Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 168
1.
J Mol Med (Berl) ; 102(3): 391-402, 2024 03.
Article En | MEDLINE | ID: mdl-38285093

Amyotrophic lateral sclerosis (ALS) is an age-dependent neurodegenerative disease affecting motor neurons in the spinal cord and brainstem whose etiopathogenesis remains unclear. Recent studies have linked major neurodegenerative diseases with altered function of multimolecular lipid-protein complexes named lipid rafts. In the present study, we have isolated lipid rafts from the anterior horn of the spinal cords of controls and ALS individuals and analysed their lipid composition. We found that ALS affects levels of different fatty acids, lipid classes and related ratios and indexes. The most significant changes affected the contents of n-9/n-7 monounsaturated fatty acids and arachidonic acid, the main n-6 long-chain polyunsaturated fatty acid (LCPUFA), which were higher in ALS lipid rafts. Paralleling these findings, ALS lipid rafts lower saturates-to-unsaturates ratio compared to controls. Further, levels of cholesteryl ester (SE) and anionic-to-zwitterionic phospholipids ratio were augmented in ALS lipid rafts, while sulfatide contents were reduced. Further, regression analyses revealed augmented SE esterification to (mono)unsaturated fatty acids in ALS, but to saturates in controls. Overall, these changes indicate that lipid rafts from ALS spinal cord undergo destabilization of the lipid structure, which might impact their biophysical properties, likely leading to more fluid membranes. Indeed, estimations of membrane microviscosity confirmed less viscous membranes in ALS, as well as more mobile yet smaller lipid rafts compared to surrounding membranes. Overall, these results demonstrate that the changes in ALS lipid rafts are unrelated to oxidative stress, but to anomalies in lipid metabolism and/or lipid raft membrane biogenesis in motor neurons. KEY MESSAGES: The lipid matrix of multimolecular membrane complexes named lipid rafts are altered in human spinal cord in sporadic amyotrophic lateral sclerosis (ALS). Lipid rafts from ALS spinal cord contain higher levels of n-6 LCPUFA (but not n-3 LCPUFA), n-7/n-9 monounsaturates and lower saturates-to-unsaturates ratio. ALS lipid rafts display increased contents of cholesteryl esters, anomalous anionic-to-zwitterionic phospholipids and phospholipid remodelling and reduced sulphated and total sphingolipid levels, compared to control lipid rafts. Destabilization of the lipid structure of lipid raft affects their biophysical properties and leads to more fluid, less viscous membrane microdomains. The changes in ALS lipid rafts are unlikely related to increased oxidative stress, but to anomalies in lipid metabolism and/or raft membrane biogenesis in motor neurons.


Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Humans , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Neurodegenerative Diseases/metabolism , Lipids , Membrane Microdomains/metabolism , Membrane Microdomains/pathology
2.
Cancer Genomics Proteomics ; 19(5): 540-555, 2022.
Article En | MEDLINE | ID: mdl-35985681

BACKGROUND/AIM: Multiple myeloma (MM) is characterized by accumulation of a malignant clone of plasma cells in the bone marrow. Curative treatments are not yet available. Therefore, we undertook a drug repurposing approach to identify possible candidates from a chemical library of 1,230 FDA-approved drugs by virtual drug screening. As a target, we have chosen the non-receptor Bruton's tyrosine kinase (BTK) which is one of the main regulators of the MM biomarker CD38. MATERIALS AND METHODS: In silico virtual screening was performed by using PyRx. Flow cytometry was applied for cell cycle and apoptosis analysis. Furthermore, protein and gene expression was determined by western blotting and microarray hybridization. Lipid raft staining was observed by confocal microscopy. RESULTS: The in silico identified lipid-lowering lomitapide presented with the strongest cytotoxicity among the top 10 drug candidates. This drug arrested the cell cycle in the G2/M phase and induced apoptosis in MM cells. Western blot analyses revealed that treatment with lomitapide induced cleavage of the apoptosis regulator PARP and reduced the expression of CD38, an integral part of lipid rafts. Using confocal microscopy, we further observed that lipid raft microdomain formation in MM cells was inhibited by lomitapide. In four MM cell lines (KMS-12-BM, NCI-H929, RPMI-8226, and MOLP-8) treated with lomitapide, microarray analyses showed not only that the expression of CD38 and BTK was down-regulated, but also that the tumor suppressor gene TP53 and the oncogene c-MYC were among the top deregulated genes. Further analysis of these data by Ingenuity pathway analysis (IPA) suggested that lomitapide interferes with the cross-talk of CD38 and BTK and apoptosis-regulating genes via TP53 and c-MYC. CONCLUSION: Lomitapide treatment led to disruption of lipid raft domains and induction of pro-apoptotic factors and might, therefore, be considered as a potential therapeutic agent in MM.


Benzimidazoles , Membrane Microdomains , Multiple Myeloma , Signal Transduction , ADP-ribosyl Cyclase 1/genetics , ADP-ribosyl Cyclase 1/metabolism , Apoptosis/drug effects , Benzimidazoles/pharmacology , Cell Line, Tumor , Humans , Membrane Microdomains/genetics , Membrane Microdomains/metabolism , Membrane Microdomains/pathology , Multiple Myeloma/drug therapy , Multiple Myeloma/pathology , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
3.
J Alzheimers Dis ; 87(3): 1189-1203, 2022.
Article En | MEDLINE | ID: mdl-35431249

BACKGROUND: Amyloid-ß (Aß) oligomers induce the overproduction of phosphorylated tau and neurodegeneration. These cascades gradually cause cognitive impairment in Alzheimer's disease (AD). While each pathological event in AD has been studied in detail separately, the spatial and temporal relationships between pathological events in AD remain unclear. OBJECTIVE: We demonstrated that lipid rafts function as a common platform for the pathological cascades of AD. METHODS: Cellular and synaptosomal lipid rafts were prepared from the brains of Aß amyloid model mice (Tg2576 mice) and double transgenic mice (Tg2576 x TgTauP301L mice) and longitudinally analyzed. RESULTS: Aß dimers, the cellular prion protein (PrPc), and Aß dimer/PrPc complexes were detected in the lipid rafts. The levels of Fyn, the phosphorylated NR2B subunit of the N-methyl-D-aspartate receptor, glycogen synthase kinase 3ß, total tau, phosphorylated tau, and tau oligomers increased with Aß dimer accumulation in both the cellular and synaptosomal lipid rafts. Increases in the levels of these molecules were first seen at 6 months of age and corresponded with the early stages of Aß accumulation in the amyloid model mice. CONCLUSION: Lipid rafts act as a common platform for the progression of AD pathology. The findings of this study suggest a novel therapeutic approach to AD, involving the modification of lipid raft components and the inhibition of their roles in the sequential pathological events of AD.


Alzheimer Disease , Amyloid beta-Peptides , Membrane Microdomains , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/analysis , Amyloid beta-Peptides/metabolism , Animals , Disease Models, Animal , Membrane Microdomains/metabolism , Membrane Microdomains/pathology , Mice , Mice, Transgenic , Phosphorylation , Prion Proteins/analysis , Prion Proteins/metabolism , tau Proteins/metabolism
4.
Bioengineered ; 13(4): 9780-9791, 2022 04.
Article En | MEDLINE | ID: mdl-35412433

Matrine exhibits anti-tumor effect on the proliferation and invasion of colorectal cancer (CRC) cells by reducing the activity of the p38 signaling pathway. However, these studies were limited because the underlying mechanism by which matrine inhibited CRC progression remained unclear. In this study, we provided for the first time that endoplasmic reticulum lipid raft associated protein 1 (Erlin1) is a novel target of matrine. Erlin1 was significantly upregulated in tumors and its knockdown suppressed the proliferation and migration of CRC cells, while its overexpression promoted CRC cell growth and migration. Furthermore, Erlin1 overexpression promoted inhibited apoptosis. Importantly, matrine treatment could reverse the oncogenic function of Erlin1 on CRC cell proliferation and migration. When Erlin1 was knocked down, matrine exhibited a more obvious anti-tumor effect in CRC cells. Partly due to this, matrine functions as an important anti-tumor drug and the results discovered here may clarify the mechanisms of matrine application for CRC treatment. CRC patients with low expression of Erlin1 might be more suitable for the treatment of matrine. This study could promote the application of matrine to be a promising therapeutic strategy for CRC patients.


Apoptosis , Colorectal Neoplasms , Alkaloids , Apoptosis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Colorectal Neoplasms/metabolism , Endoplasmic Reticulum/metabolism , Humans , Membrane Microdomains/metabolism , Membrane Microdomains/pathology , Quinolizines , Matrines
5.
Blood Adv ; 6(12): 3611-3624, 2022 06 28.
Article En | MEDLINE | ID: mdl-35298613

Lipid raft-associated proteins play a vital role in membrane-mediated processes. The lipid microdomain-associated protein flotillin 2 (FLOT2), which has a scaffolding function, is involved in polarization, as well as in actin cytoskeletal organization of primitive and mature hematopoietic cells and has been associated with different malignancies. However, its involvement in myeloid leukemias is not well studied. Using murine transplantation models, we show here that the absence of FLOT2 from leukemia-initiating cells (LICs) altered the disease course of BCR-ABL1+ chronic myeloid leukemia (CML), but not of MLL-AF9-driven acute myeloid leukemia (AML). While FLOT2 was required for expression of the adhesion molecule CD44 on both CML- and AML-LIC, a defect in the cytoskeleton, cell polarity, and impaired homing ability of LIC was only observed in FLOT2-deficient BCR-ABL1+ compared with MLL-AF9+ cells. Downstream of CD44, BCR-ABL1 kinase-independent discrepancies were observed regarding expression, localization, and activity of cell division control protein 42 homolog (CDC42) between wild-type (WT) and FLOT2-deficient human CML and AML cells. Inhibition of CDC42 by ML141 impaired the homing of CML LIC and, thereby, CML progression. This suggested that alteration of both CD44 and CDC42 may be causative of impaired CML progression in the absence of FLOT2. In summary, our data suggest a FLOT2-CD44-CDC42 axis, which differentially regulates CML vs AML progression, with deficiency of FLOT2 impairing the development of CML.


Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Leukemia, Myeloid, Acute , Animals , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Membrane Microdomains/metabolism , Membrane Microdomains/pathology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice
6.
FASEB J ; 35(12): e22046, 2021 12.
Article En | MEDLINE | ID: mdl-34800307

Hexosaminidase A (HexA), a heterodimer consisting of HEXA and HEXB, converts the ganglioside sphingolipid GM2 to GM3 by removing a terminal N-acetyl-d-galactosamine. HexA enzyme deficiency in humans leads to GM2 accumulation in cells, particularly in neurons, and is associated with neurodegeneration. While HexA and sphingolipid metabolism have been extensively investigated in the context of neuronal lipid metabolism, little is known about the metabolic impact of HexA and ganglioside degradation in other tissues. Here, we focussed on the role of HexA in the liver, which is a major regulator of systemic lipid metabolism. We find that hepatic Hexa expression is induced by lipid availability and increased in the presence of hepatic steatosis, which is associated with increased hepatic GM3 content. To assess the impact of HEXA on hepatic lipid metabolism, we used an adeno-associated virus to overexpress HEXA in the livers of high-fat diet fed mice. HEXA overexpression was associated with increased hepatic GM3 content and increased expression of enzymes involved in the degradation of glycated sphingolipids, ultimately driving sphingomyelin accumulation in the liver. In addition, HEXA overexpression led to substantial proteome remodeling in cell surface lipid rafts, which was associated with increased VLDL processing and secretion, hypertriglyceridemia and ectopic lipid accumulation in peripheral tissues. This study established an important role of HEXA in modulating hepatic sphingolipid and lipoprotein metabolism.


Fatty Liver/pathology , Hexosaminidase A/metabolism , Hypertriglyceridemia/pathology , Lipids/analysis , Lipoproteins, VLDL/metabolism , Membrane Microdomains/pathology , Sphingolipids/metabolism , Animals , Fatty Liver/etiology , Fatty Liver/metabolism , Hexosaminidase A/genetics , Hypertriglyceridemia/etiology , Hypertriglyceridemia/metabolism , Membrane Microdomains/metabolism , Mice , Mice, Inbred C57BL
7.
Arterioscler Thromb Vasc Biol ; 41(11): 2708-2725, 2021 11.
Article En | MEDLINE | ID: mdl-34551590

Objective: To investigate the role of adipocyte Pcpe2 (procollagen C-endopeptidase enhancer 2) in SR-BI (scavenger receptor class BI)-mediated HDL-C (high-density lipoprotein cholesterol) uptake and contributions to adipose lipid storage. Approach and Results: Pcpe2, a glycoprotein devoid of intrinsic proteolytic activity, is believed to participate in extracellular protein-protein interactions, supporting SR-BI- mediated HDL-C uptake. In published studies, Pcpe2 deficiency increased the development of atherosclerosis by reducing SR-BI-mediated HDL-C catabolism, but the biological impact of this deficiency on adipocyte SR-BI-mediated HDL-C uptake is unknown. Differentiated cells from Ldlr-/-/Pcpe2-/- (Pcpe2-/-) mouse adipose tissue showed elevated SR-BI protein levels, but significantly reduced HDL-C uptake compared to Ldlr-/- (control) adipose tissue. SR-BI-mediated HDL-C uptake was restored by preincubation of cells with exogenous Pcpe2. In diet-fed mice lacking Pcpe2, significant reductions in visceral, subcutaneous, and brown adipose tissue mass were observed, despite elevations in plasma triglyceride and cholesterol concentrations. Significant positive correlations exist between adipose mass and Pcpe2 expression in both mice and humans. Conclusions: Overall, these findings reveal a novel and unexpected function for Pcpe2 in modulating SR-BI expression and function as it relates to adipose tissue expansion and cholesterol balance in both mice and humans.


Adipocytes/metabolism , Atherosclerosis/metabolism , Cholesterol, HDL/metabolism , Glycoproteins/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Microdomains/metabolism , Obesity/metabolism , Scavenger Receptors, Class B/metabolism , Subcutaneous Fat/metabolism , Adipocytes/pathology , Adipogenesis , Adiposity , Adult , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , CHO Cells , Caveolin 1/metabolism , Cricetulus , Diet, High-Fat , Disease Models, Animal , Energy Metabolism , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Female , Glycoproteins/genetics , Humans , Inflammation Mediators/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Male , Membrane Microdomains/genetics , Membrane Microdomains/pathology , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Obesity/genetics , Obesity/pathology , Receptors, LDL/genetics , Receptors, LDL/metabolism , Scavenger Receptors, Class B/genetics , Subcutaneous Fat/pathology
8.
Acta Biochim Biophys Sin (Shanghai) ; 53(8): 1088-1097, 2021 Jul 28.
Article En | MEDLINE | ID: mdl-34153089

Sepsis is a systemic inflammatory response syndrome with high mortality. It has been reported that brefeldin A-inhibited guanine nucleotide-exchange factor 1 (BIG1) is involved in the pathogenesis of sepsis. However, the mechanism is not fully elucidated. In the present study, we explored the role of BIG1 in mediating lipid raft-dependent macrophage inflammatory response and its impact on lung injury in murine sepsis. In vitro studies revealed that BIG1 deficiency reduces the upregulation and secretion of tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and IL-1ß and inhibits the activation of the toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88-dependent nuclear factor kappa-B signaling pathway induced by the lipopolysaccharide (LPS) treatment. Further experiments revealed that the inhibitory effects of BIG1 deficiency on LPS-induced inflammation are due to the upregulation of adenosine triphosphate-binding cassette transporter A1. This promotes the free-cholesterol efflux from lipid rafts and results in the reduction of lipid raft TLR4 content. The decrease in TLR4 content in lipid raft thereby inhibits the LPS-induced inflammatory response. Furthermore, using the cecal ligation and puncture-induced polymicrobial sepsis mouse model, we found that conditional knockout (cKO) of the myeloid cell BIG1 significantly reduced the serum concentrations of TNF-α, IL-6, and IL-1ß, and downregulated their mRNA expressions in the lungs. Pathological analysis confirmed that the BIG1 cKO alleviated the sepsis-induced lung injury. These results revealed the crucial new role of BIG1 in mediating lipid raft-dependent macrophage inflammatory response. Hence, BIG1 may be a potential promising therapeutic target for the treatment of septic lung injury.


Guanine Nucleotide Exchange Factors/metabolism , Lung Injury/metabolism , Macrophages/metabolism , Membrane Microdomains/metabolism , Sepsis/metabolism , Animals , Cytokines/metabolism , Guanine Nucleotide Exchange Factors/genetics , Lipopolysaccharides/toxicity , Lung Injury/etiology , Lung Injury/genetics , Macrophages/pathology , Membrane Microdomains/genetics , Membrane Microdomains/pathology , Mice , Mice, Knockout , RAW 264.7 Cells , Sepsis/chemically induced , Sepsis/complications , Sepsis/genetics , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism
9.
FASEB J ; 35(5): e21509, 2021 05.
Article En | MEDLINE | ID: mdl-33813781

Extracellular adenosine plays important roles in modulating the immune responses. We have previously demonstrated that infection of dendritic cells (DC) by Leishmania amazonensis leads to increased expression of CD39 and CD73 and to the selective activation of the low affinity A2B receptors (A2B R), which contributes to DC inhibition, without involvement of the high affinity A2A R. To understand this apparent paradox, we now characterized the alterations of both adenosine receptors in infected cells. With this aim, bone marrow-derived DC from C57BL/6J mice were infected with metacyclic promastigotes of L. amazonensis. Fluorescence microscopy revealed that L. amazonensis infection stimulates the recruitment of A2B R, but not of A2A R, to the surface of infected DC, without altering the amount of mRNA or the total A2B R density, an effect dependent on lipophosphoglycan (LPG). Log-phase promastigotes or axenic amastigotes of L. amazonensis do not stimulate A2B R recruitment. A2B R clusters are localized in caveolin-rich lipid rafts and the disruption of these membrane domains impairs A2B R recruitment and activation. More importantly, our results show that A2B R co-localize with CD39 and CD73 forming a "purinergic cluster" that allows for the production of extracellular adenosine in close proximity with these receptors. We conclude that A2B R activation by locally produced adenosine constitutes an elegant and powerful evasion mechanism used by L. amazonensis to down-modulate the DC activation.


5'-Nucleotidase/metabolism , Antigens, CD/metabolism , Apyrase/metabolism , Caveolin 1/metabolism , Dendritic Cells/immunology , Leishmaniasis/immunology , Membrane Microdomains/immunology , Receptor, Adenosine A2B/metabolism , Animals , Dendritic Cells/metabolism , Dendritic Cells/parasitology , Dendritic Cells/pathology , Immunity , Immunomodulation , Leishmania/immunology , Leishmaniasis/metabolism , Leishmaniasis/parasitology , Leishmaniasis/pathology , Macrophages/immunology , Macrophages/metabolism , Macrophages/parasitology , Macrophages/pathology , Male , Membrane Microdomains/parasitology , Membrane Microdomains/pathology , Mice , Mice, Inbred C57BL
10.
Int J Mol Sci ; 22(8)2021 Apr 11.
Article En | MEDLINE | ID: mdl-33920464

Salmon calcitonin is a good model for studying amyloid behavior and neurotoxicity. Its slow aggregation rate allows the purification of low molecular weight prefibrillar oligomers, which are the most toxic species. It has been proposed that these species may cause amyloid pore formation in neuronal membranes through contact with negatively charged sialic acid residues of the ganglioside GM1. In particular, it has been proposed that an electrostatic interaction may be responsible for the initial contact between prefibrillar oligomers and GM1 contained in lipid rafts. Based on this evidence, the aim of our work was to investigate whether the neurotoxic action induced by calcitonin prefibrillar oligomers could be counteracted by treatment with neuraminidase, an enzyme that removes sialic acid residues from gangliosides. Therefore, we studied cell viability in HT22 cell lines and evaluated the effects on synaptic transmission and long-term potentiation by in vitro extracellular recordings in mouse hippocampal slices. Our results showed that treatment with neuraminidase alters the surface charges of lipid rafts, preventing interaction between the calcitonin prefibrillar oligomers and GM1, and suggesting that the enzyme, depending on the concentration used, may have a partial or total protective action in terms of cell survival and modulation of synaptic transmission.


Amyloid Neuropathies , Calcitonin/toxicity , Fish Proteins/toxicity , Neuraminidase/pharmacology , Salmon , Amyloid Neuropathies/chemically induced , Amyloid Neuropathies/metabolism , Amyloid Neuropathies/pathology , Amyloid Neuropathies/prevention & control , Animals , G(M1) Ganglioside/metabolism , Male , Membrane Microdomains/metabolism , Membrane Microdomains/pathology , Mice , Mice, Inbred BALB C , Static Electricity
11.
Toxins (Basel) ; 13(2)2021 02 12.
Article En | MEDLINE | ID: mdl-33673393

Human kidney epithelial cells are supposed to be directly involved in the pathogenesis of the hemolytic-uremic syndrome (HUS) caused by Shiga toxin (Stx)-producing enterohemorrhagic Escherichia coli (EHEC). The characterization of the major and minor Stx-binding glycosphingolipids (GSLs) globotriaosylceramide (Gb3Cer) and globotetraosylceramide (Gb4Cer), respectively, of primary human renal cortical epithelial cells (pHRCEpiCs) revealed GSLs with Cer (d18:1, C16:0), Cer (d18:1, C22:0), and Cer (d18:1, C24:1/C24:0) as the dominant lipoforms. Using detergent-resistant membranes (DRMs) and non-DRMs, Gb3Cer and Gb4Cer prevailed in the DRM fractions, suggesting their association with microdomains in the liquid-ordered membrane phase. A preference of Gb3Cer and Gb4Cer endowed with C24:0 fatty acid accompanied by minor monounsaturated C24:1-harboring counterparts was observed in DRMs, whereas the C24:1 fatty acid increased in relation to the saturated equivalents in non-DRMs. A shift of the dominant phospholipid phosphatidylcholine with saturated fatty acids in the DRM to unsaturated species in the non-DRM fractions correlated with the GSL distribution. Cytotoxicity assays gave a moderate susceptibility of pHRCEpiCs to the Stx1a and Stx2a subtypes when compared to highly sensitive Vero-B4 cells. The results indicate that presence of Stx-binding GSLs per se and preferred occurrence in microdomains do not necessarily lead to a high cellular susceptibility towards Stx.


Epithelial Cells/metabolism , Globosides/metabolism , Kidney Cortex/metabolism , Shiga Toxin 1/toxicity , Shiga Toxin 2/toxicity , Trihexosylceramides/metabolism , Animals , Cell Survival/drug effects , Chlorocebus aethiops , Epithelial Cells/pathology , Escherichia coli Infections/microbiology , Hemolytic-Uremic Syndrome/microbiology , Humans , Kidney Cortex/pathology , Membrane Microdomains/drug effects , Membrane Microdomains/metabolism , Membrane Microdomains/pathology , Primary Cell Culture , Protein Binding , Shiga Toxin 1/metabolism , Shiga Toxin 2/metabolism , Shiga-Toxigenic Escherichia coli/metabolism , Shiga-Toxigenic Escherichia coli/pathogenicity , Vero Cells
12.
Life Sci ; 273: 119300, 2021 May 15.
Article En | MEDLINE | ID: mdl-33662433

AIMS: Plasma hyperlipidemia is a protective factor in amyotrophic lateral sclerosis (ALS) while cholesterol-lowering drugs aggravate the pathology. We hypothesize that this phenomenon can be linked with membrane lipid alterations in the neuromuscular junctions (NMJs) occurring before motor neuron loss. METHODS: Neurotransmitter release in parallel with lipid membrane properties in diaphragm NMJs of SOD1G93A (mSOD) mice at nine weeks of age (pre-onset stage) were assessed. KEY FINDINGS: Despite on slight changes in spontaneous and evoked quantum release of acetylcholine, extracellular levels of choline at resting conditions, an indicator of non-quantum release, were significantly increased in mSOD mice. The use of lipid-sensitive fluorescent probes points to lipid raft disruption in the NMJs of mSOD mice. However, content of cholesterol, a key raft component was unchanged implying another pathway responsible for the loss of raft integrity. In the mSOD mice we found marked increase in levels of raft-destabilizing lipid ceramide. This was accompanied by enhanced ability to uptake of exogenous ceramide in NMJs. Acute and chronic administration of 25-hydroxycholesterol, whose levels increase due to hypercholesterolemia, recovered early alterations in membrane properties. Furthermore, chronic treatment with 25-hydroxycholesterol prevented increase in ceramide and extracellular choline levels as well as suppressed lipid peroxidation of NMJ membranes and fragmentation of end plates. SIGNIFICANCE: Thus, lipid raft disruption likely due to ceramide accumulation could be early event in ALS which may trigger neuromuscular abnormalities. Cholesterol derivative 25-hydroxycholesterol may serve as a molecule restoring the membrane and functional properties of NMJs at the early stage.


Amyotrophic Lateral Sclerosis/drug therapy , Disease Models, Animal , Hydroxycholesterols/pharmacology , Membrane Microdomains/drug effects , Muscle, Skeletal/drug effects , Superoxide Dismutase-1/physiology , Acetylcholine/metabolism , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Ceramides/metabolism , Cholesterol/metabolism , Female , Male , Membrane Microdomains/metabolism , Membrane Microdomains/pathology , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Neuromuscular Junction , Synaptic Transmission
13.
Methods Mol Biol ; 2187: 37-46, 2021.
Article En | MEDLINE | ID: mdl-32770500

The discovery of dynamic platforms in cell membranes, called lipid rafts or detergent resistant membrane domains, opened a new chapter on studies of membrane cell biology. Indeed, the analysis of lipid rafts enabled innovative ways to understand cellular and molecular mechanisms regulating normal and pathological processes. Lipid rafts have been studied in most cell types, where they work by providing transient and fluid architectural scaffolding platforms regulating a spectrum of important signaling pathways, including receptor activities, protein-protein interactions, posttranslational modifications of proteins and lipids and the function of ion channels. In this chapter, we will explain how to isolate these membrane domains from neural tissue samples and perform further analysis of proteins and lipids.


Membrane Lipids/metabolism , Membrane Microdomains/metabolism , Membrane Microdomains/pathology , Nervous System Diseases/metabolism , Nervous System Diseases/pathology , Animals , Cell Membrane/metabolism , Cell Membrane/pathology , Ion Channels/metabolism , Membrane Proteins/metabolism , Mice , Protein Interaction Maps/physiology , Protein Processing, Post-Translational/physiology , Signal Transduction/physiology
14.
Oxid Med Cell Longev ; 2020: 8893305, 2020.
Article En | MEDLINE | ID: mdl-33274010

As an essential lipid, cholesterol is of great value in keeping cell homeostasis, being the precursor of bile acid and steroid hormones, and stabilizing membrane lipid rafts. As a kind of cholesterol metabolite produced by enzymatic or radical process, oxysterols have drawn much attention in the last decades. Among which, the role of 25-hydroxycholesterol (25-HC) in cholesterol and bile acid metabolism, antivirus process, and inflammatory response has been largely disclosed. This review is aimed at revealing these functions and underlying mechanisms of 25-HC.


Hydroxycholesterols/metabolism , Lipid Metabolism , Virus Diseases/metabolism , Animals , Cell Survival , Humans , Inflammation/metabolism , Inflammation/pathology , Inflammation/virology , Membrane Microdomains/pathology , Membrane Microdomains/virology , Virus Diseases/pathology
15.
Biomolecules ; 10(8)2020 07 29.
Article En | MEDLINE | ID: mdl-32751168

Red blood cell (RBC) deformability is altered in inherited RBC disorders but the mechanism behind this is poorly understood. Here, we explored the molecular, biophysical, morphological, and functional consequences of α-spectrin mutations in a patient with hereditary elliptocytosis (pEl) almost exclusively expressing the Pro260 variant of SPTA1 and her mother (pElm), heterozygous for this mutation. At the molecular level, the pEI RBC proteome was globally preserved but spectrin density at cell edges was increased. Decreased phosphatidylserine vs. increased lysophosphatidylserine species, and enhanced lipid peroxidation, methemoglobin, and plasma acid sphingomyelinase (aSMase) activity were observed. At the biophysical level, although membrane transversal asymmetry was preserved, curvature at RBC edges and rigidity were increased. Lipid domains were altered for membrane:cytoskeleton anchorage, cholesterol content and response to Ca2+ exchange stimulation. At the morphological and functional levels, pEl RBCs exhibited reduced size and circularity, increased fragility and impaired membrane Ca2+ exchanges. The contribution of increased membrane curvature to the pEl phenotype was shown by mechanistic experiments in healthy RBCs upon lysophosphatidylserine membrane insertion. The role of lipid domain defects was proved by cholesterol depletion and aSMase inhibition in pEl. The data indicate that aberrant membrane content and biophysical properties alter pEl RBC morphology and functionality.


Elliptocytosis, Hereditary/pathology , Erythrocyte Membrane/pathology , Erythrocytes/pathology , Cholesterol/analysis , Cholesterol/metabolism , Elliptocytosis, Hereditary/metabolism , Erythrocyte Membrane/chemistry , Erythrocyte Membrane/metabolism , Erythrocytes/chemistry , Erythrocytes/metabolism , Humans , Lysophospholipids/analysis , Lysophospholipids/metabolism , Membrane Fluidity , Membrane Microdomains/chemistry , Membrane Microdomains/pathology , Oxidative Stress
16.
Circ Res ; 127(8): 1074-1090, 2020 09 25.
Article En | MEDLINE | ID: mdl-32673515

RATIONALE: Atherosclerosis preferentially occurs at specific sites of the vasculature where endothelial cells (ECs) are exposed to disturbed blood flow. Translocation of integrin α5 to lipid rafts promotes integrin activation and ligation, which is critical for oscillatory shear stress (OSS)-induced EC activation. However, the underlying mechanism of OSS promoted integrin α5 lipid raft translocation has remained largely unknown. OBJECTIVE: The objective of this study was to specify the mechanotransduction mechanism of OSS-induced integrin α5 translocation and subsequent EC activation. METHODS AND RESULTS: Mass spectrometry studies identified endothelial ANXA2 (annexin A2) as a potential carrier allowing integrin α5ß1 to traffic in response to OSS. Interference by siRNA of AnxA2 in ECs greatly decreased OSS-induced integrin α5ß1 translocation to lipid rafts, EC activation, and monocyte adhesion. Pharmacological and genetic inhibition of PTP1B (protein tyrosine phosphatase 1B) blunted OSS-induced integrin α5ß1 activation, which is dependent on Piezo1-mediated calcium influx in ECs. Furthermore, ANXA2 was identified as a direct substrate of activated PTP1B by mass spectrometry. Using bioluminescence resonance energy transfer assay, PTP1B-dephosphorylated ANXA2 at Y24 was found to lead to conformational freedom of the C-terminal core domain from the N-terminal domain of ANXA2. Immunoprecipitation assays showed that this unmasked ANXA2-C-terminal core domain specifically binds to an integrin α5 nonconserved cytoplasmic domain but not ß1. Importantly, ectopic lentiviral overexpression of an ANXA2Y24F mutant increased and shRNA against Ptp1B decreased integrin α5ß1 ligation, inflammatory signaling, and progression of plaques at atheroprone sites in apolipoprotein E (ApoE)-/- mice. However, the antiatherosclerotic effect of Ptp1B shRNA was abolished in AnxA2-/-ApoE-/- mice. CONCLUSIONS: Our data elucidate a novel endothelial mechanotransduction molecular mechanism linking atheroprone flow and activation of integrin α5ß1, thereby identifying a class of potential therapeutic targets for atherosclerosis. Graphic Abstract: An graphic abstract is available for this article.


Annexin A2/metabolism , Atherosclerosis/metabolism , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Integrin alpha5/metabolism , Integrin alpha5beta1/metabolism , Membrane Microdomains/metabolism , Animals , Annexin A2/genetics , Atherosclerosis/genetics , Atherosclerosis/pathology , Atherosclerosis/physiopathology , Disease Models, Animal , Endothelial Cells/pathology , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , HEK293 Cells , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Inflammation Mediators/metabolism , Integrin alpha5/genetics , Integrin alpha5beta1/genetics , Integrins , Ion Channels/metabolism , Male , Mechanotransduction, Cellular , Membrane Microdomains/pathology , Mice, Knockout, ApoE , Plaque, Atherosclerotic , Protein Interaction Domains and Motifs , Protein Transport , Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Regional Blood Flow , Stress, Mechanical , THP-1 Cells
17.
Cancer Metastasis Rev ; 39(2): 343-360, 2020 06.
Article En | MEDLINE | ID: mdl-32314087

Several studies have demonstrated interactions between the two leaflets in membrane bilayers and the importance of specific lipid species for such interaction and membrane function. We here discuss these investigations with a focus on the sphingolipid and cholesterol-rich lipid membrane domains called lipid rafts, including the small flask-shaped invaginations called caveolae, and the importance of such membrane structures in cell biology and cancer. We discuss the possible interactions between the very long-chain sphingolipids in the outer leaflet of the plasma membrane and the phosphatidylserine species PS 18:0/18:1 in the inner leaflet and the importance of cholesterol for such interactions. We challenge the view that lipid rafts contain a large fraction of lipids with two saturated fatty acyl groups and argue that it is important in future studies of membrane models to use asymmetric membrane bilayers with lipid species commonly found in cellular membranes. We also discuss the need for more quantitative lipidomic studies in order to understand membrane function and structure in general, and the importance of lipid rafts in biological systems. Finally, we discuss cancer-related changes in lipid rafts and lipid composition, with a special focus on changes in glycosphingolipids and the possibility of using lipid therapy for cancer treatment.


Glycosphingolipids/metabolism , Membrane Microdomains/metabolism , Neoplasms/metabolism , Animals , Cell Membrane/metabolism , Cell Membrane/pathology , Cholesterol/metabolism , Humans , Lipid Bilayers/metabolism , Lipid Metabolism , Membrane Microdomains/pathology , Neoplasms/drug therapy , Neoplasms/pathology , Phosphatidylserines/metabolism , Sphingolipids/metabolism
18.
Cancer Metastasis Rev ; 39(2): 361-374, 2020 06.
Article En | MEDLINE | ID: mdl-32297092

Flotillins 1 and 2 are two ubiquitous, highly conserved homologous proteins that assemble to form heterotetramers at the cytoplasmic face of the plasma membrane in cholesterol- and sphingolipid-enriched domains. Flotillin heterotetramers can assemble into large oligomers to form molecular scaffolds that regulate the clustering of at the plasma membrane and activity of several receptors. Moreover, flotillins are upregulated in many invasive carcinomas and also in sarcoma, and this is associated with poor prognosis and metastasis formation. When upregulated, flotillins promote plasma membrane invagination and induce an endocytic pathway that allows the targeting of cargo proteins in the late endosomal compartment in which flotillins accumulate. These late endosomes are not degradative, and participate in the recycling and secretion of protein cargos. The cargos of this Upregulated Flotillin-Induced Trafficking (UFIT) pathway include molecules involved in signaling, adhesion, and extracellular matrix remodeling, thus favoring the acquisition of an invasive cellular behavior leading to metastasis formation. Thus, flotillin presence from the plasma membrane to the late endosomal compartment influences the activity, and even modifies the trafficking and fate of key protein cargos, favoring the development of diseases, for instance tumors. This review summarizes the current knowledge on flotillins and their role in cancer development focusing on their function in cellular membrane remodeling and vesicular trafficking regulation.


Membrane Proteins/metabolism , Neoplasms/metabolism , Animals , Carcinogenesis , Cell Membrane/metabolism , Humans , Membrane Microdomains/metabolism , Membrane Microdomains/pathology , Membrane Proteins/biosynthesis , Neoplasms/pathology
19.
Sci Rep ; 10(1): 3751, 2020 02 28.
Article En | MEDLINE | ID: mdl-32111883

A major characteristic of Alzheimer's disease (AD) is the accumulation of misfolded amyloid-ß (Aß) peptide. Several studies linked AD with type 2 diabetes due to similarities between Aß and human amylin. This study investigates the effect of amylin and pramlintide on Aß pathogenesis and the predisposing molecular mechanism(s) behind the observed effects in TgSwDI mouse, a cerebral amyloid angiopathy (CAA) and AD model. Our findings showed that thirty days of intraperitoneal injection with amylin or pramlintide increased Aß burden in mice brains. Mechanistic studies revealed both peptides altered the amyloidogenic pathway and increased Aß production by modulating amyloid precursor protein (APP) and γ-secretase levels in lipid rafts. In addition, both peptides increased levels of B4GALNT1 enzyme and GM1 ganglioside, and only pramlintide increased the level of GM2 ganglioside. Increased levels of GM1 and GM2 gangliosides play an important role in regulating amyloidogenic pathway proteins in lipid rafts. Increased brain Aß burden by amylin and pramlintide was associated with synaptic loss, apoptosis, and microglia activation. In conclusion, our findings showed amylin or pramlintide increase Aß levels and related pathology in TgSwDI mice brains, and suggest that increased amylin levels or the therapeutic use of pramlintide could increase the risk of AD.


Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Islet Amyloid Polypeptide/pharmacology , Membrane Microdomains/metabolism , Protein Processing, Post-Translational , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Protein Precursor/genetics , Animals , Cerebral Amyloid Angiopathy/genetics , Cerebral Amyloid Angiopathy/metabolism , Cerebral Amyloid Angiopathy/pathology , G(M1) Ganglioside/genetics , G(M1) Ganglioside/metabolism , G(M2) Ganglioside/genetics , G(M2) Ganglioside/metabolism , Membrane Microdomains/genetics , Membrane Microdomains/pathology , Mice , Mice, Transgenic , N-Acetylgalactosaminyltransferases/genetics , N-Acetylgalactosaminyltransferases/metabolism
20.
Biochim Biophys Acta Mol Basis Dis ; 1866(6): 165752, 2020 06 01.
Article En | MEDLINE | ID: mdl-32119897

Mood disorders like major depression and bipolar disorder (BD) are among the most prevalent forms of mental illness. Current knowledge of the neurobiology and pathophysiology of these disorders is still modest and clear biological markers are still missing. Thus, a better understanding of the underlying pathophysiological mechanisms to identify potential therapeutic targets is a prerequisite for the design of new drugs as well as to develop biomarkers that help in a more accurate and earlier diagnosis. Multiple pieces of evidence including genetic and neuro-imaging studies suggest that mood disorders are associated with abnormalities in endoplasmic-reticulum (ER)-related stress responses, mitochondrial function and calcium signalling. Furthermore, deregulation of the innate immune response has been described in patients diagnosed with mood disorders, including depression and BD. These disease-related events are associated with functions localized to a subdomain of the ER, known as Mitochondria-Associated Membranes (MAMs), which are lipid rafts-like domains that connect mitochondria and ER, both physically and biochemically. This review will outline the current understanding of the role of mitochondria and ER dysfunction under pathological brain conditions, particularly in major depressive disorder (MDD) and BD, that support the hypothesis that MAMs can act in these mood disorders as the link connecting ER-related stress response and mitochondrial impairment, as well as a mechanisms behind sterile inflammation arising from deregulation of innate immune responses. The role of MAMs in the pathophysiology of these pathologies and its potential relevance as a potential therapeutic target will be discussed.


Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mood Disorders/immunology , Calcium Signaling/genetics , Endoplasmic Reticulum/pathology , Endoplasmic Reticulum Stress/genetics , Humans , Immunity, Innate/genetics , Membrane Microdomains/genetics , Membrane Microdomains/pathology , Mitochondria/pathology , Mitochondrial Membranes/pathology , Mood Disorders/genetics , Mood Disorders/metabolism , Mood Disorders/pathology
...