Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Cell Commun Signal ; 22(1): 292, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802843

RESUMEN

BACKGROUND: Hematopoietic stem cell (HSC) regeneration underlies hematopoietic recovery from myelosuppression, which is a life-threatening side effect of cytotoxicity. HSC niche is profoundly disrupted after myelosuppressive injury, while if and how the niche is reshaped and regulates HSC regeneration are poorly understood. METHODS: A mouse model of radiation injury-induced myelosuppression was built by exposing mice to a sublethal dose of ionizing radiation. The dynamic changes in the number, distribution and functionality of HSCs and megakaryocytes were determined by flow cytometry, immunofluorescence, colony assay and bone marrow transplantation, in combination with transcriptomic analysis. The communication between HSCs and megakaryocytes was determined using a coculture system and adoptive transfer. The signaling mechanism was investigated both in vivo and in vitro, and was consolidated using megakaryocyte-specific knockout mice and transgenic mice. RESULTS: Megakaryocytes become a predominant component of HSC niche and localize closer to HSCs after radiation injury. Meanwhile, transient insulin-like growth factor 1 (IGF1) hypersecretion is predominantly provoked in megakaryocytes after radiation injury, whereas HSCs regenerate paralleling megakaryocytic IGF1 hypersecretion. Mechanistically, HSCs are particularly susceptible to megakaryocytic IGF1 hypersecretion, and mTOR downstream of IGF1 signaling not only promotes activation including proliferation and mitochondrial oxidative metabolism of HSCs, but also inhibits ferritinophagy to restrict HSC ferroptosis. Consequently, the delicate coordination between proliferation, mitochondrial oxidative metabolism and ferroptosis ensures functional HSC expansion after radiation injury. Importantly, punctual IGF1 administration simultaneously promotes HSC regeneration and hematopoietic recovery after radiation injury, representing a superior therapeutic approach for myelosuppression. CONCLUSIONS: Our study identifies megakaryocytes as a last line of defense against myelosuppressive injury and megakaryocytic IGF1 as a novel niche signal safeguarding HSC regeneration.


Asunto(s)
Ferroptosis , Células Madre Hematopoyéticas , Factor I del Crecimiento Similar a la Insulina , Megacariocitos , Regeneración , Animales , Células Madre Hematopoyéticas/metabolismo , Megacariocitos/metabolismo , Megacariocitos/efectos de la radiación , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/genética , Ferroptosis/genética , Ratones , Ratones Endogámicos C57BL , Traumatismos por Radiación/metabolismo , Traumatismos por Radiación/patología , Traumatismos por Radiación/genética , Transducción de Señal/efectos de la radiación
2.
Radiat Res ; 196(3): 284-296, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34153091

RESUMEN

Thrombocytopenia is a major complication in hematopoietic-acute radiation syndrome (H-ARS) that increases the risk of mortality from uncontrolled hemorrhage. There is a great demand for new therapies to improve survival and mitigate bleeding in H-ARS. Thrombopoiesis requires interactions between megakaryocytes (MKs) and endothelial cells. 16, 16-dimethyl prostaglandin E2 (dmPGE2), a longer-acting analogue of PGE2, promotes hematopoietic recovery after total-body irradiation (TBI), and various angiotensin-converting enzyme (ACE) inhibitors mitigate endothelial injury after radiation exposure. Here, we tested a combination therapy of dmPGE2 and lisinopril to mitigate thrombocytopenia in murine models of H-ARS following TBI. After 7.75 Gy TBI, dmPGE2 and lisinopril each increased survival relative to vehicle controls. Importantly, combined dmPGE2 and lisinopril therapy enhanced survival greater than either individual agent. Studies performed after 4 Gy TBI revealed reduced numbers of marrow MKs and circulating platelets. In addition, sublethal TBI induced abnormalities both in MK maturation and in in vitro and in vivo platelet function. dmPGE2, alone and in combination with lisinopril, improved recovery of marrow MKs and peripheral platelets. Finally, sublethal TBI transiently reduced the number of marrow Lin-CD45-CD31+Sca-1- sinusoidal endothelial cells, while combined dmPGE2 and lisinopril treatment, but not single-agent treatment, accelerated their recovery. Taken together, these data support the concept that combined dmPGE2 and lisinopril therapy improves thrombocytopenia and survival by promoting recovery of the MK lineage, as well as the MK niche, in the setting of H-ARS.


Asunto(s)
16,16-Dimetilprostaglandina E2/uso terapéutico , Síndrome de Radiación Aguda/tratamiento farmacológico , Inhibidores de la Enzima Convertidora de Angiotensina/uso terapéutico , Plaquetas/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Trastornos Hemorrágicos/tratamiento farmacológico , Lisinopril/uso terapéutico , Megacariocitos/efectos de los fármacos , Trombocitopenia/tratamiento farmacológico , Trombopoyesis/efectos de los fármacos , Síndrome de Radiación Aguda/complicaciones , Animales , Plaquetas/efectos de la radiación , Médula Ósea/efectos de los fármacos , Médula Ósea/efectos de la radiación , Proteína C-Reactiva/análisis , Radioisótopos de Cesio , Evaluación Preclínica de Medicamentos , Células Endoteliales/efectos de la radiación , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/efectos de la radiación , Femenino , Rayos gamma/efectos adversos , Trastornos Hemorrágicos/etiología , Megacariocitos/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Selectina-P/análisis , Agregación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de la radiación , Factor Plaquetario 4/análisis , Traumatismos Experimentales por Radiación/tratamiento farmacológico , Traumatismos Experimentales por Radiación/etiología , Trombocitopenia/etiología , Trombopoyesis/efectos de la radiación , Irradiación Corporal Total , Factor de von Willebrand/análisis
3.
Mol Med Rep ; 23(1)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33179101

RESUMEN

Huangqi, the dried root of Radix Astragali, is an essential herb in Traditional Chinese Medicine and has been used to promote hematopoiesis for centuries. Astragalus polysaccharide (ASPS), the bioactive compound of Huangqi, serves a crucial role in hematopoiesis. The aim of the present study was to investigate the hematopoietic effects, in particular the thrombopoietic effects, and the molecular mechanisms of ASPS using an irradiation­induced myelosuppressive mouse model. Colony­forming unit assays, flow cytometric analysis of apoptosis, ELISAs, Giemsa staining and western blotting were performed to determine the hematopoietic and anti­apoptotic effects of ASPS. The results demonstrated that ASPS enhanced the recovery of red blood cells at day 21 following treatment, as well as platelets and white blood cells at day 14. In addition, ASPS promoted colony formation in all lineages (megakaryocytes, granulocyte monocytes, erythroid cells and fibroblasts). The morphological study of the bone marrow demonstrated that tri­lineage hematopoiesis was preserved in the ASPS­ and thrombopoietin (TPO)­treated groups compared with the control group. The overall cellularity (mean total cell count/area) of the ASPS­treated group was similar to that of the TPO­treated group. Additionally, in vitro experiments indicated that treatment with 100 µg/ml ASPS exhibited the maximum effect on colony formation. ASPS attenuated cell apoptosis in megakaryocytic cells via inhibiting the mitochondrial caspase­3 signaling pathway. In conclusion, ASPS promoted hematopoiesis in irradiated myelosuppressive mice possibly via enhancing hematopoietic stem/progenitor cell proliferation and inhibiting megakaryocytes apoptosis.


Asunto(s)
Medicamentos Herbarios Chinos/química , Megacariocitos/citología , Polisacáridos/administración & dosificación , Traumatismos Experimentales por Radiación/tratamiento farmacológico , Trombocitopenia/prevención & control , Animales , Apoptosis/efectos de los fármacos , Astragalus propinquus , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Hematopoyesis/efectos de los fármacos , Hematopoyesis/efectos de la radiación , Inyecciones Intraperitoneales , Masculino , Megacariocitos/efectos de los fármacos , Megacariocitos/efectos de la radiación , Ratones , Polisacáridos/farmacología , Traumatismos Experimentales por Radiación/complicaciones , Traumatismos Experimentales por Radiación/metabolismo , Trombocitopenia/etiología
4.
Sci Rep ; 7(1): 12184, 2017 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-28939876

RESUMEN

Tumor radiotherapy induces hematopoietic organ damage and reduces thrombocyte counts. Thrombocytopenia is a common disease. Some studies have shown that tRNA synthetase plays not only catalytic tRNA aminoacylation roles, but also functions similarly to cytokines. Recombinant human tyrosyl-tRNA synthetase with a mutated Y341A (rhTyrRS (Y341A)) promotes megakaryocyte migrate from bone marrow to peripheral blood. It would promote megakaryocytes in the lungs adhering to vascular endothelial cells and resulting in the platelet production. The purpose of this research was to investigate the efficacy of rhTyrRS (Y341A) as a therapy for thrombocytopenia and to explore its mechanism of action. We found platelet number was effectively increased by rhTyrRS (Y341A) via platelet count and reticulated platelets (RPs) flow cytometry. We also demonstrated radiation-induced thrombocytopenia could be prevented by rhTyrRS (Y341A). The results of immunohistochemistry and H&E staining showed the number of pulmonary mature megakaryocytes was significantly increased in rhTyrRS (Y341A) treated groups. In transgenic zebrafish larvae, confocal microscopy results showed rhTyrRS (Y341A) promoted the migration and adhesion of megakaryocytes. These results suggested that rhTyrRS (Y341A) promote megakaryocytes in bone marrow migrating to lungs through blood circulation. rhTyrRS (Y341A) may be an effective medicine which could be used to treat patients suffering from thrombocytopenia.


Asunto(s)
Plaquetas/efectos de los fármacos , Trombocitopenia/tratamiento farmacológico , Trombopoyesis/efectos de los fármacos , Tirosina-ARNt Ligasa/administración & dosificación , Animales , Animales Modificados Genéticamente , Plaquetas/efectos de la radiación , Movimiento Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Femenino , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Megacariocitos/efectos de los fármacos , Megacariocitos/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Mutación , Neoplasias/radioterapia , Recuento de Plaquetas , Radioterapia/efectos adversos , Ratas , Ratas Sprague-Dawley , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/genética , Trombocitopenia/etiología , Trombopoyesis/efectos de la radiación , Resultado del Tratamiento , Tirosina-ARNt Ligasa/genética , Pez Cebra
5.
J Radiat Res ; 58(4): 456-463, 2017 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-28402443

RESUMEN

Thrombocytopenia is an important cause of hemorrhage and death after radiation injury, but the pathogenesis of radiation-induced thrombocytopenia has not been fully characterized. Here, we investigated the influence of radiation-induced endothelial cell injury on platelet regeneration. We found that human umbilical vein endothelial cells (HUVECs) underwent a high rate of apoptosis, accompanied by a significant reduction in the expression of vascular endothelial growth factor (VEGF) at 96 h after radiation. Subsequent investigations revealed that radiation injury lowered the ability of HUVECs to attract migrating megakaryocytes (MKs). Moreover, the adhesion of MKs to HUVECs was markedly reduced when HUVECs were exposed to radiation, accompanied by a decreased production of platelets by MKs. In vivo study showed that VEGF treatment significantly promoted the migration of MKs into the vascular niche and accelerated platelet recovery in irradiated mice. Our studies demonstrate that endothelial cell injury contributes to the slow recovery of platelets after radiation, which provides a deeper insight into the pathogenesis of thrombocytopenia induced by radiation.


Asunto(s)
Plaquetas/efectos de la radiación , Células Endoteliales de la Vena Umbilical Humana/efectos de la radiación , Megacariocitos/efectos de la radiación , Regeneración/efectos de la radiación , Animales , Apoptosis/efectos de la radiación , Adhesión Celular/efectos de la radiación , Movimiento Celular/efectos de la radiación , Forma de la Célula/efectos de la radiación , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Masculino , Ratones Endogámicos BALB C , Trombocitopenia/patología , Factor A de Crecimiento Endotelial Vascular/administración & dosificación , Factor A de Crecimiento Endotelial Vascular/metabolismo , Rayos X
6.
Sci Rep ; 6: 38238, 2016 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-27901126

RESUMEN

Immune thrombocytopenia (ITP) is an immune-mediated acquired bleeding disorder characterized by abnormally low platelet counts. We reported here the ability of low-level light treatment (LLLT) to alleviate ITP in mice. The treatment is based on noninvasive whole body illumination 30 min a day for a few consecutive days by near infrared light (830 nm) transmitted by an array of light-emitting diodes (LEDs). LLLT significantly lifted the nadir of platelet counts and restored tail bleeding time when applied to two passive ITP models induced by anti-CD41 antibody. The anti-platelet antibody hindered megakaryocyte differentiation from the progenitors, impaired proplatelet and platelet formation, and induced apoptosis of platelets. These adverse effects of anti-CD41 antibody were all mitigated by LLLT to varying degrees, owing to its ability to enhance mitochondrial biogenesis and activity in megakaryocytes and preserve mitochondrial functions in platelets in the presence of the antibody. The observations argue not only for contribution of mitochondrial stress to the pathology of ITP, but also clinical potentials of LLLT as a safe, simple, and cost-effective modality of ITP.


Asunto(s)
Diferenciación Celular/efectos de la radiación , Terapia por Luz de Baja Intensidad/métodos , Megacariocitos/efectos de la radiación , Trombocitopenia/radioterapia , Animales , Apoptosis/inmunología , Apoptosis/efectos de la radiación , Diferenciación Celular/inmunología , Megacariocitos/citología , Megacariocitos/inmunología , Ratones Endogámicos C57BL , Recuento de Plaquetas , Trombocitopenia/inmunología , Trombopoyesis/inmunología , Trombopoyesis/efectos de la radiación
7.
Sci Transl Med ; 8(349): 349ra101, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27464749

RESUMEN

Thrombocytopenia is a common hematologic disorder that is managed primarily by platelet transfusions. We report here that noninvasive whole-body illumination with a special near-infrared laser cures acute thrombocytopenia triggered by γ-irradiation within 2 weeks in mice, as opposed to a 5-week recovery time required in controls. The low-level laser (LLL) also greatly accelerated platelet regeneration in the presence of anti-CD41 antibody that binds and depletes platelets, and prevented a severe drop in platelet count caused by a common chemotherapeutic drug. Mechanistically, LLL stimulated mitochondrial biogenesis specifically in megakaryocytes owing to polyploidy of the cells. LLL also protected megakaryocytes from mitochondrial injury and apoptosis under stress. The multifaceted effects of LLL on mitochondria bolstered megakaryocyte maturation; facilitated elongation, branching, and formation of proplatelets; and doubled the number of platelets generated from individual megakaryocytes in mice. LLL-mediated platelet biogenesis depended on megakaryopoiesis and was inversely correlated with platelet counts, which kept platelet biogenesis in check and effectively averted thrombosis even after repeated uses, in sharp contrast to all current agents that stimulate the differentiation of megakaryocyte progenitors from hematopoietic stem cells independently of platelet counts. This safe, drug-free, donor-independent modality represents a paradigm shift in the prophylaxis and treatment of thrombocytopenia.


Asunto(s)
Terapia por Luz de Baja Intensidad/métodos , Trombocitopenia/terapia , Animales , Antígenos CD34/metabolismo , Plaquetas/efectos de la radiación , Células Cultivadas , Citometría de Flujo , Humanos , Megacariocitos/metabolismo , Megacariocitos/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Trombopoyesis/efectos de la radiación
8.
J Hematol Oncol ; 9: 13, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26912146

RESUMEN

BACKGROUND: Our previous pilot studies aimed to examine the role of hydrogen sulfide (H2S) in the generation of endothelial progenitor cells led to an unexpected result, i.e., H2S promoted the differentiation of certain hematopoietic stem/progenitor cells in the bone marrow. This gave rise to an idea that H2S might promote hematopoiesis. METHODS: To test this idea, a mice model of myelosuppression and cultured fetal liver cells were used to examine the role of H2S in hematopoiesis. RESULTS: H2S promoted the generation of megakaryocytes, increased platelet levels, ameliorate entorrhagia, and improved survival. These H2S effects were blocked in both in vivo and in vitro models with thrombopoietin (TPO) receptor knockout mice (c-mpl(-/-) mice). In contrast, H2S promoted megakaryocytes/platelets generation in both in vivo and in vitro models with TPO knockout mice (TPO(-/-) mice). CONCLUSIONS: H2S is a novel promoter for megakaryopoiesis by acting on the TPO receptors but not TPO to generate megakaryocytes/platelets.


Asunto(s)
Plaquetas/efectos de los fármacos , Hematopoyesis/efectos de los fármacos , Sulfuro de Hidrógeno/farmacología , Megacariocitos/efectos de los fármacos , Animales , Plaquetas/metabolismo , Plaquetas/efectos de la radiación , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Diferenciación Celular/efectos de la radiación , Células Cultivadas , Relación Dosis-Respuesta a Droga , Feto/citología , Hematopoyesis/genética , Hematopoyesis/efectos de la radiación , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/efectos de la radiación , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Megacariocitos/metabolismo , Megacariocitos/efectos de la radiación , Ratones Endogámicos C57BL , Ratones Noqueados , Microscopía Confocal , Microscopía Electrónica de Rastreo , Receptores de Trombopoyetina/genética , Receptores de Trombopoyetina/metabolismo , Sulfuros/farmacología , Análisis de Supervivencia , Trombopoyetina/genética , Trombopoyetina/metabolismo , Trombopoyetina/farmacología
9.
J Thromb Haemost ; 13(10): 1888-99, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26256688

RESUMEN

BACKGROUND: Megakaryocytes express and store platelet factor 4 (PF4) in alpha granules. In vivo, PF4 is a clinically relevant, negative regulator of megakaryopoiesis and hematopoietic stem cell replication. These findings would suggest a regulated source of free intramedullary PF4. OBJECTIVES: Define the source of free intramedullary PF4 and its intramedullary life cycle. METHODS: We interrogated both murine and human bone marrow-derived cells during megakaryopoiesis in vitro by using confocal microscopy and enzyme-linked immunosorbent assay. With immunohistochemistry, we examined in vivo free PF4 in murine bone marrow before and after radiation injury and in the setting of megakaryocytopenia and thrombocytopenia. RESULTS: Exogenously added human PF4 is internalized by murine megakaryocytes. Human megakaryocytes similarly take up murine PF4 but not the related chemokine, platelet basic protein. Confocal microscopy shows that internalized PF4 colocalizes with endogenous PF4 in alpha granules and is available for release on thrombin stimulation. Immunohistochemistry shows free PF4 in the marrow, but not another alphagranule protein, von Willebrand factor. Free PF4 increases with radiation injury and decreases with megakaryocytopenia. Consistent with the known role of low-density lipoprotein receptor-related protein 1 in the negative paracrine effect of PF4 on megakaryopoiesis, PF4 internalization is at least partially low-density lipoprotein receptor-related protein 1 dependent. CONCLUSIONS: PF4 has a complex intramedullary life cycle with important implications in megakaryopoiesis and hematopoietic stem cell replication not seen with other tested alpha granule proteins.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Megacariocitos/metabolismo , Factor Plaquetario 4/metabolismo , Trombocitopenia/metabolismo , Trombopoyesis , Animales , Transporte Biológico , Células Cultivadas , Gránulos Citoplasmáticos/efectos de la radiación , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Inmunohistoquímica , Proteína 1 Relacionada con Receptor de Lipoproteína de Baja Densidad , Megacariocitos/efectos de la radiación , Ratones Noqueados , Microscopía Confocal , Factor Plaquetario 4/deficiencia , Factor Plaquetario 4/genética , Interferencia de ARN , Receptores de LDL/genética , Receptores de LDL/metabolismo , Trombocitopenia/sangre , Trombocitopenia/genética , Factores de Tiempo , Transfección , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo
10.
Elife ; 4: e05521, 2015 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-25821987

RESUMEN

Hematopoietic stem cells (HSCs) are maintained by a perivascular niche in bone marrow but it is unclear whether the niche is reciprocally regulated by HSCs. Here, we systematically assessed the expression and function of Angiopoietin-1 (Angpt1) in bone marrow. Angpt1 was not expressed by osteoblasts. Angpt1 was most highly expressed by HSCs, and at lower levels by c-kit(+) hematopoietic progenitors, megakaryocytes, and Leptin Receptor(+) (LepR(+)) stromal cells. Global conditional deletion of Angpt1, or deletion from osteoblasts, LepR+ cells, Nes-cre-expressing cells, megakaryocytes, endothelial cells or hematopoietic cells in normal mice did not affect hematopoiesis, HSC maintenance, or HSC quiescence. Deletion of Angpt1 from hematopoietic cells and LepR(+) cells had little effect on vasculature or HSC frequency under steady-state conditions but accelerated vascular and hematopoietic recovery after irradiation while increasing vascular leakiness. Hematopoietic stem/progenitor cells and LepR(+) stromal cells regulate niche regeneration by secreting Angpt1, reducing vascular leakiness but slowing niche recovery.


Asunto(s)
Angiopoyetina 1/metabolismo , Células de la Médula Ósea/metabolismo , Células Madre Hematopoyéticas/metabolismo , Regeneración/genética , Nicho de Células Madre/genética , Angiopoyetina 1/genética , Animales , Vasos Sanguíneos/citología , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/efectos de la radiación , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de la radiación , Permeabilidad Capilar/efectos de la radiación , Femenino , Rayos gamma , Regulación de la Expresión Génica , Hematopoyesis/genética , Hematopoyesis/efectos de la radiación , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de la radiación , Integrasas/genética , Integrasas/metabolismo , Masculino , Megacariocitos/citología , Megacariocitos/metabolismo , Megacariocitos/efectos de la radiación , Ratones , Ratones Transgénicos , Nestina/genética , Nestina/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Osteoblastos/efectos de la radiación , Proteínas Proto-Oncogénicas c-kit/genética , Proteínas Proto-Oncogénicas c-kit/metabolismo , Receptores de Leptina/genética , Receptores de Leptina/metabolismo , Regeneración/efectos de la radiación , Transducción de Señal , Nicho de Células Madre/efectos de la radiación , Células del Estroma/citología , Células del Estroma/metabolismo , Células del Estroma/efectos de la radiación
11.
Arch Pharm Res ; 38(6): 1213-22, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25234002

RESUMEN

Herein, we aimed at examining the therapeutic effects of 5-androstenediol (5-AED), a natural hormone produced in the adrenal cortex, on radiation-induced myelosuppression in C3H/HeN mice. The mice were subjected to whole-body irradiation with a sublethal dose of 5 Gy gamma-irradiation to induce severe myelosuppression, and 5-AED (50 mg/kg) was administered subcutaneously. 5-AED was administrated 1 day before irradiation (pre-treatment) or twice weekly for 3 weeks starting from 1 h after irradiation (post-treatment). Treatment with 5-AED significantly ameliorated the decrease in the peripheral blood neutrophil and platelet populations in irradiated myelosuppressive mice, but had no effect on the lymphocyte population. It also ameliorated hypocellularity and disruption of bone marrow induced by irradiation and led to rapid recovery of myeloid cells. Further, it attenuated the decrease in spleen weight and megakaryocyte and myeloid cell populations in the spleen and promoted multilineage hematopoietic recovery. We found that a single injection of 5-AED produced only a temporary therapeutic effect, while sequential injection of 5-AED after irradiation had a more pronounced and prolonged therapeutic effect and reduced myelosuppression by irradiation. Thus, sequential injection of 5-AED after irradiation has therapeutic potential for radiation-induced myelosuppression when administered continuously and can be a significant therapeutic candidate for the management of acute radiation syndrome, particularly in a mass casualty scenario where rapid and economic intervention is important.


Asunto(s)
Androstenodiol/farmacología , Desarrollo Óseo/efectos de los fármacos , Desarrollo Óseo/efectos de la radiación , Protectores contra Radiación/farmacología , Animales , Recuento de Células Sanguíneas , Plaquetas/efectos de los fármacos , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/efectos de la radiación , Fémur/efectos de los fármacos , Fémur/patología , Fémur/efectos de la radiación , Rayos gamma , Inyecciones Subcutáneas , Masculino , Megacariocitos/efectos de los fármacos , Megacariocitos/efectos de la radiación , Ratones , Ratones Endogámicos C3H , Células Mieloides/efectos de los fármacos , Células Mieloides/efectos de la radiación , Neutrófilos/efectos de los fármacos , Traumatismos Experimentales por Radiación/tratamiento farmacológico , Bazo/citología , Bazo/efectos de los fármacos , Bazo/efectos de la radiación
12.
Platelets ; 26(5): 459-66, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25025394

RESUMEN

Myelodysplastic syndromes (MDS) are hallmarked by cytopenia and dysplasia of hematopoietic cells, often accompanied by mitochondrial dysfunction and increases of reactive oxygen species (ROS) within affected cells. However, it is not known whether the increase in ROS production is an instigator or a byproduct of the disease. The present investigation shows that mice lacking immediate early responsive gene X-1 (IEX-1) exhibit lineage specific increases in ROS production and abnormal cytology upon radiation in blood cell types commonly identified in MDS. These affected cell lineages chiefly have the bone marrow as a primary site of differentiation and maturation, while cells with extramedullary differentiation and maturation like B- and T-cells remain unaffected. Increased ROS production is likely to contribute significantly to irradiation-induced thrombocytopenia in the absence of IEX-1 as demonstrated by effective reversal of the disorder after mitoquinone (MitoQ) treatment, a mitochondria-specific antioxidant. MitoQ reduced intracellular ROS production within megakaryocytes and platelets. It also normalized mitochondrial membrane potential and superoxide production in platelets in irradiated, IEX-1 deficient mice. The lineage-specific effects of mitochondrial ROS may help us understand the etiology of thrombocytopenia in association with MDS in a subgroup of the patients.


Asunto(s)
Compuestos Organofosforados/farmacología , Trombocitopenia/sangre , Trombocitopenia/etiología , Trombopoyesis/efectos de los fármacos , Trombopoyesis/efectos de la radiación , Ubiquinona/análogos & derivados , Animales , Antioxidantes/metabolismo , Plaquetas/metabolismo , Médula Ósea/metabolismo , Linaje de la Célula/genética , Modelos Animales de Enfermedad , Proteínas Inmediatas-Precoces/genética , Proteínas Inmediatas-Precoces/metabolismo , Megacariocitos/efectos de los fármacos , Megacariocitos/metabolismo , Megacariocitos/efectos de la radiación , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo , Trombocitopenia/tratamiento farmacológico , Ubiquinona/farmacología , Irradiación Corporal Total
13.
Cell Mol Biol Lett ; 19(4): 590-600, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25338769

RESUMEN

Reactive oxygen species (ROS) have been proven to be important activators for various cellular activities, including cell differentiation. Several reports showed the necessity of ROS during cell differentiation of the megakaryocytic (MK) lineage. In this study, we employed near ultraviolet (near-UV) irradiation to generate endogenous oxidative stress in an MK differentiation process of K562 cells with phorbol 12-myristate 13-acetate (PMA) induction. A significant increase in the intracellular ROS level was detected on day 1 after near-UV irradiation. In the initial stage of differentiation, a shifted fraction of G1 and G2 phase cells was obtained using near-UV irradiation, giving an increased percentage of G2 phase cells (up from 31.1 to 68.7%). The near-UV irradiation-induced upregulation of the p21 gene, which is a cell cycle inhibitor, suggested that the G2 phase cells were prevented from undergoing cell division. It was found that the percentage of high ploidy (8N and 16N) cells was enhanced significantly at the later stage of the K562 cell culture with near-UV irradiation. Moreover, time-lapse analysis showed that near-UV irradiation encouraged the expression of CD41, a specific surface marker of megakaryocytes. This is the first report that the elevated oxidative stress through the near-UV irradiation promoted the MK differentiation of PMA-induced K562 cells.


Asunto(s)
Diferenciación Celular/efectos de la radiación , Megacariocitos/fisiología , Estrés Oxidativo , Rayos Ultravioleta , Ciclo Celular , Humanos , Células K562 , Megacariocitos/efectos de la radiación , Especies Reactivas de Oxígeno/metabolismo
14.
Blood ; 124(2): 277-86, 2014 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-24735964

RESUMEN

Megakaryocyte (MK) development in the bone marrow progresses spatially from the endosteal niche, which promotes MK progenitor proliferation, to the sinusoidal vascular niche, the site of terminal maturation and thrombopoiesis. The chemokine stromal cell-derived factor-1 (SDF-1), signaling through CXCR4, is implicated in the maturational chemotaxis of MKs toward sinusoidal vessels. Here, we demonstrate that both IV administration of SDF-1 and stabilization of endogenous SDF-1 acutely increase MK-vasculature association and thrombopoiesis with no change in MK number. In the setting of radiation injury, we find dynamic fluctuations in marrow SDF-1 distribution that spatially and temporally correlate with variations in MK niche occupancy. Stabilization of altered SDF-1 gradients directly affects MK location. Importantly, these SDF-1-mediated changes have functional consequences for platelet production, as the movement of MKs away from the vasculature decreases circulating platelets, while MK association with the vasculature increases circulating platelets. Finally, we demonstrate that manipulation of SDF-1 gradients can improve radiation-induced thrombocytopenia in a manner additive with earlier TPO treatment. Taken together, our data support the concept that SDF-1 regulates the spatial distribution of MKs in the marrow and consequently circulating platelet numbers. This knowledge of the microenvironmental regulation of the MK lineage could lead to improved therapeutic strategies for thrombocytopenia.


Asunto(s)
Movimiento Celular , Quimiocina CXCL12/fisiología , Megacariocitos/citología , Megacariocitos/fisiología , Traumatismos Experimentales por Radiación , Nicho de Células Madre/genética , Trombopoyesis/genética , Animales , Células de la Médula Ósea/citología , Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/fisiología , Células de la Médula Ósea/efectos de la radiación , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Diferenciación Celular/efectos de la radiación , Movimiento Celular/efectos de los fármacos , Movimiento Celular/genética , Movimiento Celular/efectos de la radiación , Células Cultivadas , Quimiocina CXCL12/administración & dosificación , Femenino , Células Progenitoras de Megacariocitos/citología , Células Progenitoras de Megacariocitos/efectos de los fármacos , Células Progenitoras de Megacariocitos/fisiología , Células Progenitoras de Megacariocitos/efectos de la radiación , Megacariocitos/efectos de los fármacos , Megacariocitos/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Traumatismos Experimentales por Radiación/genética , Traumatismos Experimentales por Radiación/patología , Receptores CXCR4/administración & dosificación , Receptores CXCR4/metabolismo , Nicho de Células Madre/efectos de los fármacos , Nicho de Células Madre/efectos de la radiación , Trombopoyesis/efectos de los fármacos , Trombopoyesis/efectos de la radiación
15.
Mol Med Rep ; 9(5): 1629-33, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24626603

RESUMEN

The objective of the present study was to investigate the role of the steroid receptor coactivator-3 (SRC-3) in hematopoiesis of mouse bone marrow (BM) following total body irradiation (TBI). SRC-3-/­ mice and wild-type (WT) mice were exposed to 4.5 Gy γ rays. Immunoblotting analysis revealed that the SRC-3 protein (p160) levels in normal BM-nucleated cells in WT were higher than in SRC-3-/­ mice. Furthermore, peripheral blood cell counts, BM cellularity and colony-forming unit (CFU) assays were performed following irradiation. The results showed that peripheral blood cells were significantly lower in number and recovered less rapidly in irradiated SRC-3-/­ mice as compared with control animals. BM-nucleated cell and CFU counts were significantly decreased in SRC-3-/­ mice on the 7th and 14th day. Of note, the recovery of platelet (PLT) and megakaryocytic lineage were more depressed than the granulocytic and erythroid lineage in SRC-3-/­ mice. In conclusion, the present study demonstrated that the hematopoietic ability in SRC-3 knockout mice is severely impaired following a sublethal dose of irradiation.


Asunto(s)
Hematopoyesis/genética , Hematopoyesis/efectos de la radiación , Coactivador 3 de Receptor Nuclear/genética , Trombopoyesis/genética , Trombopoyesis/efectos de la radiación , Irradiación Corporal Total , Animales , Células Sanguíneas/efectos de los fármacos , Células Sanguíneas/metabolismo , Células Sanguíneas/patología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/efectos de la radiación , Ensayo de Unidades Formadoras de Colonias , Femenino , Megacariocitos/metabolismo , Megacariocitos/efectos de la radiación , Ratones , Ratones Noqueados , Coactivador 3 de Receptor Nuclear/deficiencia
16.
J Clin Invest ; 124(2): 730-41, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24463449

RESUMEN

A nuclear disaster may result in exposure to potentially lethal doses of ionizing radiation (IR). Hematopoietic acute radiation syndrome (H-ARS) is characterized by severe myelosuppression, which increases the risk of infection, bleeding, and mortality. Here, we determined that activation of nuclear factor erythroid-2-related factor 2 (NRF2) signaling enhances hematopoietic stem progenitor cell (HSPC) function and mitigates IR-induced myelosuppression and mortality. Augmenting NRF2 signaling in mice, either by genetic deletion of the NRF2 inhibitor Keap1 or by pharmacological NRF2 activation with 2-trifluoromethyl-2'-methoxychalone (TMC), enhanced hematopoietic reconstitution following bone marrow transplantation (BMT). Strikingly, even 24 hours after lethal IR exposure, oral administration of TMC mitigated myelosuppression and mortality in mice. Furthermore, TMC administration to irradiated transgenic Notch reporter mice revealed activation of Notch signaling in HSPCs and enhanced HSPC expansion by increasing Jagged1 expression in BM stromal cells. Administration of a Notch inhibitor ablated the effects of TMC on hematopoietic reconstitution. Taken together, we identified a mechanism by which NRF2-mediated Notch signaling improves HSPC function and myelosuppression following IR exposure. Our data indicate that targeting this pathway may provide a countermeasure against the damaging effects of IR exposure.


Asunto(s)
Hematopoyesis/efectos de la radiación , Células Madre Hematopoyéticas/efectos de la radiación , Factor 2 Relacionado con NF-E2/metabolismo , Receptores Notch/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Células de la Médula Ósea/citología , Trasplante de Médula Ósea , Linaje de la Célula , Chalconas/química , Proteínas del Citoesqueleto/genética , Granulocitos/efectos de la radiación , Proteína 1 Asociada A ECH Tipo Kelch , Linfocitos/efectos de la radiación , Megacariocitos/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Monocitos/efectos de la radiación , Especies Reactivas de Oxígeno , Transducción de Señal
17.
Vopr Onkol ; 59(4): 498, 500-4, 2013.
Artículo en Ruso | MEDLINE | ID: mdl-24032227

RESUMEN

We studied the effect of dicarbamine and leucostim on myelopoiesis in experimental post-radiation bone marrow syndrome. Dicarbamine in different modes of administration and doses provided a high level of protection of proliferating hematopoietic precursors in the early period after radiation, which was reflected in a statistically significant decrease in the depth and duration of post-radiation deficit of cells, such as of granulocytes, lymphocytes, megakaryocytes and erythroid cells. The greatest effect of the drug appeared at a dose of 4 mg/kg (prophylactic administration) and a dose of 15 mg/kg (curative double dose). In the bone marrow of experimental animals leucostim prevented development of post-radiation deficit of granulocytes and lymphocytes to a lesser extent, than dicarbamine, and it was effective for erythroid cells and megakaryocytes.


Asunto(s)
Células de la Médula Ósea/efectos de los fármacos , Células de la Médula Ósea/efectos de la radiación , Caproatos/farmacología , Factor Estimulante de Colonias de Granulocitos/farmacología , Células Madre Hematopoyéticas/efectos de los fármacos , Imidazoles/farmacología , Protectores contra Radiación/farmacología , Animales , Médula Ósea/efectos de los fármacos , Médula Ósea/efectos de la radiación , Caproatos/administración & dosificación , Relación Dosis-Respuesta a Droga , Factor Estimulante de Colonias de Granulocitos/administración & dosificación , Granulocitos/efectos de los fármacos , Granulocitos/efectos de la radiación , Células Madre Hematopoyéticas/efectos de la radiación , Imidazoles/administración & dosificación , Masculino , Megacariocitos/efectos de los fármacos , Megacariocitos/efectos de la radiación , Conejos , Protectores contra Radiación/administración & dosificación , Síndrome , Factores de Tiempo
18.
Blood ; 121(26): 5238-49, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23667055

RESUMEN

Successful hematopoietic stem cell (HSC) transplantation requires donor HSC engraftment within specialized bone marrow microenvironments known as HSC niches. We have previously reported a profound remodeling of the endosteal osteoblastic HSC niche after total body irradiation (TBI), defined as relocalization of surviving megakaryocytes to the niche site and marked expansion of endosteal osteoblasts. We now demonstrate that host megakaryocytes function critically in expansion of the endosteal niche after preparative radioablation and in the engraftment of donor HSC. We show that TBI-induced migration of megakaryocytes to the endosteal niche depends on thrombopoietin signaling through the c-MPL receptor on megakaryocytes, as well as CD41 integrin-mediated adhesion. Moreover, niche osteoblast proliferation post-TBI required megakaryocyte-secreted platelet-derived growth factor-BB. Furthermore, blockade of c-MPL-dependent megakaryocyte migration and function after TBI resulted in a significant decrease in donor HSC engraftment in primary and competitive secondary transplantation assays. Finally, we administered thrombopoietin to mice beginning 5 days before marrow radioablation and ending 24 hours before transplant to enhance megakaryocyte function post-TBI, and found that this strategy significantly enhanced donor HSC engraftment, providing a rationale for improving hematopoietic recovery and perhaps overall outcome after clinical HSC transplantation.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/citología , Megacariocitos/citología , Osteoblastos/citología , Receptores de Trombopoyetina/fisiología , Nicho de Células Madre/fisiología , Irradiación Corporal Total , Animales , Becaplermina , Movimiento Celular/fisiología , Movimiento Celular/efectos de la radiación , Proliferación Celular , Endotelio Vascular , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Supervivencia de Injerto , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/efectos de la radiación , Megacariocitos/metabolismo , Megacariocitos/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Osteoblastos/metabolismo , Osteoblastos/efectos de la radiación , Proteínas Proto-Oncogénicas c-sis/metabolismo , Transducción de Señal , Trombopoyetina/metabolismo
19.
J Radiat Res ; 54(3): 447-52, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23297317

RESUMEN

Megakaryocytes are generated by the differentiation of megakaryocytic progenitors; however, little information has been reported regarding how ionizing radiation affects the differentiation pathway and cellular responses. Human leukemia K562 cells have been used as a model to study megakaryocytic differentiation. In the present study, to investigate the effects of radiation on phorbol 12-myristate 13-acetate (PMA)-induced megakaryocytic differentiation of K562 cells, the cellular processes responsible for the expression of CD41 antigen (GPIIb/IIIa), which is reported to be expressed early in megakaryocyte maturation, were analyzed. The expression of CD41 antigens was significantly increased 72 h after treatment with both 4 Gy X-irradiation and PMA. In this fraction, two populations, CD41(low) and CD41(high) cells, were detected by flow cytometry. The CD41(high) cells sustained intracellular ROS at the initial level for up to 72 h, but CD41(low) cells had reduced ROS by 48 h. The maximum suppressive effect on CD41 expression was observed when N-acetyl cysteine, which is known to act as a ROS scavenger, was administered 48 h after PMA stimulation. When K562 cells were pretreated with mitogen-activated protein kinase (MAPK) pathway inhibitors, an ERK1/2 inhibitor and a p38 MAPK inhibitor, followed by X-irradiation and PMA stimulation, the reactivity profiles of both inhibitors showed the involvement of MAPK pathway. There is a possibility that the K562 cell population contains at least two types of radiosensitive megakaryocytic progenitors with respect to ROS production mechanisms, and intracellular ROS levels determine the extent of CD41 expression.


Asunto(s)
Diferenciación Celular/efectos de la radiación , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de la radiación , Megacariocitos/metabolismo , Megacariocitos/patología , Especies Reactivas de Oxígeno/metabolismo , Acetato de Tetradecanoilforbol/administración & dosificación , Diferenciación Celular/efectos de los fármacos , Humanos , Células K562 , Megacariocitos/efectos de la radiación , Dosis de Radiación
20.
J Radiat Res ; 54(3): 438-46, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23263730

RESUMEN

Differentiation-induction therapy is an attractive approach in leukemia treatment. It has been suggested that the accumulation of intracellular reactive oxygen species (ROS) is involved in megakaryocytic differentiation induced by phorbol 12-myristate 13-acetate (PMA) in the K562 leukemia cell line. Therefore, a ROS-inducible technique could be a powerful method of differentiation induction. Accordingly, we hypothesized that ionizing radiation contributes to the acceleration of megakaryocytic differentiation through the accumulation of intracellular ROS in leukemia cells. In the present study, ionizing radiation was shown to promote PMA-induced megakaryocytic differentiation. Cells with high CD41 expression sustained intracellular ROS levels effectively. The enhancement of differentiation by ionizing radiation was found to be regulated through the mitogen-activated protein kinase (MAPK) pathway, involving both extracellular signal-regulated protein kinase 1/2 (ERK1/2) and p38 MAPK. Ionizing radiation also controlled mRNA expression of the oxidative stress response gene heme oxygenase-1 (HO1). Consequently, we concluded that intracellular ROS, increased by ionizing radiation, modulate megakaryocytic differentiation downstream of the MAPK pathway.


Asunto(s)
Diferenciación Celular/efectos de la radiación , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/efectos de la radiación , Megacariocitos/metabolismo , Megacariocitos/patología , Especies Reactivas de Oxígeno/metabolismo , Acetato de Tetradecanoilforbol/administración & dosificación , Diferenciación Celular/efectos de los fármacos , Humanos , Células K562 , Megacariocitos/efectos de la radiación , Dosis de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...