Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.380
Filtrar
1.
Pathol Res Pract ; 262: 155541, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39173463

RESUMEN

OBJECTIVES: Investigating the expression and prognostic significance of adenovirus receptors DSG-2, CXADR and CD46 in head and neck cancer. METHODS: 104 patients with HNSCC (77 OPSCC, 27 LSCC) were retrospectively included in the study. Immunohistochemical staining was performed on all selected slides to detect the expression of DSG-2, CXADR, CD46 and the immunoreactive score (IRS) was determined from the number of positively stained tumor cells and their staining intensity. Furthermore, the respective HPV status was determined by immunohistochemical staining against p16 and HPV-PCR. RESULTS: 81.7 % of the tumors showed DSG-2, 34.6 % of the tumors showed CXADR and 57.7 % of the tumors showed CD46 expression. A high DSG-2 IRS correlated significantly with an advanced tumor size (p= 0.003), increased grading (p=0.012) and positive HPV status (p=0.024) in OPSCC. A high CXADR IRS was significantly associated with a positive lymph node status (p= 0.041) in LSCC and an advanced AJCC stage (p= 0.012) and a positive HPV status (p= 0.009) in OPSCC. No significant correlation could be shown regarding CD46 expression and clinical tumor data. There was no effect of DSG-2, CXADR, and CD46 expression on 5-year overall and on 5-year disease-free survival. CONCLUSION: No prognostic significance of the expression of DSG-2, CXADR or CD46 in HNSCC was seen. DSG-2, CXADR and CD46 are expressed in HNSCC, so that optimization of oncotherapy with adenoviral vectors appears promising. Due to the significantly increased expression of DSG-2 and CXADR in advanced OPSCC tumors, there is potential for optimizing oncotherapy here in particular.


Asunto(s)
Biomarcadores de Tumor , Desmogleína 2 , Neoplasias de Cabeza y Cuello , Proteína Cofactora de Membrana , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Masculino , Femenino , Desmogleína 2/metabolismo , Persona de Mediana Edad , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/virología , Anciano , Pronóstico , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/virología , Carcinoma de Células Escamosas de Cabeza y Cuello/mortalidad , Adulto , Estudios Retrospectivos , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Proteína Cofactora de Membrana/metabolismo , Proteína Cofactora de Membrana/análisis , Proteína Cofactora de Membrana/genética , Anciano de 80 o más Años , Infecciones por Papillomavirus/complicaciones , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/virología , Carcinoma de Células Escamosas/metabolismo , Inmunohistoquímica
2.
World J Urol ; 42(1): 404, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990246

RESUMEN

BACKGROUND: Ductal Adenocarcinoma (DAC) and Intraductal Carcinoma of the Prostate (IDC-P) respond poorly to all the currently available conventional therapies. Given their accurate and efficient elimination of cancer cells, Antibody-Drug Conjugates (ADCs) have become one of the most promising anticancer treatments. However, no ADCs have so far been approved for Prostate Cancer (PCa) treatment. This study investigated TROP-2, HER2, and CD46 expression in DAC/IDC-P samples, indirectly analyzing their preliminary feasibility as therapeutic targets for future treatment of the two conditions. PATIENTS AND METHODS: We conducted a retrospective study involving 184 participants (87 DAC/IDC-P patients and 97 Prostatic Acinar Adenocarcinoma (PAC) patients with a Gleason score ≥ 8) without prior treatment between August 2017 and August 2022. Immunohistochemical staining was employed to detect the differential protein expressions of TROP-2, HER2, and CD46 in DAC/IDC-P, PAC, and normal prostate tissues. RESULTS: Compared to pure PAC tissues, TROP-2 expression was significantly higher in DAC/IDC-P and DAC/IDC-P-adjacent PAC tissues (H-score 68.8 vs. 43.8, p < 0.001, and 59.8 vs. 43.8, p = 0.022, respectively). No significant differences in HER2 expression were observed across different cancer tissues. Compared to both DAC/IDC-P-adjacent PAC and pure PAC tissues, CD46 expression was significantly higher in DAC/IDC-P tissues (42.3 vs. 28.6, p = 0.041, and 42.3 vs. 24.3, p = 0.0035, respectively). CONCLUSIONS: Herein, TROP-2 and CD46 expression was higher in DAC/IDC-P tissues than in pure PAC and normal prostate tissues. This finding implies that ADCs targeting the two proteins hold significant promise as potential future treatments for DAC/IDC-P.


Asunto(s)
Antígenos de Neoplasias , Moléculas de Adhesión Celular , Estudios de Factibilidad , Inmunoconjugados , Proteína Cofactora de Membrana , Neoplasias de la Próstata , Receptor ErbB-2 , Humanos , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Moléculas de Adhesión Celular/metabolismo , Estudios Retrospectivos , Receptor ErbB-2/metabolismo , Anciano , Inmunoconjugados/uso terapéutico , Persona de Mediana Edad , Antígenos de Neoplasias/metabolismo , Proteína Cofactora de Membrana/metabolismo , Carcinoma Ductal/metabolismo , Carcinoma Ductal/patología , Carcinoma Ductal/tratamiento farmacológico , Anciano de 80 o más Años
3.
Front Immunol ; 15: 1421778, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38919630

RESUMEN

Background: CD46 has been revealed to be a key factor in malignant transformation and cancer treatment. However, the clinical significance of CD46 in cervical cancer remains unclear, and this study aimed to evaluate its role in cervical cancer diagnosis and prognosis evaluation. Methods: A total of 180 patients with an initial diagnosis of cervical cancer were enrolled at Taizhou Hospital of Zhejiang Province, China. The plasma levels of soluble CD46 (sCD46) and the expression of membrane-bound CD46 (mCD46) were detected by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC), respectively. Results: CD46 was found to be significantly upregulated in cervical cancer tissues vs. normal tissues, while no CD46 staining was detected in paired adjacent noncancerous tissues. CD46 staining was more pronounced in cancer cells than in stromal cells in situ (in tissues). Moreover, the plasma levels of sCD46 were able to some extent discriminate between cancer patients and healthy women (AUC=0.6847, 95% CI:0.6152-0.7541). Analysis of Kaplan-Meier survival curves revealed that patients with low CD46 expression had slightly longer overall survival (OS) than patients with high CD46 expression in the tumor microenvironment, but no significant difference. Univariate Cox regression analysis revealed that CD46 (P=0.034) is an independent risk factor for OS in cervical cancer patients. Conclusion: The present study demonstrated that cervical cancer patients exhibit aberrant expression of CD46, which is closely associated with a poor prognosis, suggesting that CD46 plays a key role in promoting cervical carcinogenesis and that CD46 could serve as a promising potential target for precision therapy for cervical cancer.


Asunto(s)
Biomarcadores de Tumor , Proteína Cofactora de Membrana , Neoplasias del Cuello Uterino , Humanos , Femenino , Neoplasias del Cuello Uterino/diagnóstico , Neoplasias del Cuello Uterino/mortalidad , Neoplasias del Cuello Uterino/sangre , Biomarcadores de Tumor/sangre , Persona de Mediana Edad , Pronóstico , Adulto , Anciano , Estimación de Kaplan-Meier
4.
Int J Oncol ; 65(1)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38847230

RESUMEN

CD46, a transmembrane protein known for protecting cells from complement­mediated damage, is frequently dysregulated in various types of cancer. Its overexpression in bladder cancers safeguards the cancer cells against both complement and antibody­mediated cytotoxicity. The present study explored a new role of CD46 in facilitating cancer cell invasion and metastasis, examining its regulatory effect on matrix metalloproteases (MMPs) and their effect on the metastatic capability of bladder cancer cells. Specifically, CD46 alteration positively influenced MMP9 expression, but not MMP2, in several bladder cancer cell lines. Furthermore, CD46 overexpression triggered phosphorylation of p38 MAPK and protein kinase B (AKT), leading to enhanced activator protein 1 (AP­1) activity via c­Jun upregulation. The inhibition of p38 or AKT pathways attenuated the CD46­induced MMP9 and AP­1 upregulation, indicating that the promotion of MMP9 by CD46 involved activating both p38 MAPK and AKT. Functionally, the upregulation of MMP9 by CD46 translated to increased migratory and invasive capabilities of bladder cancer cells, as well as enhanced in vivo metastasis. Overall, the present study revealed a novel role for CD46 as a metastasis promoter through MMP9 activation in bladder cancers and highlighted the regulatory mechanism of CD46­mediated MMP9 promotion via p38 MAPK and AKT activation.


Asunto(s)
Movimiento Celular , Metaloproteinasa 9 de la Matriz , Proteína Cofactora de Membrana , Proteínas Proto-Oncogénicas c-akt , Neoplasias de la Vejiga Urinaria , Proteínas Quinasas p38 Activadas por Mitógenos , Neoplasias de la Vejiga Urinaria/patología , Neoplasias de la Vejiga Urinaria/metabolismo , Neoplasias de la Vejiga Urinaria/genética , Humanos , Metaloproteinasa 9 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Línea Celular Tumoral , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína Cofactora de Membrana/metabolismo , Proteína Cofactora de Membrana/genética , Regulación Neoplásica de la Expresión Génica , Metástasis de la Neoplasia , Invasividad Neoplásica , Factor de Transcripción AP-1/metabolismo , Regulación hacia Arriba , Transducción de Señal
5.
J Peripher Nerv Syst ; 29(2): 193-201, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38528725

RESUMEN

BACKGROUND AND AIMS: To further substantiate the role of antibody-mediated complement activation in multifocal motor neuropathy (MMN) immunopathology, we investigated the distribution of promotor polymorphisms of genes encoding the membrane-bound complement regulators CD46, CD55, and CD59 in patients with MMN and controls, and evaluated their association with disease course. METHODS: We used Sanger sequencing to genotype five common polymorphisms in the promotor regions of CD46, CD55, and CD59 in 133 patients with MMN and 380 controls. We correlated each polymorphism to clinical parameters. RESULTS: The genotype frequencies of rs28371582, a 21-bp deletion in the CD55 promotor region, were altered in patients with MMN as compared to controls (p .009; Del/Del genotype 16.8% vs. 7.7%, p .005, odds ratio: 2.43 [1.27-4.58]), and patients carrying this deletion had a more favorable disease course (mean difference 0.26 Medical Research Council [MRC] points/year; 95% confidence interval [CI]: 0.040-0.490, p .019). The presence of CD59 rs141385724 was associated with less severe pre-diagnostic disease course (mean difference 0.940 MRC point/year; 95% CI: 0.083-1.80, p .032). INTERPRETATION: MMN susceptibility is associated with a 21-bp deletion in the CD55 promotor region (rs2871582), which is associated with lower CD55 expression. Patients carrying this deletion may have a more favorable long-term disease outcome. Taken together, these results point out the relevance of the pre-C5 level of the complement cascade in the inflammatory processes underlying MMN.


Asunto(s)
Antígenos CD55 , Regiones Promotoras Genéticas , Humanos , Antígenos CD55/genética , Masculino , Femenino , Persona de Mediana Edad , Anciano , Adulto , Proteína Cofactora de Membrana/genética , Antígenos CD59/genética , Eliminación de Secuencia , Polineuropatías/genética , Polineuropatías/fisiopatología , Polineuropatías/inmunología , Progresión de la Enfermedad , Genotipo
6.
Cancer Biol Ther ; 25(1): 2314322, 2024 12 31.
Artículo en Inglés | MEDLINE | ID: mdl-38361357

RESUMEN

Multiple myeloma (MM) is an incurable malignancy of the B-cell lineage. Remarkable progress has been made in the treatment of MM with anti-CD38 monoclonal antibodies such as daratumumab and isatuximab, which can kill MM cells by inducing complement-dependent cytotoxicity (CDC). We showed that the CDC efficacy of daratumumab and isatuximab is limited by membrane complement inhibitors, including CD46 and CD59, which are upregulated in MM cells. We recently developed a small recombinant protein, Ad35K++, which is capable of transiently removing CD46 from the cell surface. We also produced a peptide inhibitor of CD59 (rILYd4). In this study, we tested Ad35K++ and rILYd4 in combination with daratumumab and isatuximab in MM cells as well as in cells from two other B-cell malignancies. We showed that Ad35K++ and rILYd4 increased CDC triggered by daratumumab and isatuximab. The combination of both inhibitors had an additive effect in vitro in primary MM cells as well as in vivo in a mouse xenograft model of MM. Daratumumab and isatuximab treatment of MM lines (without Ad35K++ or rILYd4) resulted in the upregulation of CD46/CD59 and/or survival of CD46high/CD59high MM cells that escaped the second round of daratumumab and isatuximab treatment. The escape in the second treatment cycle was prevented by the pretreatment of cells with Ad35K++. Overall, our data demonstrate that Ad35K++ and rILYd4 are efficient co-therapeutics of daratumumab and isatuximab, specifically in multi-cycle treatment regimens, and could be used to improve treatment of multiple myeloma.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Ratones , Animales , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos/uso terapéutico , ADP-Ribosil Ciclasa 1/metabolismo , Antígenos CD59/uso terapéutico , Proteína Cofactora de Membrana/metabolismo
7.
Theranostics ; 14(4): 1344-1360, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38389832

RESUMEN

Rationale: 225Ac, a long-lived α-emitter with a half-life of 9.92 days, has garnered significant attention as a therapeutic radionuclide when coupled with monoclonal antibodies and other targeting vectors. Nevertheless, its clinical utility has been hampered by potential off-target toxicity, a lack of optimized chelators for 225Ac, and limitations in radiolabeling methods. In a prior study evaluating the effectiveness of CD46-targeted radioimmunotherapy, we found great therapeutic efficacy but also significant toxicity at higher doses. To address these challenges, we have developed a radioimmunoconjugate called 225Ac-Macropa-PEG4-YS5, incorporating a stable PEGylated linker to maximize tumoral uptake and increase tumor-to-background ratios. Our research demonstrates that this conjugate exhibits greater anti-tumor efficacy while minimizing toxicity in prostate cancer 22Rv1 tumors. Methods: We synthesized Macropa.NCS and Macropa-PEG4/8-TFP esters and prepared Macropa-PEG0/4/8-YS5 (with nearly ~1:1 ratio of macropa chelator to antibody YS5) as well as DOTA-YS5 conjugates. These conjugates were then radiolabeled with 225Ac in a 2 M NH4OAc solution at 30 °C, followed by purification using YM30K centrifugal purification. Subsequently, we conducted biodistribution studies and evaluated antitumor activity in nude mice (nu/nu) bearing prostate 22Rv1 xenografts in both single-dose and fractionated dosing studies. Micro-PET imaging studies were performed with 134Ce-Macropa-PEG0/4/8-YS5 in 22Rv1 xenografts for 7 days. Toxicity studies were also performed in healthy athymic nude mice. Results: As expected, we achieved a >95% radiochemical yield when labeling Macropa-PEG0/4/8-YS5 with 225Ac, regardless of the chelator ratios (ranging from 1 to 7.76 per YS5 antibody). The isolated yield exceeded 60% after purification. Such high conversions were not observed with the DOTA-YS5 conjugate, even at a higher ratio of 8.5 chelators per antibody (RCY of 83%, an isolated yield of 40%). Biodistribution analysis at 7 days post-injection revealed higher tumor uptake for the 225Ac-Macropa-PEG4-YS5 (82.82 ± 38.27 %ID/g) compared to other conjugates, namely 225Ac-Macropa-PEG0/8-YS5 (38.2 ± 14.4/36.39 ± 12.4 %ID/g) and 225Ac-DOTA-YS5 (29.35 ± 7.76 %ID/g). The PET Imaging of 134Ce-Macropa-PEG0/4/8-YS5 conjugates resulted in a high tumor uptake, and tumor to background ratios. In terms of antitumor activity, 225Ac-Macropa-PEG4-YS5 exhibited a substantial response, leading to prolonged survival compared to 225Ac-DOTA-YS5, particularly when administered at 4.625 kBq doses, in single or fractionated dose regimens. Chronic toxicity studies observed mild to moderate renal toxicity at 4.625 and 9.25 kBq doses. Conclusions: Our study highlights the promise of 225Ac-Macropa-PEG4-YS5 for targeted alpha particle therapy. The 225Ac-Macropa-PEG4-YS5 conjugate demonstrates improved biodistribution, reduced off-target binding, and enhanced therapeutic efficacy, particularly at lower doses, compared to 225Ac-DOTA-YS5. Incorporating theranostic 134Ce PET imaging further enhances the versatility of macropa-PEG conjugates, offering a more effective and safer approach to cancer treatment. Overall, this methodology has a high potential for broader clinical applications.


Asunto(s)
Medicina de Precisión , Neoplasias de la Próstata , Masculino , Ratones , Animales , Humanos , Ratones Desnudos , Distribución Tisular , Radiofármacos , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/radioterapia , Quelantes , Proteína Cofactora de Membrana
8.
Clin Cancer Res ; 30(5): 1009-1021, 2024 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-38109209

RESUMEN

PURPOSE: Multiple myeloma is a plasma cell malignancy with an unmet clinical need for improved imaging methods and therapeutics. Recently, we identified CD46 as an overexpressed therapeutic target in multiple myeloma and developed the antibody YS5, which targets a cancer-specific epitope on this protein. We further developed the CD46-targeting PET probe [89Zr]Zr-DFO-YS5 for imaging and [225Ac]Ac-DOTA-YS5 for radiopharmaceutical therapy of prostate cancer. These prior studies suggested the feasibility of the CD46 antigen as a theranostic target in multiple myeloma. Herein, we validate [89Zr]Zr-DFO-YS5 for immunoPET imaging and [225Ac]Ac-DOTA-YS5 for radiopharmaceutical therapy of multiple myeloma in murine models. EXPERIMENTAL DESIGN: In vitro saturation binding was performed using the CD46 expressing MM.1S multiple myeloma cell line. ImmunoPET imaging using [89Zr]Zr-DFO-YS5 was performed in immunodeficient (NSG) mice bearing subcutaneous and systemic multiple myeloma xenografts. For radioligand therapy, [225Ac]Ac-DOTA-YS5 was prepared, and both dose escalation and fractionated dose treatment studies were performed in mice bearing MM1.S-Luc systemic xenografts. Tumor burden was analyzed using BLI, and body weight and overall survival were recorded to assess antitumor effect and toxicity. RESULTS: [89Zr]Zr-DFO-YS5 demonstrated high affinity for CD46 expressing MM.1S multiple myeloma cells (Kd = 16.3 nmol/L). In vitro assays in multiple myeloma cell lines demonstrated high binding, and bioinformatics analysis of human multiple myeloma samples revealed high CD46 expression. [89Zr]Zr-DFO-YS5 PET/CT specifically detected multiple myeloma lesions in a variety of models, with low uptake in controls, including CD46 knockout (KO) mice or multiple myeloma mice using a nontargeted antibody. In the MM.1S systemic model, localization of uptake on PET imaging correlated well with the luciferase expression from tumor cells. A treatment study using [225Ac]Ac-DOTA-YS5 in the MM.1S systemic model demonstrated a clear tumor volume and survival benefit in the treated groups. CONCLUSIONS: Our study showed that the CD46-targeted probe [89Zr]Zr-DFO-YS5 can successfully image CD46-expressing multiple myeloma xenografts in murine models, and [225Ac]Ac-DOTA-YS5 can effectively inhibit the growth of multiple myeloma. These results demonstrate that CD46 is a promising theranostic target for multiple myeloma, with the potential for clinical translation.


Asunto(s)
Mieloma Múltiple , Masculino , Humanos , Animales , Ratones , Mieloma Múltiple/diagnóstico por imagen , Mieloma Múltiple/tratamiento farmacológico , Medicina de Precisión , Actinio , Radioisótopos , Radiofármacos , Circonio , Línea Celular Tumoral , Tomografía Computarizada por Tomografía de Emisión de Positrones , Anticuerpos , Proteína Cofactora de Membrana
9.
Viruses ; 15(12)2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-38140538

RESUMEN

This study examines an unexplored aspect of SARS-CoV-2 entry into host cells, which is widely understood to occur via the viral spike (S) protein's interaction with human ACE2-associated proteins. While vaccines and inhibitors targeting this mechanism are in use, they may not offer complete protection against reinfection. Hence, we investigate putative receptors and their cofactors. Specifically, we propose CD46, a human membrane cofactor protein, as a potential putative receptor and explore its role in cellular invasion, acting possibly as a cofactor with other viral structural proteins. Employing computational techniques, we created full-size 3D models of human CD46 and four key SARS-CoV-2 structural proteins-EP, MP, NP, and SP. We further developed 3D models of CD46 complexes interacting with these proteins. The primary aim is to pinpoint the likely interaction domains between CD46 and these structural proteins to facilitate the identification of molecules that can block these interactions, thus offering a foundation for novel pharmacological treatments for SARS-CoV-2 infection.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/metabolismo , Proteína Cofactora de Membrana/metabolismo , Unión Proteica , Receptores Virales/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Internalización del Virus
10.
J Virol ; 97(11): e0091023, 2023 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-37921471

RESUMEN

IMPORTANCE: The main limitation of oncolytic vectors is neutralization by blood components, which prevents intratumoral administration to patients. Enadenotucirev, a chimeric HAdV-11p/HAdV-3 adenovirus identified by bio-selection, is a low seroprevalence vector active against a broad range of human carcinoma cell lines. At this stage, there's still some uncertainty about tropism and primary receptor utilization by HAdV-11. However, this information is very important, as it has a direct influence on the effectiveness of HAdV-11-based vectors. The aim of this work is to determine which of the two receptors, DSG2 and CD46, is involved in the attachment of the virus to the host, and what role they play in the early stages of infection.


Asunto(s)
Adenovirus Humanos , Desmogleína 2 , Proteína Cofactora de Membrana , Receptores Virales , Humanos , Adenovirus Humanos/genética , Adenovirus Humanos/metabolismo , Línea Celular , Desmogleína 2/genética , Desmogleína 2/metabolismo , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/metabolismo , Receptores Virales/genética , Receptores Virales/metabolismo
11.
J Neuroimmunol ; 385: 578234, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37944208

RESUMEN

CD46 is a complementary regulatory protein ubiquitously expressed in human cells, controlling complement system activation. CD46 has further been identified to have several other functions including regulatory T cell induction and intestinal epithelial (IEC) barrier regulation. Activation of CD46 in the IEC can impact intestinal barrier permeability and immune system functioning. CD46 has only been identified in the spermatozoa and retina of mice. In other murine cells, the homologue CRRY is identified to function as the complementary regulator. Due to the identification of CRRY across other wild-type mouse cells and the development of mouse strains transgenic for human CD46, no recent research has been conducted to determine if CD46 is present in non-transgenic mouse strains. Therefore, the current study investigated if CD46 is expressed in the substantia nigra (SN) and caudate putamen (CP) of pubescent CD1 mice and examined the acute effects of pubertal antimicrobial and lipopolysaccharide (LPS) treatment on CD46 expression in the brain. As of 5 weeks of age, mice were administered mixed antimicrobial solution or water with oral gavage twice daily for 7 days. At 6 weeks of age, mice received an intraperitoneal injection of LPS or saline. Mice were euthanized 8 h post-injection and brain samples were collected. Our results indicate that pubescent CD-1 mice express CD46 in the SN and CP. However, LPS-treated mice displayed significantly less CD46 expression in the SN in comparison to saline-treated mice. Furthermore, males displayed more CD46 in the CP compared to females, regardless of LPS and antimicrobial treatments. Our data suggest CD46 is present in CD1 mice and that LPS and antimicrobial treatments impact CD46 protein expression in a sex-dependent manner. These results have important implications for the expression of CD46 in the mouse brain and the understanding of its role in immune system regulation.


Asunto(s)
Encéfalo , Proteína Cofactora de Membrana , Animales , Femenino , Humanos , Recién Nacido , Masculino , Ratones , Antiinfecciosos/farmacología , Encéfalo/metabolismo , Lipopolisacáridos/farmacología , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/metabolismo , Glicoproteínas de Membrana , Ratones Endogámicos
12.
J Gen Virol ; 104(9)2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37668349

RESUMEN

Human cytomegalovirus (HCMV) primary infections are typically asymptomatic in healthy individuals yet can cause increased morbidity and mortality in organ transplant recipients, AIDS patients, neonates, and the elderly. The successful, widespread dissemination of this virus among the population can be attributed in part to its wide cellular tropism and ability to establish life-long latency. HCMV infection is a multi-step process that requires numerous cellular and viral factors. The viral envelope consists of envelope protein complexes that interact with cellular factors; such interactions dictate virus recognition and attachment to different cell types, followed by fusion either at the cell membrane or within an endocytic vesicle. Several HCMV entry factors, including neuropilin-2 (Nrp2), THBD, CD147, OR14I1, and CD46, are characterized as participating in HCMV pentamer-specific entry of non-fibroblast cells such as epithelial, trophoblast, and endothelial cells, respectively. This study focuses on characterizing the structural elements of CD46 that impact HCMV infection. Infectivity studies of wild-type and CD46 knockout epithelial cells demonstrated that levels of CD46 expressed on the cell surface were directly related to HCMV infectivity. Overexpression of CD46 isomers BC1, BC2, and C2 enhanced infection. Further, CD46 knockout epithelial cells expressing CD46 deletion and chimeric molecules identified that the intact ectodomain was critical for rescue of HCMV infection in CD46 knockout cells. Collectively, these data support a model that the extracellular domain of CD46 participates in HCMV infection due to its surface expression.


Asunto(s)
Infecciones por Citomegalovirus , Células Endoteliales , Proteína Cofactora de Membrana , Humanos , Membrana Celular , Citomegalovirus/genética , Infecciones por Citomegalovirus/genética , Células Epiteliales , Proteína Cofactora de Membrana/genética
13.
J Clin Immunol ; 43(8): 1840-1856, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37477760

RESUMEN

Mutations in CD46 predispose to atypical hemolytic uremic syndrome (aHUS) with low penetrance. Factors driving immune-dysregulatory disease in individual mutation carriers have remained ill-understood. In addition to its role as a negative regulator of the complement system, CD46 modifies T cell-intrinsic metabolic adaptation and cytokine production. Comparative immunologic analysis of diseased vs. healthy CD46 mutation carriers has not been performed in detail yet. In this study, we comprehensively analyzed clinical, molecular, immune-phenotypic, cytokine secretion, immune-metabolic, and genetic profiles in healthy vs. diseased individuals carrying a rare, heterozygous CD46 mutation identified within a large single family. Five out of six studied individuals carried a CD46 gene splice-site mutation causing an in-frame deletion of 21 base pairs. One child suffered from aHUS and his paternal uncle manifested with adult-onset systemic lupus erythematosus (SLE). Three mutation carriers had no clinical evidence of CD46-related disease to date. CD4+ T cell-intrinsic CD46 expression was uniformly 50%-reduced but was comparable in diseased vs. healthy mutation carriers. Reconstitution experiments defined the 21-base pair-deleted CD46 variant as intracellularly-but not surface-expressed and haploinsufficient. Both healthy and diseased mutation carriers displayed reduced CD46-dependent T cell mitochondrial adaptation. Diseased mutation carriers had lower peripheral regulatory T cell (Treg) frequencies and carried potentially epistatic, private rare variants in other inborn errors of immunity (IEI)-associated proinflammatory genes, not found in healthy mutation carriers. In conclusion, low Treg and rare non-CD46 immune-gene variants may contribute to clinically manifest CD46 haploinsufficiency-associated immune-dysregulation.


Asunto(s)
Familia , Haploinsuficiencia , Adulto , Niño , Humanos , Estado de Salud , Heterocigoto , Citocinas , Proteína Cofactora de Membrana/genética
14.
Viruses ; 15(7)2023 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-37515111

RESUMEN

CD46, or membrane cofactor protein, is a type-one transmembrane protein from the complement regulatory protein family. Alongside its role in complement activation, CD46 is involved in many other processes, from T-cell activation to reproduction. It is also referred to as a pathogen magnet, because it is used as a receptor by multiple bacteria and viruses. Bovine CD46 (bovCD46) in particular is involved in bovine viral diarrhoea virus entry, an economically important disease in cattle industries. This study presents the X-ray crystallographic structure of the extracellular region of bovCD46, revealing a four-short-consensus-repeat (SCR) structure similar to that in human CD46. SCR1-3 are arranged linearly, while SCR 4 has a reduced interface angle, resulting in a hockey stick-like appearance. The structure also reveals the bovine viral diarrhoea virus interaction site in SCR1, which is likely to confer pestivirus specificity for their target host, CD46. Insights gained from the structural information on pestivirus receptors, such as CD46, could offer valuable guidance for future control strategies.


Asunto(s)
Virus de la Diarrea Viral Bovina , Animales , Bovinos , Humanos , Activación de Complemento , Diarrea , Proteína Cofactora de Membrana
15.
Pathol Res Pract ; 247: 154519, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37244049

RESUMEN

We explored the pathological changes and the activation of local complement system in COVID-19 pneumonia. Lung paraffin sections of COVID-19 infected patients were analyzed by HE (hematoxylin-eosin) staining. The deposition of complement C3, the deposition of C3b/iC3b/C3d and C5b-9, and the expression of complement regulatory proteins, CD59, CD46 and CD55 were detected by immunohistochemistry. In COVID-19 patients' lung tissues, fibrin exudation, mixed with erythrocyte, alveolar macrophage and shed pneumocyte are usually observed in the alveoli. The formation of an "alveolar emboli" structure may contribute to thrombosis and consolidation in lung tissue. In addition, we also found that compared to normal tissue, the lung tissues of COVID-19 patients displayed the hyper-activation of complement that is represented by extensive deposition of C3, C3b/iC3b/C3d and C5b-9, and the increased expression level of complement regulatory proteins CD55, and especially CD59 but not CD46. The thrombosis and consolidation in lung tissues may contribute to the pathogenesis of COVID-19. The increased expression of CD55 and CD59 may reflect a feedback of self-protection on the complement hyper-activation. Further, the increased C3 deposition and the strongly activated complement system in lung tissues may suggest the rationale of complement-targeted therapeutics in conquering COVID-19.


Asunto(s)
COVID-19 , Complejo de Ataque a Membrana del Sistema Complemento , Humanos , Proteína Cofactora de Membrana , Antígenos CD55 , Pulmón , Complemento C3b
16.
Clin Cancer Res ; 29(10): 1916-1928, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36917693

RESUMEN

PURPOSE: Radiopharmaceutical therapy is changing the standard of care in prostate cancer and other malignancies. We previously reported high CD46 expression in prostate cancer and developed an antibody-drug conjugate and immunoPET agent based on the YS5 antibody, which targets a tumor-selective CD46 epitope. Here, we present the preparation, preclinical efficacy, and toxicity evaluation of [225Ac]DOTA-YS5, a radioimmunotherapy agent based on the YS5 antibody. EXPERIMENTAL DESIGN: [225Ac]DOTA-YS5 was developed, and its therapeutic efficiency was tested on cell-derived (22Rv1, DU145), and patient-derived (LTL-545, LTL484) prostate cancer xenograft models. Biodistribution studies were carried out on 22Rv1 tumor xenograft models to confirm the targeting efficacy. Toxicity analysis of the [225Ac]DOTA-YS5 was carried out on nu/nu mice to study short-term (acute) and long-term (chronic) toxicity. RESULTS: Biodistribution study shows that [225Ac]DOTA-YS5 agent delivers high levels of radiation to the tumor tissue (11.64% ± 1.37%ID/g, 28.58% ± 10.88%ID/g, 29.35% ± 7.76%ID/g, and 31.78% ± 5.89%ID/g at 24, 96, 168, and 408 hours, respectively), compared with the healthy organs. [225Ac]DOTA-YS5 suppressed tumor size and prolonged survival in cell line-derived and patient-derived xenograft models. Toxicity analysis revealed that the 0.5 µCi activity levels showed toxicity to the kidneys, likely due to redistribution of daughter isotope 213Bi. CONCLUSIONS: [225Ac]DOTA-YS5 suppressed the growth of cell-derived and patient-derived xenografts, including prostate-specific membrane antigen-positive and prostate-specific membrane antigen-deficient models. Overall, this preclinical study confirms that [225Ac]DOTA-YS5 is a highly effective treatment and suggests feasibility for clinical translation of CD46-targeted radioligand therapy in prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Radioisótopos , Ratones , Masculino , Animales , Humanos , Radioisótopos/uso terapéutico , Actinio/uso terapéutico , Bismuto , Radioinmunoterapia , Partículas alfa/uso terapéutico , Distribución Tisular , Neoplasias de la Próstata/radioterapia , Neoplasias de la Próstata/tratamiento farmacológico , Proteína Cofactora de Membrana
17.
J Exp Clin Cancer Res ; 42(1): 61, 2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36906664

RESUMEN

We recently identified CD46 as a novel prostate cancer cell surface antigen that shows lineage independent expression in both adenocarcinoma and small cell neuroendocrine subtypes of metastatic castration resistant prostate cancer (mCRPC), discovered an internalizing human monoclonal antibody YS5 that binds to a tumor selective CD46 epitope, and developed a microtubule inhibitor-based antibody drug conjugate that is in a multi-center phase I trial for mCRPC (NCT03575819). Here we report the development of a novel CD46-targeted alpha therapy based on YS5. We conjugated 212Pb, an in vivo generator of alpha-emitting 212Bi and 212Po, to YS5 through the chelator TCMC to create the radioimmunoconjugate, 212Pb-TCMC-YS5. We characterized 212Pb-TCMC-YS5 in vitro and established a safe dose in vivo. We next studied therapeutic efficacy of a single dose of 212Pb-TCMC-YS5 using three prostate cancer small animal models: a subcutaneous mCRPC cell line-derived xenograft (CDX) model (subcu-CDX), an orthotopically grafted mCRPC CDX model (ortho-CDX), and a prostate cancer patient-derived xenograft model (PDX). In all three models, a single dose of 0.74 MBq (20 µCi) 212Pb-TCMC-YS5 was well tolerated and caused potent and sustained inhibition of established tumors, with significant increases of survival in treated animals. A lower dose (0.37 MBq or 10 µCi 212Pb-TCMC-YS5) was also studied on the PDX model, which also showed a significant effect on tumor growth inhibition and prolongation of animal survival. These results demonstrate that 212Pb-TCMC-YS5 has an excellent therapeutic window in preclinical models including PDXs, opening a direct path for clinical translation of this novel CD46-targeted alpha radioimmunotherapy for mCRPC treatment.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Radioinmunoterapia , Masculino , Animales , Humanos , Radioinmunoterapia/métodos , Plomo , Partículas alfa , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Radioisótopos de Plomo/uso terapéutico , Proteína Cofactora de Membrana
18.
Int Immunopharmacol ; 114: 109450, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36446233

RESUMEN

CD46, CD55 and CD59 are membrane-bound complement regulatory proteins (mCRPs) and highly expressed in many tumor tissues. Our analysis by RNA sequencing and qRT-PCR revealed that the expression of mCRPs was significantly elevated in cancer tissues of 15 patients with colon cancer. To further investigate the role of mCRPs in the development of colon cancer, we suppressed the expression of mCRPs by CD46-shRNA, CD55-shRNA and CD59-shRNA in colon cancer cell lines, SW620 and HT-29 cells. The results indicated that CD46-shRNA, CD55-shRNA and CD59-shRNA effectively reduced the expression of mCRPs, accompanied with the increased LDH release and the percentage of Annexin V + 7-AAD- early phase of apoptotic cells. The similar cytotoxic effects were also observed in the cells treated with CD46 neutralizing antibody (aCD46), associated with the increased C5b-9 deposition, cleaved caspase-3 and Bax expression in the treated cells. The cytotoxic effects by mCRPs knock-down were potentiated in the cells co-treated with doxorubicin (Dox). In addition, STAT3, STAT6, and p38 MAPK inhibitors, including C188-9, AS1517499 and SB203580 effectively reduced the expression of CD46 in the treated colon cells, associated with increased cell apoptosis and LDH release. Further study with mouse model revealed that mCRPs knockdown by mCRPs-shRNA significantly reduced colon cancer growth, associated with increased expression of Bax, cleaved caspase-3 and C5b-9 deposition, but reduced expression of Bcl-2, IL-6 and IL-1beta in tumor tissues of nude mice transplanted with SW620 cells. Thereby, mCRPs expression in human colon cancer cells were upregulated by STAT3/STAT6/p38 MAPK signaling and mCRPs knockdown reduced colon cancer growth in mice through inducing tumor cell apoptosis.


Asunto(s)
Neoplasias del Colon , Complejo de Ataque a Membrana del Sistema Complemento , Humanos , Animales , Ratones , Caspasa 3 , Ratones Desnudos , Proteína X Asociada a bcl-2 , Activación de Complemento , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/metabolismo , Proteínas del Sistema Complemento/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Antígenos CD55/genética , Antígenos CD55/metabolismo , Factores Inmunológicos , ARN Interferente Pequeño/genética
19.
Clin Exp Immunol ; 211(1): 57-67, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36571232

RESUMEN

The overexpression of membrane-bound complement regulatory proteins (mCRPs) on tumour cells helps them survive complement attacks by suppressing antibody-mediated complement-dependent cytotoxicity (CDC). Consequently, mCRP overexpression limits monoclonal antibody drug immune efficacy. CD55, an mCRP, plays an important role in inhibiting antibody-mediated CDC. However, the mechanisms regulating CD55 expression in tumour cells remain unclear. Here, the aim was to explore CD55-targeting miRNAs. We previously constructed an in vitro model comprising cancer cell lines expressing α-gal and serum containing natural antibodies against α-gal and complement. This was used to simulate antibody-mediated CDC in colon cancer cells. We screened microRNAs that directly target CD55 using LoVo and Ls-174T colon cell lines, which express CD55 at low and high levels, respectively. miR-132-3p expression was dramatically lower in Ls-174T cells than in LoVo cells. miR-132-3p overexpression or inhibition transcriptionally regulated CD55 expression by specifically targeting its mRNA 3'-untranslated regions. Further, miR-132-3p modulation regulated colon cancer cell sensitivity to antibody-mediated CDC through C5a release and C5b-9 deposition. Moreover, miR-132-3p expression was significantly reduced, whereas CD55 expression was increased, in colon cancer tissues compared to levels in adjacent normal tissues. CD55 protein levels were negatively correlated with miR-132-3p expression in colon cancer tissues. Our results indicate that miR-132-3p regulates colon cancer cell sensitivity to antibody-mediated CDC by directly targeting CD55. In addition, incubating the LoVo human tumour cell line, stably transfected with the xenoantigen α-gal, with human serum containing natural antibodies comprises a stable and cheap in vitro model to explore the mechanisms underlying antibody-mediated CDC.


Asunto(s)
Neoplasias del Colon , MicroARNs , Humanos , Activación de Complemento , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/metabolismo , Antígenos CD59/genética , Antígenos CD59/metabolismo , Antígenos CD55/genética , Proteínas del Sistema Complemento , Neoplasias del Colon/genética , MicroARNs/genética , Línea Celular Tumoral
20.
Sci Rep ; 12(1): 22420, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575233

RESUMEN

Epidermal growth factor receptor (EGFR) is an effective target for those patients with metastatic colorectal cancers that retain the wild-type RAS gene. However, its efficacy in many cancers, including bladder cancer, is unclear. Here, we studied the in vitro effects of cetuximab monoclonal antibodies (mAbs) targeting EGFR on the bladder cancer cells and role of CD46. Cetuximab was found to inhibit the growth of both colon and bladder cancer cell lines. Furthermore, cetuximab treatment inhibited AKT and ERK phosphorylation in the bladder cancer cells and reduced the expression of CD46 membrane-bound proteins. Restoration of CD46 expression protected the bladder cancer cells from cetuximab-mediated inhibition of AKT and ERK phosphorylation. We hypothesized that CD46 provides protection to the bladder cancer cells against mAb therapies. Bladder cancer cells were also susceptible to cetuximab-mediated immunologic anti-tumor effects. Further, cetuximab enhanced the cell killing by activating both antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) in bladder cancer cells. Restoration of CD46 expression protected the cells from both CDC and ADCC induced by cetuximab. Together, CD46 exhibited a cancer-protective effect against both direct (by involvement of PBMC or complement) and indirect cytotoxic activity by cetuximab in bladder cancer cells. Considering its clinical importance, CD46 could be an important link in the action mechanism of ADCC and CDC intercommunication and may be used for the development of novel therapeutic strategies.


Asunto(s)
Antineoplásicos , Neoplasias de la Vejiga Urinaria , Humanos , Cetuximab/farmacología , Leucocitos Mononucleares/metabolismo , Proteínas Proto-Oncogénicas c-akt , Anticuerpos Monoclonales Humanizados/farmacología , Línea Celular Tumoral , Antineoplásicos/farmacología , Anticuerpos Monoclonales/farmacología , Receptores ErbB/metabolismo , Citotoxicidad Celular Dependiente de Anticuerpos , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Proteína Cofactora de Membrana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA