs and platelets from hematopoietic stem cells and progenitor cells (HSPCs). METHODS: To optimize the differentiation efficiency of megakaryocytic cells from HSPCs, we first employed a platelet factor 4 (PF4)-promoter reporter and high-throughput screening strategy to screen for small molecules. We also investigated the effects and possible mechanisms of candidate small molecules on megakaryocytic differentiation of human HSPCs. RESULTS: The small molecule Ricolinostat remarkably promoted the expression of PF4-promoter reporter in the megakaryocytic cell line. Notably, Ricolinostat significantly enhanced the cell fate commitment of MK progenitors (MkPs) from cord blood HSPCs and promoted the proliferation of MkPs based on cell surface marker detection, colony-forming unit-MK assay, and quantitative real-time PCR analyses. MkPs generated from Ricolinostat-induced HSPCs differentiated into mature MKs and platelets. Mechanistically, we found that Ricolinostat enhanced MkP fate mainly by inhibiting the secretion of IL-8 and decreasing the expression of the IL-8 receptor CXCR2. CONCLUSION: The addition of Ricolinostat to the culture medium promoted MkP differentiation from HSPCs and enhanced the proliferation of MkPs mainly by suppressing the IL-8/CXCR2 pathway. Our results can help the development of manufacturing protocols for the efficient generation of MKs and platelets from stem cells in vitro.


Asunto(s)
Ácidos Hidroxámicos , Células Progenitoras de Megacariocitos , Diferenciación Celular , Células Madre Hematopoyéticas , Humanos , Ácidos Hidroxámicos/metabolismo , Ácidos Hidroxámicos/farmacología , Megacariocitos , Pirimidinas
11.
Blood Adv ; 6(1): 13-27, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34654056

RESUMEN

Eltrombopag (ELT) is a thrombopoietic agent approved for immune thrombocytopenia and also a potent iron chelator. Here we found that ELT exhibited dose-dependent opposing effects on in vitro megakaryopoiesis: low concentrations (≤6 µM, ELT6) stimulated megakaryopoiesis, but high concentrations (30 µM, ELT30) suppressed megakaryocyte (MK) differentiation and proliferation. The suppressive effects of ELT30 were reproduced by other iron chelators, supporting iron chelation as a likely mechanism. During MK differentiation, committed MK progenitors (CD34+/CD41+ and CD34-/CD41+ cells) were significantly more sensitive than undifferentiated progenitors (CD34+/CD41- cells) to the suppressive effects of ELT30, which resulted from both decreased proliferation and increased apoptosis. The antiproliferative effects of ELT30 were reversed by increased iron in the culture, as were the proapoptotic effects when exposure to ELT30 was short. Because committed MK progenitors exhibited the highest proliferative rate and the highest sensitivity to iron chelation, we tested whether their iron status influenced their response to ELT during rapid cell expansion. In these studies, iron deficiency reduced the proliferation of CD41+ cells in response to all ELT concentrations. Severe iron deficiency also reduced the number of MKs generated in response to high thrombopoietin concentrations by ∼50%, compared with iron-replete cultures. Our findings support the hypothesis that although iron deficiency can stimulate certain cells and steps in megakaryopoiesis, it can also limit the proliferation of committed MK progenitors, with severity of iron deficiency and degree of thrombopoietic stimulation influencing the ultimate output. Further studies are needed to clarify how megakaryopoiesis, iron deficiency, and ELT stimulation are clinically interrelated.


Asunto(s)
Sangre Fetal , Células Progenitoras de Megacariocitos , Benzoatos , Diferenciación Celular , Hidrazinas , Hierro/farmacología , Pirazoles
12.
Stem Cell Reports ; 16(12): 2861-2870, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34861163

RESUMEN

Platelet transfusions are critical for severe thrombocytopenia but depend on blood donors. The shortage of donors and the potential of universal HLA-null platelet products have stimulated research on the ex vivo differentiation of human pluripotent stem cells (hPSCs) to platelets. We recently established expandable immortalized megakaryocyte cell lines (imMKCLs) from hPSCs by transducing MYC, BMI1, and BCL-XL (MBX). imMKCLs can act as cryopreservable master cells to supply platelet concentrates. However, the proliferation rates of the imMKCLs vary with the starting hPSC clone. In this study, we reveal from the gene expression profiles of several MKCL clones that the proliferation arrest is correlated with the expression levels of specific cyclin-dependent kinase inhibitors. Silencing CDKN1A and p53 with the overexpression of MBX was effective at stably inducing imMKCLs that generate functional platelets irrespective of the hPSC clone. Collectively, this improvement in generating imMKCLs should contribute to platelet industrialization and platelet biology.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Silenciador del Gen , Células Madre Pluripotentes Inducidas/metabolismo , Células Progenitoras de Megacariocitos/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Plaquetas/metabolismo , Línea Celular , Proliferación Celular , Células Clonales , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Complejo Represivo Polycomb 1/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Regulación hacia Arriba , Proteína bcl-X/metabolismo
14.
J Vis Exp ; (171)2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-34096917

RESUMEN

Bone marrow megakaryocytes are large polyploid cells that ensure the production of blood platelets. They arise from hematopoietic stem cells through megakaryopoiesis. The final stages of this process are complex and classically involve the bipotent Megakaryocyte-Erythrocyte Progenitors (MEP) and the unipotent Megakaryocyte Progenitors (MKp). These populations precede the formation of bona fide megakaryocytes and, as such, their isolation and characterization could allow for the robust and unbiased analysis of megakaryocyte formation. This protocol presents in detail the procedure to collect hematopoietic cells from mouse bone marrow, the enrichment of hematopoietic progenitors through magnetic depletion and finally a cell sorting strategy that yield highly purified MEP and MKp populations. First, bone marrow cells are collected from the femur, the tibia, and also the iliac crest, a bone that contains a high number of hematopoietic progenitors. The use of iliac crest bones drastically increases the total cell number obtained per mouse and thus contributes to a more ethical use of animals. A magnetic lineage depletion was optimized using 450 nm magnetic beads allowing a very efficient cell sorting by flow cytometry. Finally, the protocol presents the labeling and gating strategy for the sorting of the two highly purified megakaryocyte progenitor populations: MEP (Lin-Sca-1-c-Kit+CD16/32-CD150+CD9dim) and MKp (Lin- Sca-1-c-Kit+CD16/32-CD150+CD9bright). This technique is easy to implement and provides enough cellular material to perform i) molecular characterization for a deeper knowledge of their identity and biology, ii) in vitro differentiation assays, that will provide a better understanding of the mechanisms of maturation of megakaryocytes, or iii) in vitro models of interaction with their microenvironment.


Asunto(s)
Células Progenitoras de Megacariocitos , Megacariocitos , Animales , Células de la Médula Ósea/citología , Diferenciación Celular/fisiología , Separación Celular/métodos , Células Madre Hematopoyéticas/citología , Células Progenitoras de Megacariocitos/citología , Megacariocitos/citología , Ratones
15.
Stem Cell Reports ; 16(6): 1598-1613, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34019813

RESUMEN

Age-related morbidity is associated with a decline in hematopoietic stem cell (HSC) function, but the mechanisms of HSC aging remain unclear. We performed heterochronic HSC transplants followed by quantitative analysis of cell reconstitution. Although young HSCs outperformed old HSCs in young recipients, young HSCs unexpectedly failed to outcompete the old HSCs of aged recipients. Interestingly, despite substantial enrichment of megakaryocyte progenitors (MkPs) in old mice in situ and reported platelet (Plt) priming with age, transplanted old HSCs were deficient in reconstitution of all lineages, including MkPs and Plts. We therefore performed functional analysis of young and old MkPs. Surprisingly, old MkPs displayed unmistakably greater regenerative capacity compared with young MkPs. Transcriptome analysis revealed putative molecular regulators of old MkP expansion. Collectively, these data demonstrated that aging affects HSCs and megakaryopoiesis in fundamentally different ways: whereas old HSCs functionally decline, MkPs gain expansion capacity upon aging.


Asunto(s)
Envejecimiento/fisiología , Células Madre Hematopoyéticas/fisiología , Células Progenitoras de Megacariocitos/fisiología , Trombopoyesis , Transcriptoma , Animales , Linaje de la Célula , Femenino , Trasplante de Células Madre Hematopoyéticas/métodos , Masculino , Ratones , Ratones Endogámicos C57BL
16.
Leuk Res ; 105: 106570, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33838549

RESUMEN

Transient abnormal myelopoiesis (TAM) in neonates with Down syndrome, which spontaneously resolves within several weeks or months after birth, may represent a special form of leukemia developing in the fetal liver (FL). To explore the role of hepatoblasts, one of the major constituents of the FL hematopoietic microenvironment, in the pathogenesis of TAM, we investigated the influence of a human hepatoblastoma cell line, HUH-6, on the in vitro growth and differentiation of TAM blasts. In a coculture system with membrane filters, which hinders cell-to-cell contact between TAM blasts and HUH-6 cells, the growth and megakaryocytic differentiation of TAM blast progenitors were increased in the presence of HUH-6 cells. The culture supernatant of HUH-6 cells contained hematopoietic growth factors, including stem cell factor (SCF) and thrombopoietin (TPO). The neutralizing antibody against SCF abrogated the growth-stimulating activity of the culture supernatant of HUH-6 cells, demonstrating that, among the growth factors produced by HUH-6 cells, SCF may be the major growth stimulator and that TPO may be involved in megakaryocytic differentiation, rather than growth, of TAM blasts. This suggests that hepatoblasts function in the regulation of the growth and differentiation of TAM blasts in the FL through the production of hematopoietic growth factors, including SCF and TPO, and are involved in the leukemogenesis of TAM.


Asunto(s)
Síndrome de Down/patología , Hepatoblastoma , Hepatocitos , Reacción Leucemoide/patología , Células Progenitoras de Megacariocitos , Diferenciación Celular/fisiología , Línea Celular Tumoral , Proliferación Celular/fisiología , Técnicas de Cocultivo , Hepatoblastoma/metabolismo , Hepatoblastoma/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Leucemia Megacarioblástica Aguda/patología , Células Progenitoras de Megacariocitos/metabolismo , Células Progenitoras de Megacariocitos/patología , Mielopoyesis/fisiología , Células Madre/metabolismo , Células Madre/patología
17.
J Exp Med ; 218(4)2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33566111

RESUMEN

In the embryo, the first hematopoietic cells derive from the yolk sac and are thought to be rapidly replaced by the progeny of hematopoietic stem cells. We used three lineage-tracing mouse models to show that, contrary to what was previously assumed, hematopoietic stem cells do not contribute significantly to erythrocyte production up until birth. Lineage tracing of yolk sac erythromyeloid progenitors, which generate tissue resident macrophages, identified highly proliferative erythroid progenitors that rapidly differentiate after intra-embryonic injection, persisting as the major contributors to the embryonic erythroid compartment. We show that erythrocyte progenitors of yolk sac origin require 10-fold lower concentrations of erythropoietin than their hematopoietic stem cell-derived counterparts for efficient erythrocyte production. We propose that, in a low erythropoietin environment in the fetal liver, yolk sac-derived erythrocyte progenitors efficiently outcompete hematopoietic stem cell progeny, which fails to generate megakaryocyte and erythrocyte progenitors.


Asunto(s)
Desarrollo Embrionario/genética , Eritrocitos/metabolismo , Eritropoyesis , Células Progenitoras de Megacariocitos/metabolismo , Saco Vitelino/fisiología , Animales , Linaje de la Célula/genética , Eritropoyetina/metabolismo , Femenino , Macrófagos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Embarazo , Proteínas Proto-Oncogénicas c-myb/deficiencia , Proteínas Proto-Oncogénicas c-myb/genética
18.
Circ Res ; 127(9): 1182-1194, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32781905

RESUMEN

RATIONALE: Mean platelet volume (MPV) and platelet count (PLT) are platelet measures that have been linked to cardiovascular disease (CVD) and mortality risk. Identifying protein biomarkers for these measures may yield insights into CVD mechanisms. OBJECTIVE: We aimed to identify causal protein biomarkers for MPV and PLT among 71 CVD-related plasma proteins measured in FHS (Framingham Heart Study) participants. METHODS AND RESULTS: We conducted integrative analyses of genetic variants associated with PLT/MPV with protein quantitative trait locus variants associated with plasma proteins followed by Mendelian randomization to infer causal relations of proteins for PLT/MPV. We also tested protein-PLT/MPV association in FHS participants. Using induced pluripotent stem cell-derived megakaryocyte clones that produce functional platelets, we conducted RNA-sequencing and analyzed expression differences between low- and high-platelet producing clones. We then performed small interfering RNA gene knockdown experiments targeting genes encoding proteins with putatively causal platelet effects in megakaryocyte clones to examine effects on platelet production. In protein-trait association analyses, ten proteins were associated with MPV and 31 with PLT. Mendelian randomization identified 4 putatively causal proteins for MPV and 4 for PLT. GP-5 (Glycoprotein V), GRN (granulin), and MCAM (melanoma cell adhesion molecule) were associated with PLT, while MPO (myeloperoxidase) showed significant association with MPV in both analyses. RNA-sequencing analysis results were directionally concordant with observed and Mendelian randomization-inferred associations for GP-5, GRN, and MCAM. In siRNA gene knockdown experiments, silencing GP-5, GRN, and MPO decreased PLTs. Genome-wide association study results suggest several of these may be linked to CVD risk. CONCLUSIONS: We identified 4 proteins that are causally linked to PLTs. These proteins may also have roles in the pathogenesis of CVD via a platelet/blood coagulation-based mechanism.


Asunto(s)
Enfermedades Cardiovasculares/genética , Granulinas , Volúmen Plaquetario Medio , Peroxidasa , Recuento de Plaquetas , Glicoproteínas de Membrana Plaquetaria , Biomarcadores/sangre , Proteínas Sanguíneas/análisis , Antígeno CD146/genética , Antígeno CD146/metabolismo , Enfermedades Cardiovasculares/sangre , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/mortalidad , Diferenciación Celular , Femenino , Silenciador del Gen , Estudio de Asociación del Genoma Completo , Granulinas/genética , Granulinas/metabolismo , Humanos , Estudios Longitudinales , Masculino , Células Progenitoras de Megacariocitos , Megacariocitos/citología , Análisis de la Aleatorización Mendeliana , Persona de Mediana Edad , Peroxidasa/genética , Peroxidasa/metabolismo , Fenotipo , Glicoproteínas de Membrana Plaquetaria/genética , Glicoproteínas de Membrana Plaquetaria/metabolismo , Células Madre Pluripotentes , ARN Interferente Pequeño , Riesgo , Análisis de Secuencia de ARN
19.
Indian J Pathol Microbiol ; 63(3): 485-487, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32769348

RESUMEN

Myeloma plasma cells vary from mature forms to immature, plasmablastic, and pleomorphic cells. Only a few cases of morphologic variant of plasma cell neoplasm have been reported, in which the plasma cell neoplasm presented with lymphoplasmacytic, megakaryocytic, plasmablastic, lymphocytosis-like, and variant hairy cell leukemia-like morphological features. A 66-year-old man sought medical attention with a previous 2-month history of lower back and chest pain. Magnetic resonance imaging (MRI) of the thoracic spine showed thoracic vertebral body shape and disc degeneration, and bone lesion. Blood work showed mild anemia (hemoglobin, 101 g/L; white blood cells, 6.98 × 109/L; platelets, 146 × 109/L.), hyperuricemia (UA 671 umol/L), and immunoglobulin G kappa [IgG(κ)] paraproteins. Bone marrow study revealed diffuse invasion by sheets of megakaryoblast-like cells. Flow cytometric analysis and bone marrow biopsy revealed plasma cell myeloma (PCM), and thoracic puncture biopsy indicated plasma cell neoplasms. Overall, the findings were in accordance with a PCM. To date, this is the first reported case of PCM with megakaryoblastic morphology mimicking acute leukemia. Recognizing the morphological variant of PCM is important in differentiating it from acute leukemia.


Asunto(s)
Leucemia Mieloide Aguda/diagnóstico , Células Progenitoras de Megacariocitos , Neoplasias de Células Plasmáticas/diagnóstico por imagen , Células Plasmáticas/patología , Columna Vertebral/diagnóstico por imagen , Enfermedad Aguda , Anciano , Antineoplásicos/uso terapéutico , Biopsia , Médula Ósea/patología , Diagnóstico Diferencial , Resultado Fatal , Humanos , Leucemia Mieloide Aguda/patología , Imagen por Resonancia Magnética , Masculino , Neoplasias de Células Plasmáticas/tratamiento farmacológico , Columna Vertebral/patología
20.
CPT Pharmacometrics Syst Pharmacol ; 9(10): 553-560, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32830463

RESUMEN

The oral Janus kinase 1 (JAK1) inhibitor abrocitinib reduced signs and symptoms of atopic dermatitis (AD) in a placebo-controlled, randomized, double-blind, phase IIb trial (dose range 10-200 mg). A kinetic-pharmacodynamic (K-PD) model consisting of proliferation, maturation, and blood circulation compartments was developed to characterize platelet count changes during the study. The K-PD model consisted of a drug elimination constant, four system parameters describing platelet dynamics, variance terms, correlation, and residual errors. Overall, these patients exhibited mean transit time from progenitor cells to platelets of 8.2 days (longer than the reported megakaryocyte life span), likely arising from JAK1-induced perturbations of platelet progenitor homeostasis. The final model described dose-related platelet count declines until nadir at treatment week 4 and return to baseline levels thereafter. The model was deemed suitable to support the design of subsequent abrocitinib AD trials and indicated limited clinically relevant platelet reductions in the range of doses studied.


Asunto(s)
Plaquetas/efectos de los fármacos , Dermatitis Atópica/tratamiento farmacológico , Janus Quinasa 1/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacocinética , Pirimidinas/farmacocinética , Sulfonamidas/farmacocinética , Administración Oral , Adulto , Diseño de Fármacos , Homeostasis , Humanos , Cinética , Células Progenitoras de Megacariocitos/efectos de los fármacos , Placebos/administración & dosificación , Recuento de Plaquetas/estadística & datos numéricos , Inhibidores de Proteínas Quinasas/administración & dosificación , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirimidinas/administración & dosificación , Pirimidinas/uso terapéutico , Índice de Severidad de la Enfermedad , Sulfonamidas/administración & dosificación , Sulfonamidas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA