Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.535
1.
Sci Rep ; 14(1): 11413, 2024 05 18.
Article En | MEDLINE | ID: mdl-38762560

Substance abuse among adolescents has become a growing issue throughout the world. The significance of research on this life period is based on the occurrence of neurobiological changes in adolescent brain which makes the individual more susceptible for risk-taking and impulsive behaviors. Alcohol and nicotine are among the most available drugs of abuse in adolescents. Prolonged consumption of nicotine and alcohol leads to drug dependence and withdrawal which induce various dysfunctions such as memory loss. Coenzyme Q10 (CoQ10) is known to improve learning and memory deficits induced by various pathological conditions such as Diabetes mellitus and Alzheimer's disease. In the present study we investigated whether CoQ10 treatment ameliorates memory loss following a nicotine-ethanol abstinence. Morris water maze and novel object recognition tests were done in male Wistar rats undergone nicotine-ethanol abstinence and the effect of CoQ10 was assessed on at behavioral and biochemical levels. Results indicated that nicotine-ethanol abstinence induces memory dysfunction which is associated with increased oxidative and inflammatory response, reduced cholinergic and neurotrophic function plus elevated Amyloid-B levels in hippocampi. CoQ10 treatment prevented memory deficits and biochemical alterations. Interestingly, this ameliorative effect of CoQ10 was found to be dose-dependent in most experiments and almost equipotential to that of bupropion and naloxone co-administration. CoQ10 treatment could effectively improve memory defects induced by nicotine-ethanol consumption through attenuation of oxidative damage, inflammation, amyloid-B level and enhancement of cholinergic and neurotrophic drive. Further studies are required to assess the unknown side effects and high dose tolerability of the drug in human subjects.


Hippocampus , Memory Disorders , Nicotine , Rats, Wistar , Ubiquinone , Animals , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Ubiquinone/administration & dosage , Male , Nicotine/adverse effects , Nicotine/administration & dosage , Hippocampus/metabolism , Hippocampus/drug effects , Memory Disorders/drug therapy , Memory Disorders/etiology , Memory Disorders/metabolism , Rats , Administration, Oral , Ethanol/adverse effects , Ethanol/administration & dosage , Alcohol Abstinence , Oxidative Stress/drug effects , Maze Learning/drug effects
2.
J Biochem Mol Toxicol ; 38(5): e23717, 2024 May.
Article En | MEDLINE | ID: mdl-38742857

Aluminum chloride (AlCl3) is a potent neurotoxic substance known to cause memory impairment and oxidative stress-dependent neurodegeneration. Naringenin (NAR) is a dietary flavonoid with potent antioxidant and anti-inflammatory properties which was implemented against AlCl3-induced neurotoxicity to ascertain its neuroprotective efficacy. Experimental neurotoxicity in mice was induced by exposure of AlCl3 (10 mg/kg, p.o.) followed by treatment with NAR (10 mg/kg, p.o.) for a total of 63 days. Assessed the morphometric, learning memory dysfunction (novel object recognition, T- and Y-maze tests), neuronal oxidative stress, and histopathological alteration in different regions of the brain, mainly cortex, hippocampus, thalamus, and cerebellum. AlCl3 significantly suppressed the spatial learning and memory power which were notably improved by administration of NAR. The levels of oxidative stress parameters nitric oxide, advanced oxidation of protein products, protein carbonylation, lipid peroxidation, superoxide dismutase, catalase, glutathione reductase, reduced glutathione, and the activity of acetylcholine esterase were altered 1.5-3 folds by AlCl3 significantly. Treatment of NAR remarkably restored the level of oxidative stress parameters and maintained the antioxidant defense system. AlCl3 suppressed the expression of neuronal proliferation marker NeuN that was restored by NAR treatment which may be a plausible mechanism. NAR showed therapeutic efficacy as a natural supplement against aluminum-intoxicated memory impairments and histopathological alteration through a mechanism involving an antioxidant defense system and neuronal proliferation.


Aluminum Chloride , Flavanones , Memory Disorders , Oxidative Stress , Animals , Flavanones/pharmacology , Flavanones/therapeutic use , Oxidative Stress/drug effects , Mice , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/metabolism , Aluminum Chloride/toxicity , Male , Neurodegenerative Diseases/chemically induced , Neurodegenerative Diseases/drug therapy , Neurodegenerative Diseases/metabolism , Maze Learning/drug effects , Brain/drug effects , Brain/metabolism , Brain/pathology , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
3.
CNS Neurosci Ther ; 30(5): e14716, 2024 05.
Article En | MEDLINE | ID: mdl-38698533

BACKGROUND: Sevoflurane is a superior agent for maintaining anesthesia during surgical procedures. However, the neurotoxic mechanisms of clinical concentration remain poorly understood. Sevoflurane can interfere with the normal function of neurons and synapses and impair cognitive function by acting on α5-GABAAR. METHODS: Using MWM test, we evaluated cognitive abilities in mice following 1 h of anesthesia with 2.7%-3% sevoflurane. Based on hippocampal transcriptome analysis, we analyzed the differential genes and IL-6 24 h post-anesthesia. Western blot and RT-PCR were performed to measure the levels of α5-GABAAR, Radixin, P-ERM, P-Radixin, Gephyrin, IL-6, and ROCK. The spatial distribution and expression of α5-GABAAR on neuronal somata were analyzed using histological and three-dimensional imaging techniques. RESULTS: MWM test indicated that partial long-term learning and memory impairment. Combining molecular biology and histological analysis, our studies have demonstrated that sevoflurane induces immunosuppression, characterized by reduced IL-6 expression levels, and that enhanced Radixin dephosphorylation undermines the microstructural stability of α5-GABAAR, leading to its dissociation from synaptic exterior and resulting in a disordered distribution in α5-GABAAR expression within neuronal cell bodies. On the synaptic cleft, the expression level of α5-GABAAR remained unchanged, the spatial distribution became more compact, with an increased fluorescence intensity per voxel. On the extra-synaptic space, the expression level of α5-GABAAR decreased within unchanged spatial distribution, accompanied by an increased fluorescence intensity per voxel. CONCLUSION: Dysregulated α5-GABAAR expression and distribution contributes to sevoflurane-induced partial long-term learning and memory impairment, which lays the foundation for elucidating the underlying mechanisms in future studies.


Anesthetics, Inhalation , Hippocampus , Memory Disorders , Receptors, GABA-A , Sevoflurane , Sevoflurane/toxicity , Animals , Mice , Male , Memory Disorders/chemically induced , Memory Disorders/metabolism , Anesthetics, Inhalation/toxicity , Receptors, GABA-A/metabolism , Receptors, GABA-A/biosynthesis , Receptors, GABA-A/genetics , Hippocampus/metabolism , Hippocampus/drug effects , Mice, Inbred C57BL , Maze Learning/drug effects , Maze Learning/physiology
4.
Neurosci Lett ; 832: 137787, 2024 May 29.
Article En | MEDLINE | ID: mdl-38641312

BACKGROUND: Salidroside (Sal) has been found to protect against multiple impairments caused by diabetes, and we designed this study to investigate the effect of Sal on gestational hypertension (GHP)-induced impairment of offspring learning and memory. METHODS: We established a GHP rat model by intraperitoneal injection of NG-nitro-L-arginine methyl ester (L-NAME), and treated with Sal by daily gavage. We used Morris Water Maze test to evaluate the learning and memory ability of offspring rats. HE staining was used to measured the pathological changes in hippocampus of offspring. Immunohistochemistry, cellular immunofluorescence and western blot were used to detect the protein expression. RESULTS: The learning and memory abilities of GHP offspring rats were significantly lower than those of normal rat offspring, while Sal treatment could significantly improve the learning and memory abilities of GHP offspring rats. HE staining did not reveal pathological differences in the hippocampus of normal rats, GHP rats and Sal-treated GHP offspring rats. However, Sal treatment can significantly increase the expression of Wnt1 and Skp2 protein, and decrease the expression of P27kiwf and P21waf1 protein in the hippocampus of GHP offspring rats. In vitro, Sal significantly promoted the proliferation and differentiation on neural stem cell, while Wnt1 knockdown could reverse these promotions by Sal. In the hippocampus of GHP offspring rats, Sal treatment significantly increased the expression of Tuj1, SOX2, Ki67 and DCX protein. CONCLUSION: Salidroside significantly improves the learning and memory impairment of offspring caused by GHP, and its mechanism may be related to the fact that Salidroside promotes the proliferation and differentiation of neural stem cells by activating the Wnt1/Skp2 signaling pathway.


Glucosides , Hippocampus , Hypertension, Pregnancy-Induced , Phenols , Rats, Sprague-Dawley , Wnt Signaling Pathway , Animals , Glucosides/pharmacology , Glucosides/therapeutic use , Phenols/pharmacology , Pregnancy , Female , Rats , Wnt Signaling Pathway/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Hypertension, Pregnancy-Induced/metabolism , Hypertension, Pregnancy-Induced/prevention & control , Memory/drug effects , Prenatal Exposure Delayed Effects/metabolism , Prenatal Exposure Delayed Effects/prevention & control , Doublecortin Protein , Memory Disorders/prevention & control , Memory Disorders/metabolism , Memory Disorders/drug therapy , Male
5.
PLoS One ; 19(4): e0302374, 2024.
Article En | MEDLINE | ID: mdl-38635564

While chronic stress induces learning and memory impairments, acute stress may facilitate or prevent memory consolidation depending on whether it occurs during the learning event or before it, respectively. On the other hand, it has been shown that histone acetylation regulates long-term memory formation. This study aimed to evaluate the effect of two inhibitors of class I histone deacetylases (HDACs), 4-phenylbutyrate (PB) and IN14 (100 mg/kg/day, ip for 2 days), on memory performance in mice exposed to a single 15-min forced swimming stress session. Plasma corticosterone levels were determined 30 minutes after acute swim stress in one group of mice. In another experimental series, independent groups of mice were trained in one of three different memory tasks: Object recognition test, Elevated T maze, and Buried food location test. Subsequently, the hippocampi were removed to perform ELISA assays for histone deacetylase 2 (HDAC2) expression. Acute stress induced an increase in plasma corticosterone levels, as well as hippocampal HDAC2 content, along with an impaired performance in memory tests. Moreover, PB and IN14 treatment prevented memory loss in stressed mice. These findings suggest that HDAC2 is involved in acute stress-induced cognitive impairment. None of the drugs improved memory in non-stressed animals, indicating that HDACs inhibitors are not cognitive boosters, but rather potentially useful drugs for mitigating memory deficits.


Corticosterone , Histone Deacetylases , Mice , Animals , Histone Deacetylases/metabolism , Corticosterone/metabolism , Learning , Memory Disorders/drug therapy , Memory Disorders/etiology , Memory Disorders/metabolism , Memory, Long-Term , Histone Deacetylase Inhibitors/pharmacology , Histone Deacetylase Inhibitors/therapeutic use , Histone Deacetylase Inhibitors/metabolism , Hippocampus/metabolism
6.
Pharmacol Biochem Behav ; 239: 173775, 2024 Jun.
Article En | MEDLINE | ID: mdl-38657873

Electroconvulsive shock (ECS) is utilized to treat depression but may cause learning/memory impairments, which may be ameliorated by anesthetics through the modulation of hippocampal synaptic plasticity. Given that synaptic plasticity is governed by aerobic glycolysis, it remains unclear whether anesthetics modulate aerobic glycolysis to enhance learning and memory function. Depression-like behavior in rats was induced by chronic mild unpredictable stress (CUMS), with anhedonia assessed via sucrose preference test (SPT). Depressive-like behaviors and spatial learning/memory were assessed with forced swim test (FST), open field test (OFT), and Morris water maze (MWM) test. Changes in aerobic glycolysis and synaptic plasticity in the hippocampal region of depressive-like rats post-ECS were documented using immunofluorescence analysis, Western blot, Lactate Assay Kit and transmission electron microscopy. Both the OFT and FST indicated that ECS was effective in alleviating depressive-like behaviors. The MWM test demonstrated that anesthetics were capable of attenuating ECS-induced learning and memory deficits. Immunofluorescence analysis, Western blot, Lactate Assay Kit and transmission electron microscopy revealed that the decline in learning and memory abilities in ECS-induced depressive-like rats was correlated with decreased aerobic glycolysis, and that the additional use of ciprofol or propofol ameliorated these alterations. Adding the glycolysis inhibitor 2-DG diminished the ameliorative effects of the anesthetic. No significant difference was observed between ciprofol and propofol in enhancing aerobic glycolysis in astrocytes and synaptic plasticity after ECS. These findings may contribute to understanding the mechanisms by which anesthetic drugs modulate learning and memory impairment after ECS in depressive-like behavior rats.


Depression , Glycolysis , Hippocampus , Memory Disorders , Rats, Sprague-Dawley , Animals , Rats , Male , Hippocampus/metabolism , Hippocampus/drug effects , Glycolysis/drug effects , Depression/metabolism , Depression/drug therapy , Memory Disorders/metabolism , Memory Disorders/drug therapy , Neuronal Plasticity/drug effects , Electroshock , Stress, Psychological/metabolism , Stress, Psychological/drug therapy , Disease Models, Animal , Propofol/pharmacology , Maze Learning/drug effects
7.
J Hazard Mater ; 471: 134360, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38663295

Lead is a neurotoxic contaminant that exists widely in the environment. Although lead neurotoxicity has been found to be tightly linked to gut microbiota disturbance, the effect of host metabolic disorders caused by gut microbiota disturbance on lead neurotoxicity has not been investigated. In this work, the results of new object recognition tests and Morris water maze tests showed that chronic low-dose lead exposure caused learning and memory dysfunction in mice. The results of 16 S rRNA sequencing of cecal contents and fecal microbiota transplantation showed that the neurotoxicity of lead could be transmitted through gut microbiota. The results of untargeted metabolomics and bile acid targeted metabolism analysis showed that the serum bile acid metabolism profile of lead-exposed mice was significantly changed. In addition, supplementation with TUDCA or INT-777 significantly alleviated chronic lead exposure-induced learning and memory impairment, primarily through inhibition of the NLRP3 inflammasome in the hippocampus to relieve neuroinflammation. In conclusion, our findings suggested that dysregulation of host bile acid metabolism may be one of the mechanisms of lead-induced neurotoxicity, and supplementation of specific bile acids may be a possible therapeutic strategy for lead-induced neurotoxicity.


Bile Acids and Salts , Gastrointestinal Microbiome , Lead , Memory Disorders , Animals , Bile Acids and Salts/metabolism , Lead/toxicity , Male , Memory Disorders/chemically induced , Memory Disorders/metabolism , Gastrointestinal Microbiome/drug effects , Mice , Hippocampus/metabolism , Hippocampus/drug effects , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Maze Learning/drug effects , Learning/drug effects
8.
Cell Signal ; 119: 111177, 2024 Jul.
Article En | MEDLINE | ID: mdl-38621470

In this study, blueberry anthocyanins extract (BAE) was used to investigate its protective effect on arsenic-induced rat hippocampal neurons damage. Arsenic exposure resulted in elevated levels of oxidative stress, decreased antioxidant capacity and increased apoptosis in rat hippocampal brain tissue and mitochondria. Immunohistochemical results showed that arsenic exposure also significantly decreased the expression of mitochondrial biosynthesis-related factors PGC-1α and TFAM. Treatment with BAE alleviated the decrease in antioxidant capacity, mitochondrial biogenesis related protein PGC-1α/NRF2/TFAM expression, and ATP production of arsenic induced hippocampal neurons in rats, and improved cognitive function in arsenic damaged rats. This study provides new insights into the detoxification effect of anthocyanins on the nervous system toxicity caused by metal exposure in the environment, indicating that anthocyanins may be a natural antioxidant against the nervous system toxicity caused by environmental metal exposure.


Anthocyanins , Arsenic , Blueberry Plants , Hippocampus , Memory Disorders , Mitochondria , NF-E2-Related Factor 2 , Neurons , Oxidative Stress , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Animals , Blueberry Plants/chemistry , Oxidative Stress/drug effects , Hippocampus/metabolism , Hippocampus/drug effects , Arsenic/toxicity , Neurons/drug effects , Neurons/metabolism , Mitochondria/metabolism , Mitochondria/drug effects , Anthocyanins/pharmacology , Rats , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Memory Disorders/chemically induced , Memory Disorders/metabolism , Memory Disorders/drug therapy , NF-E2-Related Factor 2/metabolism , Antioxidants/pharmacology , Male , DNA-Binding Proteins/metabolism , Apoptosis/drug effects , Transcription Factors/metabolism , Rats, Sprague-Dawley , Plant Extracts/pharmacology
9.
Zhen Ci Yan Jiu ; 49(4): 391-397, 2024 Apr 25.
Article En, Zh | MEDLINE | ID: mdl-38649207

OBJECTIVES: To observe the effect of electroacupuncture (EA) at "Baihui" (GV20) and "Shenting" (GV24) on the rats' behavior and the transforming precursor of brain-derived neurotrophic factor (proBDNF) into mature brain-derived neurotrophic factor (mBDNF) in the hippocampus of rats with learning and memory impairment induced by cerebral ischemia-reperfusion (IR), so as to explore its mechanisms underlying improvement of learning and memory ability. METHODS: SD rats were randomly divided into blank, sham operation, model, and EA groups, with 6 rats in each group. The model of IR was established by occlusion of the middle cerebral artery. EA (1 Hz/20 Hz) was applied to GV24 and GV20 for 30 min, once daily for 14 days. The neurological function was evaluated according to the Zea Longa's score criteria 24 h after modeling and after intervention. Morris water maze test was used to detect the learning and memory function of the rats. TTC staining was used to evaluate the cerebral infarction volume on the affected side. The protein expression levels of proBDNF, mBDNF, tissue plasminogen activator (tPA), tyrosine kinase receptor B (TrkB) and p75 neurotrophin receptor (p75NTR) in hippocampal tissue were detected by Western blot. RESULTS: Compared with the sham operation group, the neurological function score, the percentage of cerebral infarction volume and the expression levels of proBDNF and p75NTR protein in hippocampus were increased (P<0.01), while the times of crossing the original platform and the total distance in the target quadrant, the expression levels of mBDNF, TrkB and tPA protein and the ratio of mBDNF/proBDNF were decreased (P<0.01, P<0.05) in the model group. Compared with the model group, the neurological function score, the percentage of cerebral infarction volume, and the expression levels of proBDNF and p75NTR protein in hippocampus were decreased (P<0.01, P<0.05), while the times of crossing the original platform, the total distance in the target quadrant, and the expression levels of mBDNF, TrkB and tPA protein and the ratio of mBDNF/proBDNF were increased (P<0.05, P<0.01) in the EA group. CONCLUSIONS: EA can alleviate learning and memory impairment in IR rats, which may be related to its function in up-regulating the expression of tPA protein and promoting the transformation of proBDNF to mBDNF, thus improving the synaptic plasticity.


Brain Ischemia , Brain-Derived Neurotrophic Factor , Electroacupuncture , Memory Disorders , Neuronal Plasticity , Protein Precursors , Reperfusion Injury , Animals , Humans , Male , Rats , Acupuncture Points , Brain Ischemia/metabolism , Brain Ischemia/therapy , Brain Ischemia/genetics , Brain-Derived Neurotrophic Factor/metabolism , Brain-Derived Neurotrophic Factor/genetics , Hippocampus/metabolism , Learning , Memory , Memory Disorders/therapy , Memory Disorders/metabolism , Memory Disorders/etiology , Rats, Sprague-Dawley , Receptor, trkB/metabolism , Receptor, trkB/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/therapy , Reperfusion Injury/genetics
10.
Metab Brain Dis ; 39(4): 635-648, 2024 Apr.
Article En | MEDLINE | ID: mdl-38429463

Obesity results from an energy imbalance and has been considered an epidemic due to its increasing rates worldwide. It is classified as a low-grade chronic inflammatory disease and has associated comorbidities. Different nutritional strategies are used for the purpose of weight loss, highlighting low-carbohydrate (LC) diets, ketogenic diets, and intermittent fasting (IF). These strategies can lead to metabolic and behavioral changes as they stimulate different biochemical pathways. Therefore, this study evaluated memory, energy metabolism, neuroinflammation, oxidative stress, and antioxidant defense parameters in mice subjected to an LC diet, ketogenic diet (KD), or IF. Eighty male Swiss mice, 60 days old, were divided into 4 groups: control, LC, KD, or IF. Body weight was measured weekly, and food intake every 48 h. After 15 days of nutritional interventions, the animals were subjected to the behavioral object recognition test and subsequently euthanized. Then, visceral fat was removed and weighed, and the brain was isolated for inflammatory and biochemical analysis. We concluded from this study that the LC and KD strategies could damage memory, IF improves the production of adenosine triphosphate (ATP), and the LC, KD, and IF strategies do not lead to neuroinflammatory damage but present damage at the level of oxidative stress.


Diet, Ketogenic , Oxidative Stress , Animals , Male , Mice , Oxidative Stress/physiology , Memory Disorders/metabolism , Memory Disorders/etiology , Neuroinflammatory Diseases/metabolism , Diet, Carbohydrate-Restricted , Fasting/metabolism , Energy Metabolism/physiology , Brain/metabolism
11.
EMBO Mol Med ; 16(4): 755-783, 2024 Apr.
Article En | MEDLINE | ID: mdl-38514794

Cereblon/CRBN is a substrate-recognition component of the Cullin4A-DDB1-Roc1 E3 ubiquitin ligase complex. Destabilizing mutations in the human CRBN gene cause a form of autosomal recessive non-syndromic intellectual disability (ARNSID) that is modelled by knocking-out the mouse Crbn gene. A reduction in excitatory neurotransmission has been proposed as an underlying mechanism of the disease. However, the precise factors eliciting this impairment remain mostly unknown. Here we report that CRBN molecules selectively located on glutamatergic neurons are necessary for proper memory function. Combining various in vivo approaches, we show that the cannabinoid CB1 receptor (CB1R), a key suppressor of synaptic transmission, is overactivated in CRBN deficiency-linked ARNSID mouse models, and that the memory deficits observed in these animals can be rescued by acute CB1R-selective pharmacological antagonism. Molecular studies demonstrated that CRBN interacts physically with CB1R and impairs the CB1R-Gi/o-cAMP-PKA pathway in a ubiquitin ligase-independent manner. Taken together, these findings unveil that CB1R overactivation is a driving mechanism of CRBN deficiency-linked ARNSID and anticipate that the antagonism of CB1R could constitute a new therapy for this orphan disease.


Adaptor Proteins, Signal Transducing , Memory Disorders , Ubiquitin-Protein Ligases , Animals , Mice , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Mutation , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Receptor, Cannabinoid, CB1/genetics , Receptor, Cannabinoid, CB1/metabolism , Memory Disorders/genetics , Memory Disorders/metabolism
12.
Brain Res ; 1831: 148848, 2024 May 15.
Article En | MEDLINE | ID: mdl-38432261

Alzheimer's disease is the most common neurodegenerative disease, and its treatment is lacking. In this work, we tested Amylovis-201, a naphthalene-derived compound, as a possible therapeutic candidate for the treatment of AD. For this purpose, we performed three experiments. In the first and third experiment, animals received a bilateral administration of streptozotocin and, starting 24 h after injection, a daily dose of Amylovis-201 (orally), for 17 days or for the whole time of the experiment respectively (28 days), after which learning and memory, as well as the number of hippocampal dentate gyrus cells, were assessed. In the second experiment, healthy animals received a single dose of Amylovis-201, 10 min or 5 h after the learning section to assess whether this substance could promote specific mechanisms involved in memory trace formation. Our data show that, administration of a single dose of Amylovis-201, 10 min after the end of training, but not at 5 h, produces a prolongation in memory duration, probably because it modulates specific mechanisms involved in memory trace consolidation. Furthermore, daily administration of Amylovis-201 to animals with bilateral intracerebroventricular injection of STZ produces a reduction in the loss of the hippocampus dentate gyrus cells and an improvement in spatial memory, probably because Amylovis-201 can interact with some of the protein kinases of the insulin signaling cascade, also involved in neural plasticity, and thereby halt or reverse some of the effects of STZ. Taking to account these results, Amylovis-201 is a good candidate for the therapeutic treatment of AD.


Alzheimer Disease , Neurodegenerative Diseases , Animals , Streptozocin/pharmacology , Neurodegenerative Diseases/metabolism , Disease Models, Animal , Hippocampus/metabolism , Spatial Memory , Memory Disorders/metabolism , Maze Learning
13.
PLoS One ; 19(3): e0295096, 2024.
Article En | MEDLINE | ID: mdl-38551911

Some pregnant women have to experience non-obstetric surgery during pregnancy under general anesthesia. Our previous studies showed that maternal exposure to sevoflurane, isoflurane, propofol, and ketamine causes cognitive deficits in offspring. Histone acetylation has been implicated in synaptic plasticity. Propofol is commonly used in non-obstetric procedures on pregnant women. Previous studies in our laboratory showed that maternal propofol exposure in pregnancy impairs learning and memory in offspring by disturbing histone acetylation. The present study aims to investigate whether HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) could attenuate learning and memory deficits in offspring caused by maternal surgery under propofol anesthesia during mid-pregnancy. Maternal rats were exposed to propofol or underwent abdominal surgery under propofol anesthesia during middle pregnancy. The learning and memory abilities of the offspring rats were assessed using the Morris water maze (MWM) test. The protein levels of histone deacetylase 2 (HDAC2), phosphorylated cAMP response-element binding (p-CREB), brain-derived neurotrophic factor (BDNF), and phosphorylated tyrosine kinase B (p-TrkB) in the hippocampus of the offspring rats were evaluated by immunofluorescence staining and western blot. Hippocampal neuroapoptosis was detected by TUNEL staining. Our results showed that maternal propofol exposure during middle pregnancy impaired the water-maze learning and memory of the offspring rats, increased the protein level of HDAC2 and reduced the protein levels of p-CREB, BDNF and p-TrkB in the hippocampus of the offspring, and such effects were exacerbated by surgery. SAHA alleviated the cognitive dysfunction and rescued the changes in the protein levels of p-CREB, BDNF and p-TrkB induced by maternal propofol exposure alone or maternal propofol exposure plus surgery. Therefore, SAHA could be a potential and promising agent for treating the learning and memory deficits in offspring caused by maternal nonobstetric surgery under propofol anesthesia.


Cognitive Dysfunction , Propofol , Humans , Pregnancy , Rats , Animals , Female , Propofol/adverse effects , Vorinostat/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Histones/metabolism , Maze Learning , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Hippocampus/metabolism , Memory Disorders/chemically induced , Memory Disorders/metabolism , Anesthesia, General
14.
J Neurosci Res ; 102(4): e25323, 2024 Apr.
Article En | MEDLINE | ID: mdl-38553948

Previously, we reported that prenatal exposure to high corticosterone induced attention-deficit hyperactivity disorder (ADHD)-like behaviors with cognitive deficits after weaning. In the present study, cellular mechanisms underlying cortisol-induced cognitive dysfunction were investigated using rat pups (Corti.Pups) born from rat mothers that were repetitively injected with corticosterone during pregnancy. In results, Corti.Pups exhibited the failure of behavioral memory formation in the Morris water maze (MWM) test and the incomplete long-term potentiation (LTP) of hippocampal CA1 neurons. Additionally, glutamatergic excitatory postsynaptic currents (EPSCs) were remarkably suppressed in Corti.Pups compared to normal rat pups. Incomplete LTP and weaker EPSCs in Corti.Pups were attributed to the delayed postsynaptic development of CA1 neurons, showing a higher expression of NR2B subunits and lower expression of PSD-95 and BDNF. These results indicated that the prenatal treatment with corticosterone to elevate cortisol level might potently downregulate the BDNF-mediated signaling critical for the synaptic development of hippocampal CA1 neurons during brain development, and subsequently, induce learning and memory impairment. Our findings suggest a possibility that the prenatal dysregulation of cortisol triggers the epigenetic pathogenesis of neurodevelopmental psychiatric disorders, such as ADHD and autism.


Corticosterone , Hydrocortisone , Humans , Pregnancy , Female , Rats , Animals , Corticosterone/pharmacology , Brain-Derived Neurotrophic Factor/metabolism , Maze Learning/physiology , Hippocampus/metabolism , Long-Term Potentiation , Neurons/metabolism , Memory Disorders/metabolism
15.
Sci Rep ; 14(1): 6854, 2024 03 21.
Article En | MEDLINE | ID: mdl-38514828

The high risk of neurological disorders in postmenopausal women is an emerging medical issue. Based on the hypothesis of altered estrogen receptors (ERα and ß) after the decline of estrogen production, we investigated the changes in ERs expressions across brain regions and depressive/amnesic behaviors. C57BL/6J female mice were ovariectomized (OVX) to establish a menopausal condition. Along with behavior tests (anxiety, depression, and memory), the expression of ERs, microglial activity, and neuronal activity was measured in six brain regions (hippocampus, prefrontal cortex, striatum, raphe nucleus, amygdala, and hypothalamus) from 4 to 12 weeks after OVX. Mice exhibited anxiety- and depressive-like behaviors, as well as memory impairment. These behavioral alterations have been linked to a suppression in the expression of ERß. The decreased ERß expression coincided with microglial-derived neuroinflammation, as indicated by notable activations of Ionized calcium-binding adapter molecule 1 and Interleukin-1beta. Additionally, the activity of brain-derived neurotrophic factor (BDNF), particularly in the hippocampus, decreased in a time-dependent manner from 4 to 12 weeks post-OVX. Our study provides evidence shedding light on the susceptibility to memory impairment and depression in women after menopause. This susceptibility is associated with the suppression of ERß and alteration of ERα in six brain regions.


Estrogen Receptor beta , Receptors, Estrogen , Animals , Female , Humans , Mice , Estradiol/metabolism , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Estrogen Receptor beta/genetics , Estrogen Receptor beta/metabolism , Estrogens/metabolism , Hippocampus/metabolism , Memory Disorders/etiology , Memory Disorders/metabolism , Mice, Inbred C57BL , Ovariectomy , Receptors, Estrogen/metabolism
16.
Brain Behav Immun ; 118: 408-422, 2024 May.
Article En | MEDLINE | ID: mdl-38461956

Western diet (WD) consumption during early life developmental periods is associated with impaired memory function, particularly for hippocampus (HPC)-dependent processes. We developed an early life WD rodent model associated with long-lasting HPC dysfunction to investigate the neurobiological mechanisms mediating these effects. Rats received either a cafeteria-style WD (ad libitum access to various high-fat/high-sugar foods; CAF) or standard healthy chow (CTL) during the juvenile and adolescent stages (postnatal days 26-56). Behavioral and metabolic assessments were performed both before and after a healthy diet intervention period beginning at early adulthood. Results revealed HPC-dependent contextual episodic memory impairments in CAF rats that persisted despite the healthy diet intervention. Given that dysregulated HPC acetylcholine (ACh) signaling is associated with memory impairments in humans and animal models, we examined protein markers of ACh tone in the dorsal HPC (HPCd) in CAF and CTL rats. Results revealed significantly lower protein levels of vesicular ACh transporter in the HPCd of CAF vs. CTL rats, indicating chronically reduced ACh tone. Using intensity-based ACh sensing fluorescent reporter (iAChSnFr) in vivo fiber photometry targeting the HPCd, we next revealed that ACh release during object-contextual novelty recognition was highly predictive of memory performance and was disrupted in CAF vs. CTL rats. Neuropharmacological results showed that alpha 7 nicotinic ACh receptor agonist infusion in the HPCd during training rescued memory deficits in CAF rats. Overall, these findings reveal a functional connection linking early life WD intake with long-lasting dysregulation of HPC ACh signaling, thereby identifying an underlying mechanism for WD-associated memory impairments.


Acetylcholine , Diet, Western , Humans , Rats , Animals , Adolescent , Adult , Acetylcholine/metabolism , Memory/physiology , Hippocampus/metabolism , Signal Transduction , Memory Disorders/metabolism
17.
Mil Med Res ; 11(1): 16, 2024 Mar 11.
Article En | MEDLINE | ID: mdl-38462603

BACKGROUND: Episodic memory loss is a prominent clinical manifestation of Alzheimer's disease (AD), which is closely related to tau pathology and hippocampal impairment. Due to the heterogeneity of brain neurons, the specific roles of different brain neurons in terms of their sensitivity to tau accumulation and their contribution to AD-like social memory loss remain unclear. Therefore, further investigation is necessary. METHODS: We investigated the effects of AD-like tau pathology by Tandem mass tag proteomic and phosphoproteomic analysis, social behavioural tests, hippocampal electrophysiology, immunofluorescence staining and in vivo optical fibre recording of GCaMP6f and iGABASnFR. Additionally, we utilized optogenetics and administered ursolic acid (UA) via oral gavage to examine the effects of these agents on social memory in mice. RESULTS: The results of proteomic and phosphoproteomic analyses revealed the characteristics of ventral hippocampal CA1 (vCA1) under both physiological conditions and AD-like tau pathology. As tau progressively accumulated, vCA1, especially its excitatory and parvalbumin (PV) neurons, were fully filled with mislocated and phosphorylated tau (p-Tau). This finding was not observed for dorsal hippocampal CA1 (dCA1). The overexpression of human tau (hTau) in excitatory and PV neurons mimicked AD-like tau accumulation, significantly inhibited neuronal excitability and suppressed distinct discrimination-associated firings of these neurons within vCA1. Photoactivating excitatory and PV neurons in vCA1 at specific rhythms and time windows efficiently ameliorated tau-impaired social memory. Notably, 1 month of UA administration efficiently decreased tau accumulation via autophagy in a transcription factor EB (TFEB)-dependent manner and restored the vCA1 microcircuit to ameliorate tau-impaired social memory. CONCLUSION: This study elucidated distinct protein and phosphoprotein networks between dCA1 and vCA1 and highlighted the susceptibility of the vCA1 microcircuit to AD-like tau accumulation. Notably, our novel findings regarding the efficacy of UA in reducing tau load and targeting the vCA1 microcircuit may provide a promising strategy for treating AD in the future.


Alzheimer Disease , Humans , Male , Mice , Animals , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Mice, Transgenic , Proteomics , Hippocampus/metabolism , Hippocampus/pathology , Memory Disorders/metabolism
18.
CNS Neurosci Ther ; 30(2): e14627, 2024 02.
Article En | MEDLINE | ID: mdl-38353058

BACKGROUND: Systemic inflammation in which lipopolysaccharide (LPS) is released into circulation can cause cognitive dysfunction and we have previously shown that LPS impaired working memory (WM) which refers to the ability to guide incoming behavior by retrieving recently acquired information. However, the mechanism is not very clear, and currently, there is no approved strategy to improve inflammation-induced WM deficit. Notably, epidemiological studies have demonstrated a lower occurrence rate of inflammatory-related diseases in smoking patients, suggesting that inflammation-induced WM impairment may be improved by nicotine treatment. Here, our object is to investigate the effect and potential mechanisms of acute and chronic nicotine treatment on LPS-produced WM deficiency. METHODS: Delayed alternation T-maze task (DAT) was applied for evaluating WM which includes both the short-term information storage and the ability to correct errors in adult male mice. Immunofluorescence staining and immunoblotting were used for assessing the levels and distribution of CREB-regulated transcription coactivator 1 (CRTC1) and hyperpolarization-activated cation channels 2 (HCN2) in the medial prefrontal cortex (mPFC) and hippocampus. Quantitative PCR and ELISA were employed for analyzing the mRNA and protein levels of TNF-α and IL-1ß. RESULTS: Our results revealed that administration of LPS (i.p.) at a dose of 0.5 mg/kg significantly produced WM impairment in the DAT task accompanied by an increase in IL-1ß and TNF-α expression in the mPFC. Moreover, intra-mPFC infusion of IL-1Ra, an IL-1 antagonist, markedly alleviated LPS-induced WM deficiency. More important, chronic (2 weeks) but not acute nicotine (0.2 mg/kg, subcutaneous) treatment significantly alleviated LPS-induced WM deficiency by upregulating CRTC1 and HCN2. Of note, intra-mPFC infusion of HCN blocker ZD7288 produced significant WM deficiency. CONCLUSIONS: In summary, in this study, we show that chronic nicotine treatment ameliorates acute inflammation-induced working memory deficiency by increasing CRTC1 and HCN2 in adult male mice.


Memory, Short-Term , Nicotine , Humans , Mice , Male , Animals , Memory, Short-Term/physiology , Nicotine/pharmacology , Nicotine/therapeutic use , Nicotine/metabolism , Tumor Necrosis Factor-alpha/metabolism , Lipopolysaccharides/toxicity , Memory Disorders/drug therapy , Memory Disorders/etiology , Memory Disorders/metabolism , Hippocampus/metabolism , Transcription Factors/metabolism , Inflammation/chemically induced , Inflammation/drug therapy , Inflammation/metabolism , Interleukin-1beta/metabolism , Potassium Channels/metabolism , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/metabolism
19.
J Clin Invest ; 134(3)2024 Feb 01.
Article En | MEDLINE | ID: mdl-38299587

Synaptic plasticity is obstructed by pathogenic tau in the brain, representing a key mechanism that underlies memory loss in Alzheimer's disease (AD) and related tauopathies. Here, we found that reduced levels of the memory-associated protein KIdney/BRAin (KIBRA) in the brain and increased KIBRA protein levels in cerebrospinal fluid are associated with cognitive impairment and pathological tau levels in disease. We next defined a mechanism for plasticity repair in vulnerable neurons using the C-terminus of the KIBRA protein (CT-KIBRA). We showed that CT-KIBRA restored plasticity and memory in transgenic mice expressing pathogenic human tau; however, CT-KIBRA did not alter tau levels or prevent tau-induced synapse loss. Instead, we found that CT-KIBRA stabilized the protein kinase Mζ (PKMζ) to maintain synaptic plasticity and memory despite tau-mediated pathogenesis. Thus, our results distinguished KIBRA both as a biomarker of synapse dysfunction and as the foundation for a synapse repair mechanism to reverse cognitive impairment in tauopathy.


Alzheimer Disease , Resilience, Psychological , Tauopathies , Mice , Animals , Humans , tau Proteins/genetics , tau Proteins/metabolism , Tauopathies/genetics , Tauopathies/metabolism , Tauopathies/pathology , Brain/metabolism , Alzheimer Disease/pathology , Memory Disorders/genetics , Memory Disorders/metabolism , Neuronal Plasticity , Mice, Transgenic , Kidney/metabolism , Disease Models, Animal
20.
Neurochem Res ; 49(5): 1166-1187, 2024 May.
Article En | MEDLINE | ID: mdl-38326524

The accumulation of amyloid-beta (Aß) peptides is a crucial factor in the neuronal degeneration of Alzheimer's disease (AD). The current study investigated the underlying neuroprotective mechanisms of shrimp shell extract (SSE) and liposome-encapsulated SSE (SSE/L) against Aß1-42-induced neuronal damage and death in rats. Intracerebroventricular infusion of Aß1-42 effectively induced memory decline, as observed in a reduction of the rat's discriminating ability in the novel object recognition and novel object location tasks. Oral pretreatment with 100 mg/kg of SSE demonstrated no preventive effect on the memory decline induced by Aß1-42 infusion. However, treatment with SSE/L 100 mg/kg BW effectively attenuated memory deficits in both behavioral assessments following two and four weeks after Aß1-42 infusion. Moreover, SSE/L exerted neuroprotective effects by reducing lipid peroxidation and increasing Nrf2/HO-1 expression. There was a significant decrease in Iba1 and GFAP (biomarkers of microglia and astrocyte activity, respectively), as well as a decrease in the levels of NF-κB expression and the inflammatory cytokines TNF-α and IL-6 in the cortical and hippocampal tissues. Treatment with SSE/L also reduced the pro-apoptotic proteins Bax and cleaved caspase-3 while raising the anti-apoptotic protein Bcl2. In addition, the beneficial effects of SSE/L were along with the effects of a positive control commercial astaxanthin (AST). The findings of this study indicated that SSE/L provided neuroprotective effects on Aß1-42-induced AD rats by ameliorating oxidative stress, neuroinflammation and apoptotic cell death. Therefore, SSE/L might be employed to prevent and mitigate Aß accumulation-induced neurotoxicity in AD.


Alzheimer Disease , Biological Products , Neuroprotective Agents , Animals , Rats , Alzheimer Disease/chemically induced , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Disease Models, Animal , Hippocampus/metabolism , Liposomes , Memory Disorders/chemically induced , Memory Disorders/drug therapy , Memory Disorders/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Neuroprotective Agents/metabolism , Peptide Fragments/metabolism , Decapoda/chemistry , Biological Products/pharmacology , Biological Products/therapeutic use
...