Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 40.394
1.
Sci Immunol ; 9(95): eadi4191, 2024 May 10.
Article En | MEDLINE | ID: mdl-38728412

Conventional dendritic cells (DCs) are essential mediators of antitumor immunity. As a result, cancers have developed poorly understood mechanisms to render DCs dysfunctional within the tumor microenvironment (TME). After identification of CD63 as a specific surface marker, we demonstrate that mature regulatory DCs (mregDCs) migrate to tumor-draining lymph node tissues and suppress DC antigen cross-presentation in trans while promoting T helper 2 and regulatory T cell differentiation. Transcriptional and metabolic studies showed that mregDC functionality is dependent on the mevalonate biosynthetic pathway and its master transcription factor, SREBP2. We found that melanoma-derived lactate activates SREBP2 in tumor DCs and drives conventional DC transformation into mregDCs via homeostatic or tolerogenic maturation. DC-specific genetic silencing and pharmacologic inhibition of SREBP2 promoted antitumor CD8+ T cell activation and suppressed melanoma progression. CD63+ mregDCs were found to reside within the lymph nodes of several preclinical tumor models and in the sentinel lymph nodes of patients with melanoma. Collectively, this work suggests that a tumor lactate-stimulated SREBP2-dependent program promotes CD63+ mregDC development and function while serving as a promising therapeutic target for overcoming immune tolerance in the TME.


Dendritic Cells , Lactic Acid , Mice, Inbred C57BL , Signal Transduction , Sterol Regulatory Element Binding Protein 2 , Dendritic Cells/immunology , Animals , Mice , Humans , Sterol Regulatory Element Binding Protein 2/immunology , Lactic Acid/metabolism , Signal Transduction/immunology , Melanoma/immunology , Melanoma/pathology , Disease Progression , Immune Tolerance/immunology , Female , Cell Line, Tumor , Tumor Microenvironment/immunology , Melanoma, Experimental/immunology , Melanoma, Experimental/pathology
2.
Mol Biomed ; 5(1): 17, 2024 May 10.
Article En | MEDLINE | ID: mdl-38724687

Uveal cancer (UM) offers a complex molecular landscape characterized by substantial heterogeneity, both on the genetic and epigenetic levels. This heterogeneity plays a critical position in shaping the behavior and response to therapy for this uncommon ocular malignancy. Targeted treatments with gene-specific therapeutic molecules may prove useful in overcoming radiation resistance, however, the diverse molecular makeups of UM call for a patient-specific approach in therapy procedures. We need to understand the intricate molecular landscape of UM to develop targeted treatments customized to each patient's specific genetic mutations. One of the promising approaches is using liquid biopsies, such as circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA), for detecting and monitoring the disease at the early stages. These non-invasive methods can help us identify the most effective treatment strategies for each patient. Single-cellular is a brand-new analysis platform that gives treasured insights into diagnosis, prognosis, and remedy. The incorporation of this data with known clinical and genomics information will give a better understanding of the complicated molecular mechanisms that UM diseases exploit. In this review, we focused on the heterogeneity and molecular panorama of UM, and to achieve this goal, the authors conducted an exhaustive literature evaluation spanning 1998 to 2023, using keywords like "uveal melanoma, "heterogeneity". "Targeted therapies"," "CTCs," and "single-cellular analysis".


Genetic Heterogeneity , Melanoma , Molecular Targeted Therapy , Uveal Neoplasms , Humans , Melanoma/genetics , Melanoma/pathology , Melanoma/therapy , Melanoma/drug therapy , Molecular Targeted Therapy/methods , Uveal Neoplasms/genetics , Uveal Neoplasms/therapy , Uveal Neoplasms/pathology , Neoplastic Cells, Circulating/metabolism , Neoplastic Cells, Circulating/pathology , Biomarkers, Tumor/genetics , Mutation , Circulating Tumor DNA/genetics , Circulating Tumor DNA/blood , Liquid Biopsy/methods
3.
Cells ; 13(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38727313

CD133, a cancer stem cell (CSC) marker in tumors, including melanoma, is associated with tumor recurrence, chemoresistance, and metastasis. Patient-derived melanoma cell lines were transduced with a Tet-on vector expressing CD133, generating doxycycline (Dox)-inducible cell lines. Cells were exposed to Dox for 24 h to induce CD133 expression, followed by RNA-seq and bioinformatic analyses, revealing genes and pathways that are significantly up- or downregulated by CD133. The most significantly upregulated gene after CD133 was amphiregulin (AREG), validated by qRT-PCR and immunoblot analyses. Induced CD133 expression significantly increased cell growth, percentage of cells in S-phase, BrdU incorporation into nascent DNA, and PCNA levels, indicating that CD133 stimulates cell proliferation. CD133 induction also activated EGFR and the MAPK pathway. Potential mechanisms highlighting the role(s) of CD133 and AREG in melanoma CSC were further delineated using AREG/EGFR inhibitors or siRNA knockdown of AREG mRNA. Treatment with the EGFR inhibitor gefitinib blocked CD133-induced cell growth increase and MAPK pathway activation. Importantly, siRNA knockdown of AREG reversed the stimulatory effects of CD133 on cell growth, indicating that AREG mediates the effects of CD133 on cell proliferation, thus serving as an attractive target for novel combinatorial therapeutics in melanoma and cancers with overexpression of both CD133 and AREG.


AC133 Antigen , Amphiregulin , Cell Proliferation , Melanoma , Up-Regulation , Amphiregulin/metabolism , Amphiregulin/genetics , Humans , AC133 Antigen/metabolism , AC133 Antigen/genetics , Melanoma/pathology , Melanoma/metabolism , Melanoma/genetics , Cell Proliferation/drug effects , Cell Line, Tumor , Up-Regulation/genetics , Up-Regulation/drug effects , Gene Expression Regulation, Neoplastic , ErbB Receptors/metabolism
4.
Int J Mol Sci ; 25(9)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38732030

Melanoma, the deadliest type of skin cancer, has a high propensity to metastasize to other organs, including the brain, lymph nodes, lungs, and bones. While progress has been made in managing melanoma with targeted and immune therapies, many patients do not benefit from these current treatment modalities. Tumor cell migration is the initial step for invasion and metastasis. A better understanding of the molecular mechanisms underlying metastasis is crucial for developing therapeutic strategies for metastatic diseases, including melanoma. The cell adhesion molecule L1CAM (CD171, in short L1) is upregulated in many human cancers, enhancing tumor cell migration. Earlier studies showed that the small-molecule antagonistic mimetics of L1 suppress glioblastoma cell migration in vitro. This study aims to evaluate if L1 mimetic antagonists can inhibit melanoma cell migration in vitro and in vivo. We showed that two antagonistic mimetics of L1, anagrelide and 2-hydroxy-5-fluoropyrimidine (2H5F), reduced melanoma cell migration in vitro. In in vivo allograft studies, only 2H5F-treated female mice showed a decrease in tumor volume.


Cell Movement , Melanoma , Neural Cell Adhesion Molecule L1 , Cell Movement/drug effects , Animals , Humans , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Mice , Neural Cell Adhesion Molecule L1/metabolism , Cell Line, Tumor , Female , Xenograft Model Antitumor Assays , Skin Neoplasms/pathology , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism , Pyrimidines/pharmacology
5.
Skin Res Technol ; 30(5): e13607, 2024 May.
Article En | MEDLINE | ID: mdl-38742379

BACKGROUND: Timely diagnosis plays a critical role in determining melanoma prognosis, prompting the development of deep learning models to aid clinicians. Questions persist regarding the efficacy of clinical images alone or in conjunction with dermoscopy images for model training. This study aims to compare the classification performance for melanoma of three types of CNN models: those trained on clinical images, dermoscopy images, and a combination of paired clinical and dermoscopy images from the same lesion. MATERIALS AND METHODS: We divided 914 image pairs into training, validation, and test sets. Models were built using pre-trained Inception-ResNetV2 convolutional layers for feature extraction, followed by binary classification. Training comprised 20 models per CNN type using sets of random hyperparameters. Best models were chosen based on validation AUC-ROC. RESULTS: Significant AUC-ROC differences were found between clinical versus dermoscopy models (0.661 vs. 0.869, p < 0.001) and clinical versus clinical + dermoscopy models (0.661 vs. 0.822, p = 0.001). Significant sensitivity differences were found between clinical and dermoscopy models (0.513 vs. 0.799, p = 0.01), dermoscopy versus clinical + dermoscopy models (0.799 vs. 1.000, p = 0.02), and clinical versus clinical + dermoscopy models (0.513 vs. 1.000, p < 0.001). Significant specificity differences were found between dermoscopy versus clinical + dermoscopy models (0.800 vs. 0.288, p < 0.001) and clinical versus clinical + dermoscopy models (0.650 vs. 0.288, p < 0.001). CONCLUSION: CNN models trained on dermoscopy images outperformed those relying solely on clinical images under our study conditions. The potential advantages of incorporating paired clinical and dermoscopy images for CNN-based melanoma classification appear less clear based on our findings.


Dermoscopy , Melanoma , Neural Networks, Computer , Skin Neoplasms , Humans , Melanoma/diagnostic imaging , Melanoma/pathology , Melanoma/classification , Dermoscopy/methods , Skin Neoplasms/diagnostic imaging , Skin Neoplasms/pathology , Skin Neoplasms/classification , Deep Learning , Sensitivity and Specificity , Female , ROC Curve , Image Interpretation, Computer-Assisted/methods , Male
6.
Chem Biol Drug Des ; 103(5): e14536, 2024 May.
Article En | MEDLINE | ID: mdl-38725079

This research was designed to prospect the mechanism and impact of glycyrrhizic acid (GA) on DNA damage repair and cisplatin (CP)-induced apoptosis of melanoma cells. First, human melanoma cell SK-MEL-28 was stimulated using GA for 24, 48, and 72 h. Then, the optimal treatment time and dosage were selected. After that, cell counting kit-8 (CCK-8) was employed for testing the cell viability, flow cytometry for the apoptosis, comet assay for the DNA damage of cells, and western blot for the cleaved-Caspase3, Caspase3, Bcl-2, and γH2AX protein expression levels. The experimental outcomes exhibited that as the GA concentration climbed up, the SK-MEL-28 cell viability dropped largely, while the apoptosis level raised significantly, especially at the concentration of 100 µm. In addition, compared with GA or CPtreatment only, CP combined with GA notably suppressed the viability of melanoma cells and promoted cell apoptosis at the cytological level. At the protein level, the combined treatment notably downregulated the Bcl-2 and Caspase3 expression levels, while significantly upregulated the cleaved-Caspase3 and γH2AX expression levels. Besides, CP + GA treatment promoted DNA damage at the DNA molecular level. Collectively, both GA and CP can inhibit DNA damage repair and enhance the apoptosis of SK-MEL-28 cells, and the synergistic treatment of both exhibits better efficacy.


Apoptosis , Cisplatin , DNA Damage , DNA Repair , Glycyrrhizic Acid , Melanoma , Cisplatin/pharmacology , Humans , Glycyrrhizic Acid/pharmacology , Glycyrrhizic Acid/chemistry , Apoptosis/drug effects , Melanoma/drug therapy , Melanoma/metabolism , Melanoma/pathology , Cell Line, Tumor , DNA Damage/drug effects , DNA Repair/drug effects , Cell Survival/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Caspase 3/metabolism , Drug Synergism , Proto-Oncogene Proteins c-bcl-2/metabolism
7.
Cesk Patol ; 60(1): 35-48, 2024.
Article En | MEDLINE | ID: mdl-38697826

Spitz tumors represent a heterogeneous group of challenging melanocytic neoplasms, displaying a range of biological behaviors, spanning from benign lesions, Spitz nevi (SN) to Spitz melanomas (SM), with intermediate lesions in between known as atypical Spitz tumors (AST). They are histologically characterized by large epithelioid and/or spindled melanocytes arranged in fascicles or nests, often associated with characteristic epidermal hyperplasia and fibrovascular stromal changes. In the last decade, the detection of mutually exclusive structural rearrangements involving receptor tyrosine kinases ROS1, ALK, NTRK1, NTRK2, NTRK3, RET, MET, serine threonine kinases BRAF and MAP3K8, or HRAS mutation, led to a clinical, morphological and molecular based classification of Spitz tumors. The recognition of some reproducible histological features can help dermatopathologist in assessing these lesions and can provide clues to predict the underlying molecular driver. In this review, we will focus on clinical and morphological findings in molecular Spitz tumor subgroups.


Nevus, Epithelioid and Spindle Cell , Skin Neoplasms , Humans , Nevus, Epithelioid and Spindle Cell/pathology , Nevus, Epithelioid and Spindle Cell/genetics , Skin Neoplasms/pathology , Skin Neoplasms/genetics , Skin Neoplasms/diagnosis , Melanoma/pathology , Melanoma/genetics , Melanoma/diagnosis
8.
Cesk Patol ; 60(1): 12-34, 2024.
Article En | MEDLINE | ID: mdl-38697825

Melanocytic lesions are instable tumors, the genome of which and its changes determinate their morphology and biological properties. Intermediate lesions share histomorphological features of both, nevi and melanoma. Melanocytomas represent a group of them separated on the basis of recent molecular-biological studies. The article summarizes benign, intermediate, malignant and combined melanocytic skin lesions and offers practical recommendations for diagnosis.


Melanoma , Nevus, Pigmented , Skin Neoplasms , Humans , Skin Neoplasms/pathology , Skin Neoplasms/diagnosis , Melanoma/pathology , Melanoma/diagnosis , Nevus, Pigmented/pathology , Nevus, Pigmented/diagnosis
9.
Oncoimmunology ; 13(1): 2349347, 2024.
Article En | MEDLINE | ID: mdl-38746870

The innate lymphoid cell (ILC) family is composed of heterogeneous innate effector and helper immune cells that preferentially reside in tissues where they promote tissue homeostasis. In cancer, they have been implicated in driving both pro- and anti-tumor responses. This apparent dichotomy highlights the need to better understand differences in the ILC composition and phenotype within different tumor types that could drive seemingly opposite anti-tumor responses. Here, we characterized the frequency and phenotype of various ILC subsets in melanoma metastases and primary epithelial ovarian tumors. We observed high PD-1 expression on ILC subsets isolated from epithelial ovarian tumor samples, while ILC populations in melanoma samples express higher levels of LAG-3. In addition, we found that the frequency of cytotoxic ILCs and NKp46+ILC3 in tumors positively correlates with monocytic cells and conventional type 2 dendritic cells, revealing potentially new interconnected immune cell subsets in the tumor microenvironment. Consequently, these observations may have direct relevance to tumor microenvironment composition and how ILC subset may influence anti-tumor immunity.


Carcinoma, Ovarian Epithelial , Immunity, Innate , Lymphocytes, Tumor-Infiltrating , Melanoma , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Melanoma/immunology , Melanoma/pathology , Carcinoma, Ovarian Epithelial/immunology , Carcinoma, Ovarian Epithelial/pathology , Lymphocytes, Tumor-Infiltrating/immunology , Tumor Microenvironment/immunology , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Neoplasms, Glandular and Epithelial/immunology , Neoplasms, Glandular and Epithelial/pathology , Programmed Cell Death 1 Receptor/metabolism , Natural Cytotoxicity Triggering Receptor 1/metabolism , Dendritic Cells/immunology , Dendritic Cells/pathology , Dendritic Cells/metabolism , Lymphocyte Activation Gene 3 Protein , Antigens, CD/metabolism
10.
J Cell Mol Med ; 28(9): e18372, 2024 May.
Article En | MEDLINE | ID: mdl-38747737

Multicellular organisms have dense affinity with the coordination of cellular activities, which severely depend on communication across diverse cell types. Cell-cell communication (CCC) is often mediated via ligand-receptor interactions (LRIs). Existing CCC inference methods are limited to known LRIs. To address this problem, we developed a comprehensive CCC analysis tool SEnSCA by integrating single cell RNA sequencing and proteome data. SEnSCA mainly contains potential LRI acquisition and CCC strength evaluation. For acquiring potential LRIs, it first extracts LRI features and reduces the feature dimension, subsequently constructs negative LRI samples through K-means clustering, finally acquires potential LRIs based on Stacking ensemble comprising support vector machine, 1D-convolutional neural networks and multi-head attention mechanism. During CCC strength evaluation, SEnSCA conducts LRI filtering and then infers CCC by combining the three-point estimation approach and single cell RNA sequencing data. SEnSCA computed better precision, recall, accuracy, F1 score, AUC and AUPR under most of conditions when predicting possible LRIs. To better illustrate the inferred CCC network, SEnSCA provided three visualization options: heatmap, bubble diagram and network diagram. Its application on human melanoma tissue demonstrated its reliability in CCC detection. In summary, SEnSCA offers a useful CCC inference tool and is freely available at https://github.com/plhhnu/SEnSCA.


Cell Communication , Single-Cell Analysis , Humans , Ligands , Single-Cell Analysis/methods , Software , Computational Biology/methods , Algorithms , Support Vector Machine , Sequence Analysis, RNA/methods , Melanoma/metabolism , Melanoma/pathology , Melanoma/genetics , Proteome/metabolism , Neural Networks, Computer
11.
J Cancer Res Clin Oncol ; 150(5): 252, 2024 May 14.
Article En | MEDLINE | ID: mdl-38743104

INTRODUCTION: Adjuvant treatment with immune checkpoint inhibitors, such as PD1-antibodies (ICI) ± CTLA4-antibodies (cICI) or targeted therapy with BRAF/MEK inhibitors (TT), has shown a significant improvement in disease-free survival (DFS) for high-risk melanoma patients. However, due to specific side effects, the choice of treatment is often influenced by the risk of toxicity. Therefore, the role of physicians in treatment decisions of patients is crucial. This study investigated for the first time in a multicenter setting the attitudes and preferences of dermatooncologists in Germany and Switzerland regarding adjuvant treatment with (c)ICI and TT. METHODS: In the GERMELATOX-A study, 108 physicians (median age: 32 yrs, 67.6% female) from 11 skin cancer centers were surveyed to rate typical side effect scenarios of (c)ICI and TT treatments and then compared to patients' ratings evaluated in a previous analysis from the same centers. The scenarios described mild-to-moderate or severe toxicity and included melanoma relapse leading to death. The physicians were asked about the level of side effects they would tolerate in exchange for a reduction in melanoma relapse and an increase in survival at 5 years. RESULTS: The preferences of physicians and patients revealed significant differences regarding adjuvant melanoma treatment with (c)ICI and TT (p < 0.05). Compared to patients, physicians tend to value a melanoma relapse less severe, according to a visual analog scale. They were also less threatened by all scenarios of side effects during adjuvant treatment with (c)ICI or TT, compared to patients. Physicians required lower risk reductions for disease-free survival (DFS) and overall survival (OS) for both ICI and TT and their drug-related side effects to accept these treatments. In case of severe side effects, physicians required similar 5-year DFS rates for ICI and TT (60-65%), while patients needed a 15% improvement of 5-year DFS for ICI compared to TT (80%/65%). For survival, physicians expected an OS improvement of + 10% for all three treatment modalities, whereas patients required a higher increase: + 18-22% for ICI and + 15% for TT. CONCLUSION: Our study highlights the importance of understanding the patient's perspective and a potential difference to the doctor's view when making decisions about adjuvant melanoma treatment with (c)ICI and TT, especially as these treatments are increasingly being implemented in earlier stages.


Immune Checkpoint Inhibitors , Melanoma , Neoplasm Recurrence, Local , Humans , Melanoma/drug therapy , Melanoma/pathology , Female , Male , Adult , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/pathology , Immune Checkpoint Inhibitors/therapeutic use , Immune Checkpoint Inhibitors/adverse effects , Skin Neoplasms/drug therapy , Skin Neoplasms/pathology , Middle Aged , Germany , Practice Patterns, Physicians' , Physicians/psychology , Aged , Chemotherapy, Adjuvant , Switzerland , Surveys and Questionnaires , Attitude of Health Personnel , Protein Kinase Inhibitors/therapeutic use , Protein Kinase Inhibitors/adverse effects
12.
Sci Signal ; 17(836): eadd5073, 2024 May 14.
Article En | MEDLINE | ID: mdl-38743809

The Ras-mitogen-activated protein kinase (MAPK) pathway is a major target for cancer treatment. To better understand the genetic pathways that modulate cancer cell sensitivity to MAPK pathway inhibitors, we performed a CRISPR knockout screen with MAPK pathway inhibitors on a colorectal cancer (CRC) cell line carrying mutant KRAS. Genetic deletion of the catalytic subunit of protein phosphatase 6 (PP6), encoded by PPP6C, rendered KRAS- and BRAF-mutant CRC and BRAF-mutant melanoma cells more resistant to these inhibitors. In the absence of MAPK pathway inhibition, PPP6C deletion in CRC cells decreased cell proliferation in two-dimensional (2D) adherent cultures but accelerated the growth of tumor spheroids in 3D culture and tumor xenografts in vivo. PPP6C deletion enhanced the activation of nuclear factor κB (NF-κB) signaling in CRC and melanoma cells and circumvented the cell cycle arrest and decreased cyclin D1 abundance induced by MAPK pathway blockade in CRC cells. Inhibiting NF-κB activity by genetic and pharmacological means restored the sensitivity of PPP6C-deficient cells to MAPK pathway inhibition in CRC and melanoma cells in vitro and in CRC cells in vivo. Furthermore, a R264 point mutation in PPP6C conferred loss of function in CRC cells, phenocopying the enhanced NF-κB activation and resistance to MAPK pathway inhibition observed for PPP6C deletion. These findings demonstrate that PP6 constrains the growth of KRAS- and BRAF-mutant cancer cells, implicates the PP6-NF-κB axis as a modulator of MAPK pathway output, and presents a rationale for cotargeting the NF-κB pathway in PPP6C-mutant cancer cells.


MAP Kinase Signaling System , NF-kappa B , Proto-Oncogene Proteins B-raf , Proto-Oncogene Proteins p21(ras) , Humans , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , NF-kappa B/metabolism , NF-kappa B/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , MAP Kinase Signaling System/drug effects , Animals , Cell Line, Tumor , Mutation , Mice , Protein Kinase Inhibitors/pharmacology , Cell Proliferation/drug effects , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Melanoma/genetics , Melanoma/metabolism , Melanoma/drug therapy , Melanoma/pathology , Xenograft Model Antitumor Assays , Drug Resistance, Neoplasm/genetics , Drug Resistance, Neoplasm/drug effects , Mice, Nude
13.
Wounds ; 36(4): 119-123, 2024 Apr.
Article En | MEDLINE | ID: mdl-38743857

BACKGROUND: Leg ulcers have various etiologies, including malignancy, although vascular issues are the most frequent cause. Malignant wounds present diagnostic challenges, with a reported prevalence rate ranging from 0.4% to 23%. This significant variability in reported prevalence appears to be due to the different settings in which data are collected, which suggests potential influence by medical specialty. Consequently, the misdiagnosis of neoplastic ulcers (eg, ulcerated melanoma) as vascular wounds is relatively common, leading to delayed diagnosis, inadequate treatment, and a dramatic worsening of the patient's prognosis. Identifying malignancy in nonresponsive wounds involves recognizing signs such as hypertrophic granulation tissue, bleeding, unusual pigmentation, and raised edges. The appearance of the perilesional skin, together with dermoscopic observation, is also crucial to differentiation. Ultimately, a biopsy may provide valuable diagnostic clarification. CASE REPORT: A case is presented of lower limb melanoma that for years was misdiagnosed as a vascular wound by multiple specialists, with delayed referral to a dermatologist and resulting recognition and diagnosis, at which time nodular satellite metastases were found. Dermoscopy and biopsy confirmed the diagnosis. The disease was already advanced, with in-transit and distant site metastases, and the prognosis was regrettably poor. CONCLUSION: This case underscores the importance of early detection and accurate diagnosis of malignant wounds, emphasizing the need to refer patients with suspicious nonresponsive ulcers to a dermatologist.


Melanoma , Skin Neoplasms , Humans , Melanoma/diagnosis , Melanoma/pathology , Skin Neoplasms/diagnosis , Skin Neoplasms/pathology , Leg Ulcer/pathology , Leg Ulcer/etiology , Leg Ulcer/diagnosis , Diagnosis, Differential , Dermoscopy , Male , Female , Fatal Outcome , Biopsy , Aged
14.
J Exp Clin Cancer Res ; 43(1): 137, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711119

BACKGROUND: The C-terminal-binding protein 1/brefeldin A ADP-ribosylation substrate (CtBP1/BARS) acts both as an oncogenic transcriptional co-repressor and as a fission inducing protein required for membrane trafficking and Golgi complex partitioning during mitosis, hence for mitotic entry. CtBP1/BARS overexpression, in multiple cancers, has pro-tumorigenic functions regulating gene networks associated with "cancer hallmarks" and malignant behavior including: increased cell survival, proliferation, migration/invasion, epithelial-mesenchymal transition (EMT). Structurally, CtBP1/BARS belongs to the hydroxyacid-dehydrogenase family and possesses a NAD(H)-binding Rossmann fold, which, depending on ligands bound, controls the oligomerization of CtBP1/BARS and, in turn, its cellular functions. Here, we proposed to target the CtBP1/BARS Rossmann fold with small molecules as selective inhibitors of mitotic entry and pro-tumoral transcriptional activities. METHODS: Structured-based screening of drug databases at different development stages was applied to discover novel ligands targeting the Rossmann fold. Among these identified ligands, N-(3,4-dichlorophenyl)-4-{[(4-nitrophenyl)carbamoyl]amino}benzenesulfonamide, called Comp.11, was selected for further analysis. Fluorescence spectroscopy, isothermal calorimetry, computational modelling and site-directed mutagenesis were employed to define the binding of Comp.11 to the Rossmann fold. Effects of Comp.11 on the oligomerization state, protein partners binding and pro-tumoral activities were evaluated by size-exclusion chromatography, pull-down, membrane transport and mitotic entry assays, Flow cytometry, quantitative real-time PCR, motility/invasion, and colony assays in A375MM and B16F10 melanoma cell lines. Effects of Comp.11 on tumor growth in vivo were analyzed in mouse tumor model. RESULTS: We identify Comp.11 as a new, potent and selective inhibitor of CtBP1/BARS (but not CtBP2). Comp.11 directly binds to the CtBP1/BARS Rossmann fold affecting the oligomerization state of the protein (unlike other known CtBPs inhibitors), which, in turn, hinders interactions with relevant partners, resulting in the inhibition of both CtBP1/BARS cellular functions: i) membrane fission, with block of mitotic entry and cellular secretion; and ii) transcriptional pro-tumoral effects with significantly hampered proliferation, EMT, migration/invasion, and colony-forming capabilities. The combination of these effects impairs melanoma tumor growth in mouse models.  CONCLUSIONS: This study identifies a potent and selective inhibitor of CtBP1/BARS active in cellular and melanoma animal models revealing new opportunities to study the role of CtBP1/BARS in tumor biology and to develop novel melanoma treatments.


Alcohol Oxidoreductases , DNA-Binding Proteins , Melanoma , Humans , Alcohol Oxidoreductases/antagonists & inhibitors , Alcohol Oxidoreductases/metabolism , Alcohol Oxidoreductases/genetics , Animals , Mice , Melanoma/drug therapy , Melanoma/pathology , Melanoma/metabolism , Melanoma/genetics , Cell Line, Tumor , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Epithelial-Mesenchymal Transition/drug effects , Xenograft Model Antitumor Assays
15.
J Drugs Dermatol ; 23(5): 306-310, 2024 May 01.
Article En | MEDLINE | ID: mdl-38709694

BACKGROUND: There are no guidelines on when to more strongly recommend sentinel lymph node biopsy (SLNB) for T1b melanomas. OBJECTIVE: To examine whether anatomic locations of T1b melanomas and patient age influence metastases. METHODS: We conducted a retrospective study using data from two hospitals in Los Angeles County from January 2010 through January 2020. RESULTS: Out of 620 patients with primary melanomas, 566 melanomas were staged based on the American Joint Committee on Cancer 8th edition melanoma staging. Forty-one were T1b, of which 13 were located on the face/ear/scalp and 28 were located elsewhere. T1b melanomas located on the face/ear/scalp had an increased risk of lymph node or distant metastasis compared with other anatomic sites (31% vs 3.6%, P=0.028). For all melanomas, the risk of lymph node or distant metastasis decreased with age of 64 years or greater (P<0.001 and P=0.034). For T1b melanomas, the risk of distant metastasis increased with increasing age (P=0.047). LIMITATIONS: Data were from a single county.  Conclusion: T1b melanomas of the face/ear/scalp demonstrated a higher risk of lymph node or distant metastasis and may help guide the recommendation of SLNB, imaging, and surveillance. Younger patients may be more strongly considered for SLNB and older patients with T1b melanomas may warrant imaging.  J Drugs Dermatol. 2024;23(5):306-310. doi:10.36849/JDD.7667.


Lymphatic Metastasis , Melanoma , Neoplasm Staging , Sentinel Lymph Node Biopsy , Skin Neoplasms , Humans , Melanoma/pathology , Melanoma/diagnosis , Melanoma/epidemiology , Retrospective Studies , Female , Skin Neoplasms/pathology , Skin Neoplasms/diagnosis , Skin Neoplasms/epidemiology , Male , Middle Aged , Aged , Age Factors , Lymphatic Metastasis/diagnosis , Adult , Aged, 80 and over , Los Angeles/epidemiology , Young Adult
16.
Australas J Dermatol ; 65 Suppl 1: 89-105, 2024 May.
Article En | MEDLINE | ID: mdl-38724103
17.
Cell Commun Signal ; 22(1): 256, 2024 May 06.
Article En | MEDLINE | ID: mdl-38705997

BACKGROUND: Melanoma is a highly heterogeneous cancer, in which frequent changes in activation of signaling pathways lead to a high adaptability to ever changing tumor microenvironments. The elucidation of cancer specific signaling pathways is of great importance, as demonstrated by the inhibitor of the common BrafV600E mutation PLX4032 in melanoma treatment. We therefore investigated signaling pathways that were influenced by neurotrophin NRN1, which has been shown to be upregulated in melanoma. METHODS: Using a cell culture model system with an NRN1 overexpression, we investigated the influence of NRN1 on melanoma cells' functionality and signaling. We employed real time cell analysis and spheroid formation assays, while for investigation of molecular mechanisms we used a kinase phosphorylation kit as well as promotor activity analysis followed by mRNA and protein analysis. RESULTS: We revealed that NRN1 interacts directly with the cleaved intracellular domain (NICD) of Notch1 and Notch3, causing a potential retention of NICD in the cytoplasm and thereby reducing the expression of its direct downstream target Hes1. This leads to decreased sequestration of JAK and STAT3 in a Hes1-driven phosphorylation complex. Consequently, our data shows less phosphorylation of STAT3 while presenting an accumulation of total protein levels of STAT3 in association with NRN1 overexpression. The potential of the STAT3 signaling pathway to act in both a tumor suppressive and oncogenic manner led us to investigate specific downstream targets - namely Vegf A, Mdr1, cMet - which were found to be upregulated under oncogenic levels of NRN1. CONCLUSIONS: In summary, we were able to show that NRN1 links oncogenic signaling events between Notch and STAT3 in melanoma. We also suggest that in future research more attention should be payed to cellular regulation of signaling molecules outside of the classically known phosphorylation events.


Melanoma , Neuropeptides , STAT3 Transcription Factor , Signal Transduction , Humans , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Line, Tumor , Melanoma/metabolism , Melanoma/genetics , Melanoma/pathology , Phosphorylation , Protein Binding , Receptor, Notch1/metabolism , Receptor, Notch1/genetics , Receptor, Notch3/metabolism , Receptor, Notch3/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics
18.
Cancer Immunol Immunother ; 73(7): 116, 2024 May 07.
Article En | MEDLINE | ID: mdl-38713408

OBJECTIVES: Nivolumab is approved as adjuvant therapy for resected stage III/IV melanoma based on the phase 3 CheckMate 238 trial. This analysis compared outcomes from CheckMate 238 with those from the real-world Flatiron Health electronic health record-derived de-identified database in patients with resected stage III melanoma (per AJCC-8) treated with adjuvant nivolumab. MATERIALS: Outcomes included baseline characteristics, overall survival (OS) in the CheckMate 238 cohort (randomization until death or last known alive), and real-world overall survival (rwOS) in the Flatiron Health cohort (nivolumab initiation until death or data cutoff). rwOS was compared with OS using unadjusted and adjusted Cox proportional hazards models. Inverse probability of treatment weighting (IPTW) was combined with the adjusted model to reduce baseline discrepancies. RESULTS: The CheckMate 238 and real-world cohorts included 369 and 452 patients, respectively (median age, 56.0 and 63.0 years; median follow-up, 61.4 vs. 25.5 months). rwOS was not different from OS in the unadjusted (hazard ratio [HR] 1.27; 95% CI 0.92-1.74), adjusted (HR 1.01; 95% CI 0.67-1.54), and adjusted IPTW (HR 1.07; 95% CI 0.70-1.63) analyses. In the adjusted analysis, 2-year OS and rwOS rates were 84%. Median OS and rwOS were not reached. After IPTW, OS and rwOS were not different (HR 1.07; 95% CI 0.70-1.64). CONCLUSIONS: In this comparative analysis, OS in the CheckMate 238 trial was similar to rwOS in the Flatiron Health database after adjustments in patients with resected stage III melanoma (per AJCC-8) treated with adjuvant nivolumab, validating the trial results.


Melanoma , Neoplasm Staging , Nivolumab , Humans , Melanoma/drug therapy , Melanoma/mortality , Melanoma/pathology , Melanoma/surgery , Nivolumab/therapeutic use , Female , Male , Middle Aged , Chemotherapy, Adjuvant/methods , Aged , Skin Neoplasms/drug therapy , Skin Neoplasms/mortality , Skin Neoplasms/pathology , Skin Neoplasms/surgery , Treatment Outcome , Antineoplastic Agents, Immunological/therapeutic use , Adult
19.
Sci Rep ; 14(1): 10117, 2024 05 02.
Article En | MEDLINE | ID: mdl-38698033

In this research, the hydrophilic structure of multi-walled carbon nanotubes (MWCNTs) was modified by synthesizing polycitric acid (PCA) and attaching folic acid (FA) to create MWCNT-PCA-FA. This modified nanocomplex was utilized as a carrier for the lipophilic compound curcumin (Cur). Characterization techniques including TGA, TEM, and UV-visible spectrophotometry were used to analyze the nanocomplex. The mechanism of cancer cell death induced by MWCNT-PCA-FA was studied extensively using the MTT assay, colony formation analysis, cell cycle assessment via flow cytometry, and apoptosis studies. Furthermore, we assessed the antitumor efficacy of these targeted nanocomplexes following exposure to laser radiation. The results showed that the nanocomposites and free Cur had significant toxicity on melanoma cancer cells (B16F10 cells) while having minimal impact on normal cells (NHDF cells). This selectivity for cancerous cells demonstrates the potential of these compounds as therapeutic agents. Furthermore, MWCNT-PCA-FA/Cur showed superior cytotoxicity compared to free Cur alone. Colony formation studies confirmed these results. The researchers found that MWCNT-FA-PCA/Cur effectively induced programmed cell death. In photothermal analysis, MWCNT-PCA-FA/Cur combined with laser treatment achieved the highest mortality rate. These promising results suggest that this multifunctional therapeutic nanoplatform holds the potential for combination cancer therapies that utilize various established therapeutic methods.


Curcumin , Nanotubes, Carbon , Curcumin/pharmacology , Curcumin/chemistry , Nanotubes, Carbon/chemistry , Cell Line, Tumor , Humans , Mice , Animals , Folic Acid/chemistry , Apoptosis/drug effects , Melanoma/drug therapy , Melanoma/pathology , Melanoma/therapy , Photothermal Therapy/methods , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Drug Carriers/chemistry , Cell Survival/drug effects
...