Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25.358
1.
Physiol Res ; 73(2): 205-216, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38710050

ADHD is a common chronic neurodevelopmental disorder and is characterized by persistent inattention, hyperactivity, impulsivity and are often accompanied by learning and memory impairment. Great evidence has shown that learning and memory impairment of ADHD plays an important role in its executive function deficits, which seriously affects the development of academic, cognitive and daily social skills and will cause a serious burden on families and society. With the increasing attention paid to learning and memory impairment in ADHD, relevant research is gradually increasing. In this article, we will present the current research results of learning and memory impairment in ADHD from the following aspects. Firstly, the animal models of ADHD, which display the core symptoms of ADHD as well as with learning and memory impairment. Secondly, the molecular mechanism of has explored, including some neurotransmitters, receptors, RNAs, etc. Thirdly, the susceptibility gene of ADHD related to the learning and impairment in order to have a more comprehensive understanding of the pathogenesis. Key words: Learning and memory, ADHD, Review.


Attention Deficit Disorder with Hyperactivity , Memory Disorders , Attention Deficit Disorder with Hyperactivity/psychology , Attention Deficit Disorder with Hyperactivity/genetics , Humans , Animals , Memory Disorders/psychology , Memory Disorders/etiology , Learning , Disease Models, Animal , Learning Disabilities/psychology , Learning Disabilities/etiology , Memory
2.
Sci Rep ; 14(1): 11413, 2024 05 18.
Article En | MEDLINE | ID: mdl-38762560

Substance abuse among adolescents has become a growing issue throughout the world. The significance of research on this life period is based on the occurrence of neurobiological changes in adolescent brain which makes the individual more susceptible for risk-taking and impulsive behaviors. Alcohol and nicotine are among the most available drugs of abuse in adolescents. Prolonged consumption of nicotine and alcohol leads to drug dependence and withdrawal which induce various dysfunctions such as memory loss. Coenzyme Q10 (CoQ10) is known to improve learning and memory deficits induced by various pathological conditions such as Diabetes mellitus and Alzheimer's disease. In the present study we investigated whether CoQ10 treatment ameliorates memory loss following a nicotine-ethanol abstinence. Morris water maze and novel object recognition tests were done in male Wistar rats undergone nicotine-ethanol abstinence and the effect of CoQ10 was assessed on at behavioral and biochemical levels. Results indicated that nicotine-ethanol abstinence induces memory dysfunction which is associated with increased oxidative and inflammatory response, reduced cholinergic and neurotrophic function plus elevated Amyloid-B levels in hippocampi. CoQ10 treatment prevented memory deficits and biochemical alterations. Interestingly, this ameliorative effect of CoQ10 was found to be dose-dependent in most experiments and almost equipotential to that of bupropion and naloxone co-administration. CoQ10 treatment could effectively improve memory defects induced by nicotine-ethanol consumption through attenuation of oxidative damage, inflammation, amyloid-B level and enhancement of cholinergic and neurotrophic drive. Further studies are required to assess the unknown side effects and high dose tolerability of the drug in human subjects.


Hippocampus , Memory Disorders , Nicotine , Rats, Wistar , Ubiquinone , Animals , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Ubiquinone/administration & dosage , Male , Nicotine/adverse effects , Nicotine/administration & dosage , Hippocampus/metabolism , Hippocampus/drug effects , Memory Disorders/drug therapy , Memory Disorders/etiology , Memory Disorders/metabolism , Rats , Administration, Oral , Ethanol/adverse effects , Ethanol/administration & dosage , Alcohol Abstinence , Oxidative Stress/drug effects , Maze Learning/drug effects
3.
Mol Biol Rep ; 51(1): 640, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727848

Memory issues are a prevalent symptom in different neurodegenerative diseases and can also manifest in certain psychiatric conditions. Despite limited medications approved for treating memory problems, research suggests a lack of sufficient options in the market. Studies indicate that a significant percentage of elderly individuals experience various forms of memory disorders. Metformin, commonly prescribed for type 2 diabetes, has shown neuroprotective properties through diverse mechanisms. This study explores the potential of metformin in addressing memory impairments. The current research gathered its data by conducting an extensive search across electronic databases including PubMed, Web of Science, Scopus, and Google Scholar. Previous research suggests that metformin enhances brain cell survival and memory function in both animal and clinical models by reducing oxidative stress, inflammation, and cell death while increasing beneficial neurotrophic factors. The findings of the research revealed that metformin is an effective medication for enhancing various types of memory problems in numerous studies. Given the rising incidence of memory disorders, it is plausible to utilize metformin, which is an affordable and accessible drug. It is often recommended as a treatment to boost memory.


Memory Disorders , Metformin , Metformin/therapeutic use , Metformin/pharmacology , Memory Disorders/drug therapy , Humans , Animals , Oxidative Stress/drug effects , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/pharmacology , Memory/drug effects , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Brain/drug effects , Brain/metabolism
4.
Eur J Med Res ; 29(1): 271, 2024 May 06.
Article En | MEDLINE | ID: mdl-38711117

Dexmedetomidine (Dex) has been used in surgery to improve patients' postoperative cognitive function. However, the role of Dex in stress-induced anxiety-like behaviors and cognitive impairment is still unclear. In this study, we tested the role of Dex in anxiety-like behavior and cognitive impairment induced by acute restrictive stress and analyzed the alterations of the intestinal flora to explore the possible mechanism. Behavioral and cognitive tests, including open field test, elevated plus-maze test, novel object recognition test, and Barnes maze test, were performed. Intestinal gut Microbe 16S rRNA sequencing was analyzed. We found that intraperitoneal injection of Dex significantly improved acute restrictive stress-induced anxiety-like behavior, recognition, and memory impairment. After habituation in the environment, mice (male, 8 weeks, 18-23 g) were randomly divided into a control group (control, N = 10), dexmedetomidine group (Dex, N = 10), AS with normal saline group (AS + NS, N = 10) and AS with dexmedetomidine group (AS + Dex, N = 10). By the analysis of intestinal flora, we found that acute stress caused intestinal flora disorder in mice. Dex intervention changed the composition of the intestinal flora of acute stress mice, stabilized the ecology of the intestinal flora, and significantly increased the levels of Blautia (A genus of anaerobic bacteria) and Coprobacillus. These findings suggest that Dex attenuates acute stress-impaired learning and memory in mice by maintaining the homeostasis of intestinal flora.


Dexmedetomidine , Gastrointestinal Microbiome , Homeostasis , Stress, Psychological , Animals , Dexmedetomidine/pharmacology , Gastrointestinal Microbiome/drug effects , Mice , Male , Homeostasis/drug effects , Stress, Psychological/complications , Stress, Psychological/drug therapy , Memory/drug effects , Memory Disorders/drug therapy , Maze Learning/drug effects , Anxiety/drug therapy
5.
Recenti Prog Med ; 115(5): 215-217, 2024 May.
Article It | MEDLINE | ID: mdl-38708532

Following the Covid-19 pandemic, a new disease has emerged: Long Covid syndrome, about which we know little and on which too little research is being done. It is a chronic disease, which is diagnosed when Covid symptoms last more than 12 weeks. To date, there is no pharmacological or other approach to Long Covid. The main symptoms of Long Covid are pain similar to those of rheumatic and autoimmune diseases, headaches, concentration and memory disorders, sometimes also perceived as brain fog and fatigue. Research and education and sensible, bipartisan social policy, away from all ideologies, are needed to address this additional aspect of the SARS-CoV-2 pandemic.


COVID-19 , Post-Acute COVID-19 Syndrome , Humans , COVID-19/epidemiology , Pandemics , Memory Disorders/etiology , Memory Disorders/epidemiology
6.
Brain Behav ; 14(5): e3515, 2024 May.
Article En | MEDLINE | ID: mdl-38702895

INTRODUCTION: Maternal sleep deprivation (MSD), which induces inflammation and synaptic dysfunction in the hippocampus, has been associated with learning and memory impairment in offspring. Melatonin (Mel) has been shown to have anti-inflammatory, antioxidant, and neuroprotective function. However, the beneficial effect of Mel on MSD-induced cognitive impairment and its mechanisms are unknown. METHODS: In the present study, adult offspring suffered from MSD were injected with Mel (20 mg/kg) once a day during postnatal days 61-88. The cognitive function was evaluated by the Morris water maze test. Levels of proinflammatory cytokines were examined by enzyme-linked immunosorbent assay. The mRNA and protein levels of synaptic plasticity associated proteins were examined using reverse transcription-polymerase chain reaction and western blotting. RESULTS: The results showed that MSD impaired learning and memory in the offspring mice. MSD increased the levels of interleukin (IL)-1creIL-6, and tumor necrosis factor-α and decreased the expression levels of brain-derived neurotrophic factor, tyrosine kinase receptor B, postsynaptic density protein-95, and synaptophysin in the hippocampus. Furthermore, Mel attenuated cognitive impairment and restored markers of inflammation and synaptic plasticity to control levels. CONCLUSIONS: These findings indicated that Mel could ameliorate learning and memory impairment induced by MSD, and these beneficial effects were related to improvement in inflammation and synaptic dysfunction.


Hippocampus , Melatonin , Memory Disorders , Neuronal Plasticity , Sleep Deprivation , Animals , Melatonin/pharmacology , Melatonin/administration & dosage , Sleep Deprivation/complications , Sleep Deprivation/drug therapy , Sleep Deprivation/physiopathology , Mice , Male , Hippocampus/metabolism , Hippocampus/drug effects , Female , Memory Disorders/drug therapy , Memory Disorders/etiology , Memory Disorders/physiopathology , Neuronal Plasticity/drug effects , Inflammation/drug therapy , Inflammation/metabolism , Pregnancy , Maternal Deprivation , Cognitive Dysfunction/etiology , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/physiopathology , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/physiopathology , Brain-Derived Neurotrophic Factor/metabolism , Neuroinflammatory Diseases/drug therapy
7.
Hum Brain Mapp ; 45(7): e26691, 2024 May.
Article En | MEDLINE | ID: mdl-38703114

Verbal memory decline is a significant concern following temporal lobe surgeries in patients with epilepsy, emphasizing the need for precision presurgical verbal memory mapping to optimize functional outcomes. However, the inter-individual variability in functional networks and brain function-structural dissociations pose challenges when relying solely on group-level atlases or anatomical landmarks for surgical guidance. Here, we aimed to develop and validate a personalized functional mapping technique for verbal memory using precision resting-state functional MRI (rs-fMRI) and neurosurgery. A total of 38 patients with refractory epilepsy scheduled for surgical interventions were enrolled and 28 patients were analyzed in the study. Baseline 30-min rs-fMRI scanning, verbal memory and language assessments were collected for each patient before surgery. Personalized verbal memory networks (PVMN) were delineated based on preoperative rs-fMRI data for each patient. The accuracy of PVMN was assessed by comparing post-operative functional impairments and the overlapping extent between PVMN and surgical lesions. A total of 14 out of 28 patients experienced clinically meaningful declines in verbal memory after surgery. The personalized network and the group-level atlas exhibited 100% and 75.0% accuracy in predicting postoperative verbal memory declines, respectively. Moreover, six patients with extra-temporal lesions that overlapped with PVMN showed selective impairments in verbal memory. Furthermore, the lesioned ratio of the personalized network rather than the group-level atlas was significantly correlated with postoperative declines in verbal memory (personalized networks: r = -0.39, p = .038; group-level atlas: r = -0.19, p = .332). In conclusion, our personalized functional mapping technique, using precision rs-fMRI, offers valuable insights into individual variability in the verbal memory network and holds promise in precision verbal memory network mapping in individuals.


Brain Mapping , Magnetic Resonance Imaging , Humans , Female , Male , Adult , Young Adult , Brain Mapping/methods , Memory Disorders/etiology , Memory Disorders/diagnostic imaging , Memory Disorders/physiopathology , Middle Aged , Drug Resistant Epilepsy/surgery , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/physiopathology , Adolescent , Nerve Net/diagnostic imaging , Nerve Net/physiopathology , Nerve Net/surgery , Postoperative Complications/diagnostic imaging , Neurosurgical Procedures , Verbal Learning/physiology , Epilepsy, Temporal Lobe/surgery , Epilepsy, Temporal Lobe/diagnostic imaging , Epilepsy, Temporal Lobe/physiopathology
8.
Pharmacol Rep ; 76(3): 519-534, 2024 Jun.
Article En | MEDLINE | ID: mdl-38722542

BACKGROUND: Synthetic cathinones (SC) constitute the second most frequently abused class of new psychoactive substances. They serve as an alternative to classic psychostimulatory drugs of abuse, such as methamphetamine, cocaine, or 3,4-methylenedioxymethamphetamine (MDMA). Despite the worldwide prevalence of SC, little is known about their long-term impact on the central nervous system. Here, we examined the effects of repeated exposure of mice during infancy, to 3,4-methylenedioxypyrovalerone (MDPV), a SC potently enhancing dopaminergic neurotransmission, on learning and memory in young adult mice. METHODS: All experiments were performed on C57BL/6J male and female mice. Animals were injected with MDPV (10 or 20 mg/kg) and BrdU (bromodeoxyuridine, 25 mg/kg) during postnatal days 11-20, which is a crucial period for the development of their hippocampus. At the age of 12 weeks, mice underwent an assessment of various types of memory using a battery of behavioral tests. Afterward, their brains were removed for detection of BrdU-positive cells in the dentate gyrus of the hippocampal formation with immunohistochemistry, and for measurement of the expression of synaptic proteins, such as synaptophysin and PSD95, in the hippocampus using Western blot. RESULTS: Exposure to MDPV resulted in impairment of spatial working memory assessed with Y-maze spontaneous alternation test, and of object recognition memory. However, no deficits in hippocampus-dependent spatial learning and memory were found using the Morris water maze paradigm. Consistently, hippocampal neurogenesis and synaptogenesis were not interrupted. All observed MDPV effects were sex-independent. CONCLUSIONS: MDPV administered repeatedly to mice during infancy causes learning and memory deficits that persist into adulthood but are not related to aberrant hippocampal development.


Benzodioxoles , Hippocampus , Memory Disorders , Mice, Inbred C57BL , Pyrrolidines , Synthetic Cathinone , Animals , Benzodioxoles/administration & dosage , Benzodioxoles/pharmacology , Mice , Female , Male , Pyrrolidines/administration & dosage , Pyrrolidines/pharmacology , Memory Disorders/chemically induced , Hippocampus/drug effects , Hippocampus/metabolism , Maze Learning/drug effects , Central Nervous System/drug effects , Central Nervous System/metabolism , Memory/drug effects
9.
J Biochem Mol Toxicol ; 38(5): e23717, 2024 May.
Article En | MEDLINE | ID: mdl-38742857

Aluminum chloride (AlCl3) is a potent neurotoxic substance known to cause memory impairment and oxidative stress-dependent neurodegeneration. Naringenin (NAR) is a dietary flavonoid with potent antioxidant and anti-inflammatory properties which was implemented against AlCl3-induced neurotoxicity to ascertain its neuroprotective efficacy. Experimental neurotoxicity in mice was induced by exposure of AlCl3 (10 mg/kg, p.o.) followed by treatment with NAR (10 mg/kg, p.o.) for a total of 63 days. Assessed the morphometric, learning memory dysfunction (novel object recognition, T- and Y-maze tests), neuronal oxidative stress, and histopathological alteration in different regions of the brain, mainly cortex, hippocampus, thalamus, and cerebellum. AlCl3 significantly suppressed the spatial learning and memory power which were notably improved by administration of NAR. The levels of oxidative stress parameters nitric oxide, advanced oxidation of protein products, protein carbonylation, lipid peroxidation, superoxide dismutase, catalase, glutathione reductase, reduced glutathione, and the activity of acetylcholine esterase were altered 1.5-3 folds by AlCl3 significantly. Treatment of NAR remarkably restored the level of oxidative stress parameters and maintained the antioxidant defense system. AlCl3 suppressed the expression of neuronal proliferation marker NeuN that was restored by NAR treatment which may be a plausible mechanism. NAR showed therapeutic efficacy as a natural supplement against aluminum-intoxicated memory impairments and histopathological alteration through a mechanism involving an antioxidant defense system and neuronal proliferation.


Aluminum Chloride , Flavanones , Memory Disorders , Oxidative Stress , Animals , Flavanones/pharmacology , Flavanones/therapeutic use , Oxidative Stress/drug effects , Mice , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/metabolism , Aluminum Chloride/toxicity , Male , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Maze Learning/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
10.
Nutrients ; 16(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38732535

The abnormality in N6-methyladenosine (m6A) methylation is involved in the course of Alzheimer's disease (AD), while the intervention of 27-Hydroxycholesterol (27-OHC) can affect the m6A methylation modification in the brain cortex. Disordered gut microbiota is a key link in 27-OHC leading to cognitive impairment, and further studies have found that the abundance of Roseburia intestinalis in the gut is significantly reduced under the intervention of 27-OHC. This study aims to investigate the association of 27-OHC, Roseburia intestinalis in the gut, and brain m6A modification in the learning and memory ability injury. In this study, 9-month-old male C57BL/6J mice were treated with antibiotic cocktails for 6 weeks to sweep the intestinal flora, followed by 27-OHC or normal saline subcutaneous injection, and then Roseburia intestinalis or normal saline gavage were applied to the mouse. The 27-OHC level in the brain, the gut barrier function, the m6A modification in the brain, and the memory ability were measured. From the results, we observed that 27-OHC impairs the gut barrier function, causing a disturbance in the expression of m6A methylation-related enzymes and reducing the m6A methylation modification level in the brain cortex, and finally leads to learning and memory impairment. However, Roseburia intestinalis supplementation could reverse the negative effects mentioned above. This study suggests that 27-OHC-induced learning and memory impairment might be linked to brain m6A methylation modification disturbance, while Roseburia intestinalis, as a probiotic with great potential, could reverse the damage caused by 27-OHC. This research could help reveal the mechanism of 27-OHC-induced neural damage and provide important scientific evidence for the future use of Roseburia intestinalis in neuroprotection.


Gastrointestinal Microbiome , Memory Disorders , Mice, Inbred C57BL , Animals , Male , Mice , Gastrointestinal Microbiome/drug effects , Adenosine/analogs & derivatives , Adenosine/metabolism , Methylation , Hydroxycholesterols , Brain/metabolism , Brain/drug effects , Memory/drug effects , Dietary Supplements , Learning/drug effects , Disease Models, Animal
11.
CNS Neurosci Ther ; 30(5): e14716, 2024 05.
Article En | MEDLINE | ID: mdl-38698533

BACKGROUND: Sevoflurane is a superior agent for maintaining anesthesia during surgical procedures. However, the neurotoxic mechanisms of clinical concentration remain poorly understood. Sevoflurane can interfere with the normal function of neurons and synapses and impair cognitive function by acting on α5-GABAAR. METHODS: Using MWM test, we evaluated cognitive abilities in mice following 1 h of anesthesia with 2.7%-3% sevoflurane. Based on hippocampal transcriptome analysis, we analyzed the differential genes and IL-6 24 h post-anesthesia. Western blot and RT-PCR were performed to measure the levels of α5-GABAAR, Radixin, P-ERM, P-Radixin, Gephyrin, IL-6, and ROCK. The spatial distribution and expression of α5-GABAAR on neuronal somata were analyzed using histological and three-dimensional imaging techniques. RESULTS: MWM test indicated that partial long-term learning and memory impairment. Combining molecular biology and histological analysis, our studies have demonstrated that sevoflurane induces immunosuppression, characterized by reduced IL-6 expression levels, and that enhanced Radixin dephosphorylation undermines the microstructural stability of α5-GABAAR, leading to its dissociation from synaptic exterior and resulting in a disordered distribution in α5-GABAAR expression within neuronal cell bodies. On the synaptic cleft, the expression level of α5-GABAAR remained unchanged, the spatial distribution became more compact, with an increased fluorescence intensity per voxel. On the extra-synaptic space, the expression level of α5-GABAAR decreased within unchanged spatial distribution, accompanied by an increased fluorescence intensity per voxel. CONCLUSION: Dysregulated α5-GABAAR expression and distribution contributes to sevoflurane-induced partial long-term learning and memory impairment, which lays the foundation for elucidating the underlying mechanisms in future studies.


Anesthetics, Inhalation , Hippocampus , Memory Disorders , Receptors, GABA-A , Sevoflurane , Sevoflurane/toxicity , Animals , Mice , Male , Memory Disorders/chemically induced , Memory Disorders/metabolism , Anesthetics, Inhalation/toxicity , Receptors, GABA-A/metabolism , Receptors, GABA-A/biosynthesis , Receptors, GABA-A/genetics , Hippocampus/metabolism , Hippocampus/drug effects , Mice, Inbred C57BL , Maze Learning/drug effects , Maze Learning/physiology
12.
Sci Rep ; 14(1): 11766, 2024 05 23.
Article En | MEDLINE | ID: mdl-38783038

Human tactile memory allows us to remember and retrieve the multitude of somatosensory experiences we undergo in everyday life. An unsolved question is how tactile memory mechanisms change with increasing age. We here use the ability to remember fine-grained tactile patterns passively presented to the fingertip to investigate age-related changes in tactile memory performance. In experiment 1, we varied the degree of similarity between one learned and several new tactile patterns to test on age-related changes in the "uniqueness" of a stored tactile memory trace. In experiment 2, we varied the degree of stimulus completeness of both known and new tactile patterns to test on age-related changes in the weighting between known and novel tactile information. Results reveal that older adults show only weak impairments in both precision and bias of tactile memories, however, they show specific deficits in reaching peak performance > 85% in both experiments. In addition, both younger and older adults show a pattern completion bias for touch, indicating a higher weighting of known compared to new information. These results allow us to develop new models on how younger and older adults store and recall tactile experiences of the past, and how this influences their everyday behavior.


Touch , Humans , Aged , Male , Female , Adult , Young Adult , Touch/physiology , Middle Aged , Touch Perception/physiology , Aging/physiology , Memory/physiology , Memory Disorders/physiopathology , Aged, 80 and over
13.
Neurosci Lett ; 832: 137787, 2024 May 29.
Article En | MEDLINE | ID: mdl-38641312

BACKGROUND: Salidroside (Sal) has been found to protect against multiple impairments caused by diabetes, and we designed this study to investigate the effect of Sal on gestational hypertension (GHP)-induced impairment of offspring learning and memory. METHODS: We established a GHP rat model by intraperitoneal injection of NG-nitro-L-arginine methyl ester (L-NAME), and treated with Sal by daily gavage. We used Morris Water Maze test to evaluate the learning and memory ability of offspring rats. HE staining was used to measured the pathological changes in hippocampus of offspring. Immunohistochemistry, cellular immunofluorescence and western blot were used to detect the protein expression. RESULTS: The learning and memory abilities of GHP offspring rats were significantly lower than those of normal rat offspring, while Sal treatment could significantly improve the learning and memory abilities of GHP offspring rats. HE staining did not reveal pathological differences in the hippocampus of normal rats, GHP rats and Sal-treated GHP offspring rats. However, Sal treatment can significantly increase the expression of Wnt1 and Skp2 protein, and decrease the expression of P27kiwf and P21waf1 protein in the hippocampus of GHP offspring rats. In vitro, Sal significantly promoted the proliferation and differentiation on neural stem cell, while Wnt1 knockdown could reverse these promotions by Sal. In the hippocampus of GHP offspring rats, Sal treatment significantly increased the expression of Tuj1, SOX2, Ki67 and DCX protein. CONCLUSION: Salidroside significantly improves the learning and memory impairment of offspring caused by GHP, and its mechanism may be related to the fact that Salidroside promotes the proliferation and differentiation of neural stem cells by activating the Wnt1/Skp2 signaling pathway.


Glucosides , Hippocampus , Hypertension, Pregnancy-Induced , Phenols , Rats, Sprague-Dawley , Wnt Signaling Pathway , Animals , Glucosides/pharmacology , Glucosides/therapeutic use , Phenols/pharmacology , Pregnancy , Female , Rats , Wnt Signaling Pathway/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Hypertension, Pregnancy-Induced/metabolism , Hypertension, Pregnancy-Induced/prevention & control , Memory/drug effects , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/prevention & control , Doublecortin Protein , Memory Disorders/prevention & control , Memory Disorders/metabolism , Memory Disorders/drug therapy , Male
14.
Transl Neurodegener ; 13(1): 24, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38671492

BACKGROUND: Adult neurogenesis occurs in the subventricular zone (SVZ) and the subgranular zone of the dentate gyrus in the hippocampus. The neuronal stem cells in these two neurogenic niches respond differently to various physiological and pathological stimuli. Recently, we have found that the decrement of carboxypeptidase E (CPE) with aging impairs the maturation of brain-derived neurotrophic factor (BDNF) and neurogenesis in the SVZ. However, it remains unknown whether these events occur in the hippocampus, and what the role of CPE is in the adult hippocampal neurogenesis in the context of Alzheimer's disease (AD). METHODS: In vivo screening was performed to search for miRNA mimics capable of upregulating CPE expression and promoting neurogenesis in both neurogenic niches. Among these, two agomirs were further assessed for their effects on hippocampal neurogenesis in the context of AD. We also explored whether these two agomirs could ameliorate behavioral symptoms and AD pathology in mice, using direct intracerebroventricular injection or by non-invasive intranasal instillation. RESULTS: Restoration of CPE expression in the hippocampus improved BDNF maturation and boosted adult hippocampal neurogenesis. By screening the miRNA mimics targeting the 5'UTR region of Cpe gene, we developed two agomirs that were capable of upregulating CPE expression. The two agomirs significantly rescued adult neurogenesis and cognition, showing multiple beneficial effects against the AD-associated pathologies in APP/PS1 mice. Of note, noninvasive approach via intranasal delivery of these agomirs improved the behavioral and neurocognitive functions of APP/PS1 mice. CONCLUSIONS: CPE may regulate adult hippocampal neurogenesis via the CPE-BDNF-TrkB signaling pathway. This study supports the prospect of developing miRNA agomirs targeting CPE as biopharmaceuticals to counteract aging- and disease-related neurological decline in human brains.


Alzheimer Disease , Carboxypeptidase H , Hippocampus , Memory Disorders , Neurogenesis , Up-Regulation , Animals , Neurogenesis/drug effects , Neurogenesis/physiology , Alzheimer Disease/genetics , Hippocampus/drug effects , Hippocampus/metabolism , Carboxypeptidase H/genetics , Carboxypeptidase H/biosynthesis , Mice , Memory Disorders/genetics , Memory Disorders/etiology , Brain-Derived Neurotrophic Factor/biosynthesis , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , MicroRNAs/genetics , MicroRNAs/biosynthesis , Male , Mice, Transgenic , Mice, Inbred C57BL , Disease Models, Animal
15.
Neuroimage ; 292: 120607, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38614372

INTRODUCTION: In Alzheimer's disease (AD), early diagnosis facilitates treatment options and leads to beneficial outcomes for patients, their carers and the healthcare system. The neuropsychological battery of the Uniform Data Set (UDSNB3.0) assesses cognition in ageing and dementia, by measuring scores across different cognitive domains such as attention, memory, processing speed, executive function and language. However, its neuroanatomical correlates have not been investigated using 7 Tesla MRI (7T MRI). METHODS: We used 7T MRI to investigate the correlations between hippocampal subfield volumes and the UDSNB3.0 in 24 individuals with Amyloidß-status AD and 18 age-matched controls, with respective age ranges of 60 (42-76) and 62 (52-79) years. AD participants with a Medial Temporal Atrophy scale of higher than 2 on 3T MRI were excluded from the study. RESULTS: A significant difference in the entire hippocampal volume was observed in the AD group compared to healthy controls (HC), primarily influenced by CA1, the largest hippocampal subfield. Notably, no significant difference in whole brain volume between the groups implied that hippocampal volume loss was not merely reflective of overall brain atrophy. UDSNB3.0 cognitive scores showed significant differences between AD and HC, particularly in Memory, Language, and Visuospatial domains. The volume of the Dentate Gyrus (DG) showed a significant association with the Memory and Executive domain scores in AD patients as assessed by the UDSNB3.0.. The data also suggested a non-significant trend for CA1 volume associated with UDSNB3.0 Memory, Executive, and Language domain scores in AD. In a reassessment focusing on hippocampal subfields and MoCA memory subdomains in AD, associations were observed between the DG and Cued, Uncued, and Recognition Memory subscores, whereas CA1 and Tail showed associations only with Cued memory. DISCUSSION: This study reveals differences in the hippocampal volumes measured using 7T MRI, between individuals with early symptomatic AD compared with healthy controls. This highlights the potential of 7T MRI as a valuable tool for early AD diagnosis and the real-time monitoring of AD progression and treatment efficacy. CLINICALTRIALS: GOV: ID NCT04992975 (Clinicaltrial.gov 2023).


Alzheimer Disease , CA1 Region, Hippocampal , Dentate Gyrus , Magnetic Resonance Imaging , Memory Disorders , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Male , Magnetic Resonance Imaging/methods , Female , Aged , Dentate Gyrus/diagnostic imaging , Dentate Gyrus/pathology , Middle Aged , CA1 Region, Hippocampal/diagnostic imaging , CA1 Region, Hippocampal/pathology , Memory Disorders/diagnostic imaging , Memory Disorders/pathology , Adult , Amyloid beta-Peptides/metabolism
16.
Cereb Cortex ; 34(4)2024 Apr 01.
Article En | MEDLINE | ID: mdl-38602738

Cerebral small vessel disease is the one of the most prevalent causes of vascular cognitive impairment. We aimed to find objective and process-based indicators related to memory function to assist in the detection of memory impairment in patients with cerebral small vessel disease. Thirty-nine cerebral small vessel disease patients and 22 healthy controls were invited to complete neurological examinations, neuropsychological assessments, and eye tracking tasks. Eye tracking indicators were recorded and analyzed in combination with imaging features. The cerebral small vessel disease patients scored lower on traditional memory task and performed worse on eye tracking memory task performance compared to the healthy controls. The cerebral small vessel disease patients exhibited longer visit duration and more visit count within areas of interest and targets and decreased percentage value of total visit duration on target images to total visit duration on areas of interest during decoding stage among all levels. Our results demonstrated the cerebral small vessel disease patients performed worse in memory scale and eye tracking memory task, potentially due to their heightened attentional allocation to nontarget images during the retrieval stage. The eye tracking memory task could provide process-based indicators to be a beneficial complement to memory assessment and new insights into mechanism of memory impairment in cerebral small vessel disease patients.


Cerebral Small Vessel Diseases , Cognitive Dysfunction , Humans , Eye-Tracking Technology , Memory Disorders/diagnostic imaging , Memory Disorders/etiology , Cerebral Small Vessel Diseases/complications , Cerebral Small Vessel Diseases/diagnostic imaging , Cognition
17.
Int J Mol Sci ; 25(7)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38612521

The beneficial effects of increasing histamine levels on memory have acquired special interest due to their applicability to psychiatric conditions that cause memory impairments. In addition, by employing drug repurposing approaches, it was demonstrated that dihydroergotamine (DHE), an FDA drug approved to treat migraines, inhibits Histamine N Methyl Transferase (HNMT), the enzyme responsible for the inactivation of histamine in the brain. For this reason, in the present work, the effect of DHE on histamine levels in the hippocampus and its effects on memory was evaluated, employing the scopolamine-induced amnesia model, the Novel Object Recognition (NOR) paradigm, and the Morris Water Maze (MWM). Furthermore, the role of histamine 1 receptor (H1R) and histamine 2 receptor (H2R) antagonists in the improvement in memory produced by DHE in the scopolamine-induced amnesia model was evaluated. Results showed that the rats that received DHE (10 mg/kg, i.p.) showed increased histamine levels in the hippocampus after 1 h of administration but not after 5 h. In behavioral assays, it was shown that DHE (1 mg/kg, i.p.) administered 20 min before the training reversed the memory impairment produced by the administration of scopolamine (2 mg/kg, i.p.) immediately after the training in the NOR paradigm and MWM. Additionally, the effects in memory produced by DHE were blocked by pre-treatment with pyrilamine (20 mg/kg, i.p.) administered 30 min before the training in the NOR paradigm and MWM. These findings allow us to demonstrate that DHE improves memory in a scopolamine-induced amnesia model through increasing histamine levels at the hippocampus due to its activity as an HNMT inhibitor.


Dihydroergotamine , Scopolamine , Animals , Rats , Histamine , Amnesia/chemically induced , Amnesia/drug therapy , Brain , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Histamine H2 Antagonists
18.
Int J Mol Sci ; 25(7)2024 Apr 04.
Article En | MEDLINE | ID: mdl-38612831

Many people around the world suffer from neurodegenerative diseases associated with cognitive impairment. As life expectancy increases, this number is steadily rising. Therefore, it is extremely important to search for new treatment strategies and to discover new substances with potential neuroprotective and/or cognition-enhancing effects. This study focuses on investigating the potential of astragaloside IV (AIV), a triterpenoid saponin with proven acetylcholinesterase (AChE)-inhibiting activity naturally occurring in the root of Astragalus mongholicus, to attenuate memory impairment. Scopolamine (SCOP), an antagonist of muscarinic cholinergic receptors, and lipopolysaccharide (LPS), a trigger of neuroinflammation, were used to impair memory processes in the passive avoidance (PA) test in mice. This memory impairment in SCOP-treated mice was attenuated by prior intraperitoneal (ip) administration of AIV at a dose of 25 mg/kg. The attenuation of memory impairment by LPS was not observed. It can therefore be assumed that AIV does not reverse memory impairment by anti-inflammatory mechanisms, although this needs to be further verified. All doses of AIV tested did not affect baseline locomotor activity in mice. In the post mortem analysis by mass spectrometry of the body tissue of the mice, the highest content of AIV was found in the kidneys, then in the spleen and liver, and the lowest in the brain.


Saponins , Triterpenes , Humans , Animals , Mice , Acetylcholinesterase , Saponins/pharmacology , Triterpenes/pharmacology , Memory Disorders/drug therapy , Lipopolysaccharides/toxicity
19.
Nutrients ; 16(7)2024 Mar 31.
Article En | MEDLINE | ID: mdl-38613052

Memory impairment is a serious problem with organismal aging and increased social pressure. The tetrapeptide Ala-Phe-Phe-Pro (AFFP) is a synthetic analogue of Antarctic krill derived from the memory-improving Antarctic krill peptide Ser-Ser-Asp-Ala-Phe-Phe-Pro-Phe-Arg (SSDAFFPFR) after digestion and absorption. The objective of this research was to assess the neuroprotective effects of AFFP by reducing oxidative stress and controlling lipid metabolism in the brains of mice with memory impairment caused by scopolamine. The 1H Nuclear magnetic resonance spectroscopy results showed that AFFP had three active hydrogen sites that could contribute to its antioxidant properties. The findings from in vivo tests demonstrated that AFFP greatly enhanced the mice's behavioral performance in the passive avoidance, novel object recognition, and eight-arm maze experiments. AFFP reduced oxidative stress by enhancing superoxide dismutase activity and malondialdehyde levels in mice serum, thereby decreasing reactive oxygen species level in the mice hippocampus. In addition, AFFP increased the unsaturated lipid content to balance the unsaturated lipid level against the neurotoxicity of the mice hippocampus. Our findings suggest that AFFP emerges as a potential dietary intervention for the prevention of memory impairment disorders.


Dipeptides , Euphausiacea , Animals , Mice , Lipid Metabolism , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/prevention & control , Scopolamine Derivatives , Hippocampus , Lipids
20.
J Neuroinflammation ; 21(1): 89, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600510

BACKGROUND: Neuropsychiatric lupus (NPSLE) describes the cognitive, memory, and affective emotional burdens faced by many lupus patients. While NPSLE's pathogenesis has not been fully elucidated, clinical imaging studies and cerebrospinal fluid (CSF) findings, namely elevated interleukin-6 (IL-6) levels, point to ongoing neuroinflammation in affected patients. Not only linked to systemic autoimmunity, IL-6 can also activate neurotoxic glial cells the brain. A prior pre-clinical study demonstrated that IL-6 can acutely induce a loss of sucrose preference; the present study sought to assess the necessity of chronic IL-6 exposure in the NPSLE-like disease of MRL/lpr lupus mice. METHODS: We quantified 1308 proteins in individual serum or pooled CSF samples from MRL/lpr and control MRL/mpj mice using protein microarrays. Serum IL-6 levels were plotted against characteristic NPSLE neurobehavioral deficits. Next, IL-6 knockout MRL/lpr (IL-6 KO; n = 15) and IL-6 wildtype MRL/lpr mice (IL-6 WT; n = 15) underwent behavioral testing, focusing on murine correlates of learning and memory deficits, depression, and anxiety. Using qPCR, we quantified the expression of inflammatory genes in the cortex and hippocampus of MRL/lpr IL-6 KO and WT mice. Immunofluorescent staining was performed to quantify numbers of microglia (Iba1 +) and astrocytes (GFAP +) in multiple cortical regions, the hippocampus, and the amygdala. RESULTS: MRL/lpr CSF analyses revealed increases in IL-17, MCP-1, TNF-α, and IL-6 (a priori p-value < 0.1). Serum levels of IL-6 correlated with learning and memory performance (R2 = 0.58; p = 0.03), but not motivated behavior, in MRL/lpr mice. Compared to MRL/lpr IL-6 WT, IL-6 KO mice exhibited improved novelty preference on object placement (45.4% vs 60.2%, p < 0.0001) and object recognition (48.9% vs 67.9%, p = 0.002) but equivalent performance in tests for anxiety-like disease and depression-like behavior. IL-6 KO mice displayed decreased cortical expression of aif1 (microglia; p = 0.049) and gfap (astrocytes; p = 0.044). Correspondingly, IL-6 KO mice exhibited decreased density of GFAP + cells compared to IL-6 WT in the entorhinal cortex (89 vs 148 cells/mm2, p = 0.037), an area vital to memory. CONCLUSIONS: The inflammatory composition of MRL/lpr CSF resembles that of human NPSLE patients. Increased in the CNS, IL-6 is necessary to the development of learning and memory deficits in the MRL/lpr model of NPSLE. Furthermore, the stimulation of entorhinal astrocytosis appears to be a key mechanism by which IL-6 promotes these behavioral deficits.


Interleukin-6 , Lupus Erythematosus, Systemic , Lupus Vasculitis, Central Nervous System , Animals , Mice , Depression , Gliosis , Interleukin-6/genetics , Memory Disorders/genetics , Mice, Inbred MRL lpr
...