Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 197
1.
Proc Natl Acad Sci U S A ; 121(24): e2312837121, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38838013

Through immune memory, infections have a lasting effect on the host. While memory cells enable accelerated and enhanced responses upon rechallenge with the same pathogen, their impact on susceptibility to unrelated diseases is unclear. We identify a subset of memory T helper 1 (Th1) cells termed innate acting memory T (TIA) cells that originate from a viral infection and produce IFN-γ with innate kinetics upon heterologous challenge in vivo. Activation of memory TIA cells is induced in response to IL-12 in combination with IL-18 or IL-33 but is TCR independent. Rapid IFN-γ production by memory TIA cells is protective in subsequent heterologous challenge with the bacterial pathogen Legionella pneumophila. In contrast, antigen-independent reactivation of CD4+ memory TIA cells accelerates disease onset in an autoimmune model of multiple sclerosis. Our findings demonstrate that memory Th1 cells can acquire additional TCR-independent functionality to mount rapid, innate-like responses that modulate susceptibility to heterologous challenges.


Immunity, Innate , Immunologic Memory , Interferon-gamma , Th1 Cells , Th1 Cells/immunology , Animals , Immunologic Memory/immunology , Mice , Interferon-gamma/metabolism , Interferon-gamma/immunology , Memory T Cells/immunology , Mice, Inbred C57BL , Legionella pneumophila/immunology , Multiple Sclerosis/immunology , Interleukin-12/metabolism , Interleukin-12/immunology
2.
Front Immunol ; 15: 1372658, 2024.
Article En | MEDLINE | ID: mdl-38827740

Background: Persistent radiological lung abnormalities are evident in many survivors of acute coronavirus disease 2019 (COVID-19). Consolidation and ground glass opacities are interpreted to indicate subacute inflammation whereas reticulation is thought to reflect fibrosis. We sought to identify differences at molecular and cellular level, in the local immunopathology of post-COVID inflammation and fibrosis. Methods: We compared single-cell transcriptomic profiles and T cell receptor (TCR) repertoires of bronchoalveolar cells obtained from convalescent individuals with each radiological pattern, targeting lung segments affected by the predominant abnormality. Results: CD4 central memory T cells and CD8 effector memory T cells were significantly more abundant in those with inflammatory radiology. Clustering of similar TCRs from multiple donors was a striking feature of both phenotypes, consistent with tissue localised antigen-specific immune responses. There was no enrichment for known SARS-CoV-2-reactive TCRs, raising the possibility of T cell-mediated immunopathology driven by failure in immune self-tolerance. Conclusions: Post-COVID radiological inflammation and fibrosis show evidence of shared antigen-specific T cell responses, suggesting a role for therapies targeting T cells in limiting post-COVID lung damage.


COVID-19 , SARS-CoV-2 , Single-Cell Analysis , Humans , COVID-19/immunology , COVID-19/pathology , SARS-CoV-2/immunology , Male , Female , Middle Aged , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/genetics , Pulmonary Fibrosis/immunology , Pulmonary Fibrosis/etiology , Pulmonary Fibrosis/pathology , CD8-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Lung/immunology , Lung/pathology , Lung/diagnostic imaging , Aged , Adult , Inflammation/immunology , Inflammation/pathology , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/cytology , Memory T Cells/immunology , Transcriptome
3.
J Clin Invest ; 134(11)2024 Jun 03.
Article En | MEDLINE | ID: mdl-38828727

Calcineurin inhibitors (CNIs) constitute the backbone of modern acute graft-versus-host disease (aGVHD) prophylaxis regimens but have limited efficacy in the prevention and treatment of chronic GVHD (cGVHD). We investigated the effect of CNIs on immune tolerance after stem cell transplantation with discovery-based single-cell gene expression and T cell receptor (TCR) assays of clonal immunity in tandem with traditional protein-based approaches and preclinical modeling. While cyclosporin and tacrolimus suppressed the clonal expansion of CD8+ T cells during GVHD, alloreactive CD4+ T cell clusters were preferentially expanded. Moreover, CNIs mediated reversible dose-dependent suppression of T cell activation and all stages of donor T cell exhaustion. Critically, CNIs promoted the expansion of both polyclonal and TCR-specific alloreactive central memory CD4+ T cells (TCM) with high self-renewal capacity that mediated cGVHD following drug withdrawal. In contrast to posttransplant cyclophosphamide (PT-Cy), CSA was ineffective in eliminating IL-17A-secreting alloreactive T cell clones that play an important role in the pathogenesis of cGVHD. Collectively, we have shown that, although CNIs attenuate aGVHD, they paradoxically rescue alloantigen-specific TCM, especially within the CD4+ compartment in lymphoid and GVHD target tissues, thus predisposing patients to cGVHD. These data provide further evidence to caution against CNI-based immune suppression without concurrent approaches that eliminate alloreactive T cell clones.


Calcineurin Inhibitors , Graft vs Host Disease , Isoantigens , Memory T Cells , Graft vs Host Disease/immunology , Graft vs Host Disease/prevention & control , Graft vs Host Disease/pathology , Animals , Mice , Isoantigens/immunology , Calcineurin Inhibitors/pharmacology , Chronic Disease , Memory T Cells/immunology , Tacrolimus/pharmacology , CD4-Positive T-Lymphocytes/immunology , Cyclosporine/pharmacology , Female , CD8-Positive T-Lymphocytes/immunology , T-Lymphocyte Subsets/immunology
4.
Front Immunol ; 15: 1378359, 2024.
Article En | MEDLINE | ID: mdl-38779662

Skin tissue-resident memory T (Trm) cells are produced by antigenic stimulation and remain in the skin for a long time without entering the peripheral circulation. In the healthy state Trm cells can play a patrolling and surveillance role, but in the disease state Trm cells differentiate into various phenotypes associated with different diseases, exhibit different localizations, and consequently have local protective or pathogenic roles, such as disease recurrence in vitiligo and maintenance of immune homeostasis in melanoma. The most common surface marker of Trm cells is CD69/CD103. However, the plasticity of tissue-resident memory T cells after colonization remains somewhat uncertain. This ambiguity is largely due to the variation in the functionality and ultimate destination of Trm cells produced from memory cells differentiated from diverse precursors. Notably, the presence of Trm cells is not stationary across numerous non-lymphoid tissues, most notably in the skin. These cells may reenter the blood and distant tissue sites during the recall response, revealing the recycling and migration potential of the Trm cell progeny. This review focuses on the origin and function of skin Trm cells, and provides new insights into the role of skin Trm cells in the treatment of autoimmune skin diseases, infectious skin diseases, and tumors.


Cell Plasticity , Homeostasis , Immunologic Memory , Memory T Cells , Skin Diseases , Skin , Humans , Homeostasis/immunology , Memory T Cells/immunology , Memory T Cells/metabolism , Skin/immunology , Skin/pathology , Cell Plasticity/immunology , Animals , Skin Diseases/immunology , Antigens, CD/metabolism , Antigens, CD/immunology
5.
Signal Transduct Target Ther ; 9(1): 141, 2024 May 29.
Article En | MEDLINE | ID: mdl-38811527

The immunoprotective components control COVID-19 disease severity, as well as long-term adaptive immunity maintenance and subsequent reinfection risk discrepancies across initial COVID-19 severity, remain unclarified. Here, we longitudinally analyzed SARS-CoV-2-specific immune effectors during the acute infection and convalescent phases of 165 patients with COVID-19 categorized by severity. We found that early and robust SARS-CoV-2-specific CD4+ and CD8+ T cell responses ameliorate disease progression and shortened hospital stay, while delayed and attenuated virus-specific CD8+ T cell responses are prominent severe COVID-19 features. Delayed antiviral antibody generation rather than titer level associates with severe outcomes. Conversely, initial COVID-19 severity imprints the long-term maintenance of SARS-CoV-2-specific adaptive immunity, demonstrating that severe convalescents exhibited more sustained virus-specific antibodies and memory T cell responses compared to mild/moderate counterparts. Moreover, initial COVID-19 severity inversely correlates with SARS-CoV-2 reinfection risk. Overall, our study unravels the complicated interaction between temporal characteristics of virus-specific T cell responses and COVID-19 severity to guide future SARS-CoV-2 wave management.


Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19 , Memory T Cells , Reinfection , SARS-CoV-2 , Severity of Illness Index , Humans , COVID-19/immunology , COVID-19/pathology , SARS-CoV-2/immunology , Male , Female , Reinfection/immunology , Middle Aged , CD8-Positive T-Lymphocytes/immunology , Adult , Antibodies, Viral/immunology , Memory T Cells/immunology , Aged , CD4-Positive T-Lymphocytes/immunology , Immunologic Memory
6.
Front Immunol ; 15: 1415914, 2024.
Article En | MEDLINE | ID: mdl-38817613

Tissue-resident memory T cells (TRM) are long-lived memory lymphocytes that persist in non-lymphoid tissues and provide the first line of defence against invading pathogens. They adapt to their environment in a tissue-specific manner, exerting effective pathogen control through a diverse T cell receptor (TCR) repertoire and the expression of proinflammatory cytokines and cytolytic proteins. More recently, several studies have indicated that TRM can egress from the tissue into the blood as so-called "ex-TRM", or "circulating cells with a TRM phenotype". The numerically small ex-TRM population can re-differentiate in the circulation, giving rise to new memory and effector T cells. Following their egress, ex-TRM in the blood and secondary lymphoid organs can be identified based on their continued expression of the residency marker CD103, alongside other TRM-like features. Currently, it is unclear whether exit is a stochastic process, or is actively triggered in response to unknown factors. Also, it is not known whether a subset or all TRM are able to egress. Ex-TRM may be beneficial in health, as mobilisation of specialised TRM and their recruitment to both their site of origin as well as distant tissues results in an efficient distribution of the immune response. However, there is emerging evidence of a pathogenic role for ex-TRM, with a suggestion that they may perpetuate both local and distant tissue inflammation. Here, we review the evidence for the existence of ex-TRM and examine their potential involvement in disease pathogenesis.


Memory T Cells , Animals , Humans , Immunologic Memory , Memory T Cells/immunology , Memory T Cells/metabolism
7.
Nat Commun ; 15(1): 4665, 2024 May 31.
Article En | MEDLINE | ID: mdl-38821965

Minimally invasive thermal therapy is a successful alternative treatment to surgery in solid tumors with high complete ablation rates, however, tumor recurrence remains a concern. Central memory CD8+ T cells (TCM) play important roles in protection from chronic infection and cancer. Here we find, by single-cell RNA analysis of human breast cancer samples, that although the memory phenotype of peripheral CD8+ T cells increases slightly after microwave ablation (MWA), the metabolism of peripheral CD8+ T cells remains unfavorable for memory phenotype. In mouse models, glycolysis inhibition by 2-deoxy-D-glucose (2DG) in combination with MWA results in long-term anti-tumor effect via enhancing differentiation of tumor-specific CD44hiCD62L+CD8+ TCM cells. Enhancement of CD8+ TCM cell differentiation determined by Stat-1, is dependent on the tumor-draining lymph nodes (TDLN) but takes place in peripheral blood, with metabolic remodeling of CD8+ T cells lasting the entire course of the the combination therapy. Importantly, in-vitro glycolysis inhibition in peripheral CD8+ T cells of patients with breast or liver tumors having been treated with MWA thrice leads to their differentiation into CD8+ TCM cells. Our work thus offers a potential strategy to avoid tumor recurrence following MWA therapy and lays down the proof-of-principle for future clinical trials.


Breast Neoplasms , CD8-Positive T-Lymphocytes , Cell Differentiation , Glycolysis , Immunologic Memory , Microwaves , Glycolysis/drug effects , Animals , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Humans , Cell Differentiation/drug effects , Mice , Female , Breast Neoplasms/immunology , Breast Neoplasms/therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Microwaves/therapeutic use , Deoxyglucose/pharmacology , Deoxyglucose/therapeutic use , Cell Line, Tumor , Liver Neoplasms/immunology , Liver Neoplasms/therapy , Memory T Cells/immunology , Memory T Cells/metabolism
8.
Nat Commun ; 15(1): 4080, 2024 May 14.
Article En | MEDLINE | ID: mdl-38744812

While preventing vertical HIV transmission has been very successful, HIV-exposed uninfected infants (iHEU) experience an elevated risk to infections compared to HIV-unexposed and uninfected infants (iHUU). Here we present a longitudinal multimodal analysis of infant immune ontogeny that highlights the impact of HIV/ARV exposure. Using mass cytometry, we show alterations in T cell memory differentiation between iHEU and iHUU being significant from week 15 of life. The altered memory T cell differentiation in iHEU was preceded by lower TCR Vß clonotypic diversity and linked to TCR clonal depletion within the naïve T cell compartment. Compared to iHUU, iHEU had elevated CD56loCD16loPerforin+CD38+CD45RA+FcεRIγ+ NK cells at 1 month postpartum and whose abundance pre-vaccination were predictive of vaccine-induced pertussis and rotavirus antibody responses post 3 months of life. Collectively, HIV/ARV exposure disrupted the trajectory of innate and adaptive immunity from birth which may underlie relative vulnerability to infections in iHEU.


HIV Infections , Immunologic Memory , Infectious Disease Transmission, Vertical , Humans , HIV Infections/immunology , HIV Infections/virology , Infant , Female , Infant, Newborn , Memory T Cells/immunology , Male , Killer Cells, Natural/immunology , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Adaptive Immunity/immunology , Cell Differentiation/immunology , Longitudinal Studies
9.
Front Immunol ; 15: 1321126, 2024.
Article En | MEDLINE | ID: mdl-38711501

Introduction: γδ T cells recognize and exert cytotoxicity against tumor cells. They are also considered potential immune cells for immunotherapy. Our previous study revealed that the altered expression of immune checkpoint T-cell immunoreceptor with immunoglobulin and ITIM domain (TIGIT) on γδ T cells may result in immunosuppression and is possibly associated with a poor overall survival in acute myeloid leukemia (AML). However, whether γδ T-cell memory subsets are predominantly involved and whether they have a relationship with clinical outcomes in patients with AML under the age of 65 remain unclear. Methods: In this study, we developed a multicolor flow cytometry-based assay to monitor the frequency and distribution of γδ T-cell subsets, including central memory γδ T cells (TCM γδ), effector memory γδ T cells (TEM γδ), and TEM expressing CD45RA (TEMRA γδ), in peripheral blood from 30 young (≤65 years old) patients with newly diagnosed non-acute promyelocytic leukemia (also known as M3) AML (AMLy-DN), 14 young patients with AML in complete remission (AMLy-CR), and 30 healthy individuals (HIs). Results: Compared with HIs, patients with AMLy-DN exhibited a significantly higher differentiation of γδ T cells, which was characterized by decreased TCM γδ cells and increased TEMRA γδ cells. A generally higher TIGIT expression was observed in γδ T cells and relative subsets in patients with AMLy-DN, which was partially recovered in patients with AMLy-CR. Furthermore, 17 paired bone marrow from patients with AMLy-DN contained higher percentages of γδ and TIGIT+ γδ T cells and a lower percentage of TCM γδ T cells. Multivariate logistic regression analyses revealed the association of high percentage of TIGIT+ TCM γδ T cells with an increased risk of poor induction chemotherapy response. Conclusions: In this study, we investigated the distribution of γδ T cells and their memory subsets in patients with non-M3 AML and suggested TIGIT+ TCM γδ T cells as potential predictive markers of induction chemotherapy response.


Receptors, Antigen, T-Cell, gamma-delta , Receptors, Immunologic , Humans , Receptors, Immunologic/metabolism , Male , Female , Adult , Middle Aged , Prognosis , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Young Adult , Aged , Memory T Cells/immunology , Memory T Cells/metabolism , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Leukemia, Myeloid, Acute/immunology , Leukemia, Myeloid, Acute/therapy , Leukemia, Myeloid, Acute/diagnosis , Immunologic Memory , Leukemia, Promyelocytic, Acute/immunology , Leukemia, Promyelocytic, Acute/diagnosis , Leukemia, Promyelocytic, Acute/mortality , Immunophenotyping
10.
Respir Res ; 25(1): 196, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715030

BACKGROUND: The treatment response to corticosteroids in patients with sarcoidosis is highly variable. CD4+ T cells are central in sarcoid pathogenesis and their phenotype in peripheral blood (PB) associates with disease course. We hypothesized that the phenotype of circulating T cells in patients with sarcoidosis may correlate with the response to prednisone treatment. Therefore, we aimed to correlate frequencies and phenotypes of circulating T cells at baseline with the pulmonary function response at 3 and 12 months during prednisone treatment in patients with pulmonary sarcoidosis. METHODS: We used multi-color flow cytometry to quantify activation marker expression on PB T cell populations in 22 treatment-naïve patients and 21 healthy controls (HCs). Pulmonary function tests at baseline, 3 and 12 months were used to measure treatment effect. RESULTS: Patients with sarcoidosis showed an absolute forced vital capacity (FVC) increase of 14.2% predicted (± 10.6, p < 0.0001) between baseline and 3 months. Good response to prednisone (defined as absolute FVC increase of ≥ 10% predicted) was observed in 12 patients. CD4+ memory T cells and regulatory T cells from patients with sarcoidosis displayed an aberrant phenotype at baseline, compared to HCs. Good responders at 3 months had significantly increased baseline proportions of PD-1+CD4+ memory T cells and PD-1+ regulatory T cells, compared to poor responders and HCs. Moreover, decreased fractions of CD25+ cells and increased fractions of PD-1+ cells within the CD4+ memory T cell population correlated with ≥ 10% FVC increase at 12 months. During treatment, the aberrantly activated phenotype of memory and regulatory T cells reversed. CONCLUSIONS: Increased proportions of circulating PD-1+CD4+ memory T cells and PD-1+ regulatory T cells and decreased proportions of CD25+CD4+ memory T cells associate with good FVC response to prednisone in pulmonary sarcoidosis, representing promising new blood biomarkers for prednisone efficacy. TRIAL REGISTRATION: NL44805.078.13.


Prednisone , Programmed Cell Death 1 Receptor , Sarcoidosis, Pulmonary , T-Lymphocytes, Regulatory , Humans , Male , Sarcoidosis, Pulmonary/drug therapy , Sarcoidosis, Pulmonary/blood , Sarcoidosis, Pulmonary/immunology , Sarcoidosis, Pulmonary/diagnosis , Female , Middle Aged , Prednisone/therapeutic use , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/immunology , Adult , Treatment Outcome , Memory T Cells/drug effects , Memory T Cells/immunology , Memory T Cells/metabolism , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Glucocorticoids/therapeutic use , Vital Capacity/drug effects , Aged
11.
Cytometry B Clin Cytom ; 106(3): 171-180, 2024 05.
Article En | MEDLINE | ID: mdl-38695297

CD20+ T cells constitute a small subset of T cells. These are found among CD4+, CD8+, CD4+CD8+, CD4-CD8- T, and TCRγδ+ T cells, and have been poorly characterized. The aim of this study was to characterize peripheral blood (PB) CD20+ T cells and compare them to their PB CD20- T cell counterparts. PB from 17 healthy individuals was collected. The distribution of CD20+ T cells among maturation-associated T cells compartments (naïve, central memory, transitional memory, effector memory, and effector T cells), their polarization, activation status, and expression of immune-regulatory proteins were evaluated by flow cytometry. Their function was also assessed, by measuring IFN-γ, TNF-α, and IL-17 production. Compared with CD20- T cells, CD20+ T cells represent a higher proportion of transitional memory cells. Furthermore, CD20+ T cells display a proinflammatory phenotype, characterized by the expansion of Th1, Th1/17, and Tc1 cell subsets , associated to a high expression of activation (CD25) and exhaustion (PD-1) markers. In addition, the simultaneous production of the proinflammatory cytokines IFN-γ, TNF-α, and IL-17 was also detected in CD4+CD20+ T cells. Our results show that CD20+ T cells are phenotypically and functionally different from CD20- T cells, suggesting that these cells are a distinct subset of T cells.


Antigens, CD20 , Flow Cytometry , Humans , Antigens, CD20/immunology , Male , Female , Adult , Interferon-gamma , Tumor Necrosis Factor-alpha , Interleukin-17/blood , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , Lymphocyte Activation/immunology , Middle Aged , Immunologic Memory/immunology , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/immunology , Cytokines/metabolism , Memory T Cells/immunology , Interleukin-2 Receptor alpha Subunit/immunology
12.
J Immunol Res ; 2024: 5582151, 2024.
Article En | MEDLINE | ID: mdl-38690552

Unlike T cells in other tissues, uterine T cells must balance strong immune defense against pathogens with tolerance to semiallogeneic fetus. Our previous study fully elucidated the characteristics of γδT cells in nonpregnant uterus and the mechanism modulated by estrogen. However, comprehensive knowledge of the immunological properties of αßT (including CD4+T cells and CD8+T) cells in nonpregnancy uterus has not been acquired. In this study, we fully compared the immunological properties of αßT cells between uterus and blood using mouse and human sample. It showed that most of CD4+T cells and CD8+T cells in murine uterus and human endometrium were tissue resident memory T cells which highly expressed tissue residence markers CD69 and/or CD103. In addition, both CD4+T cells and CD8+T cells in uterus highly expressed inhibitory molecular PD-1 and cytokine IFN-γ. Uterine CD4+T cells highly expressed IL-17 and modulated by transcription factor pSTAT3. Moreover, we compared the similarities and differences between human and murine uterine T cell phenotype. Together, uterine CD4+T cells and CD8+ cells exhibited a unique mixed signature of T cell dysfunction, activation, and effector function which enabled them to balance strong immune defense against pathogens with tolerance to fetus. Our study fully elucidated the unique immunologic properties of uterine CD4+T and CD8+T cells and provided a base for further investigation of functions.


Antigens, CD , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Uterus , Female , CD8-Positive T-Lymphocytes/immunology , Animals , Humans , Mice , CD4-Positive T-Lymphocytes/immunology , Uterus/immunology , Antigens, CD/metabolism , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/genetics , Integrin alpha Chains/metabolism , Memory T Cells/immunology , STAT3 Transcription Factor/metabolism , Interferon-gamma/metabolism , Lectins, C-Type/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Interleukin-17/metabolism , Lymphocyte Activation/immunology , Immunologic Memory
13.
Nat Commun ; 15(1): 4418, 2024 May 28.
Article En | MEDLINE | ID: mdl-38806459

The mechanisms by which the number of memory CD8 T cells is stably maintained remains incompletely understood. It has been postulated that maintaining them requires help from CD4 T cells, because adoptively transferred memory CD8 T cells persist poorly in MHC class II (MHCII)-deficient mice. Here we show that chronic interferon-γ signals, not CD4 T cell-deficiency, are responsible for their attrition in MHCII-deficient environments. Excess IFN-γ is produced primarily by endogenous colonic CD8 T cells in MHCII-deficient mice. IFN-γ neutralization restores the number of memory CD8 T cells in MHCII-deficient mice, whereas repeated IFN-γ administration or transduction of a gain-of-function STAT1 mutant reduces their number in wild-type mice. CD127high memory cells proliferate actively in response to IFN-γ signals, but are more susceptible to attrition than CD127low terminally differentiated effector memory cells. Furthermore, single-cell RNA-sequencing of memory CD8 T cells reveals proliferating cells that resemble short-lived, terminal effector cells and documents global downregulation of gene signatures of long-lived memory cells in MHCII-deficient environments. We propose that chronic IFN-γ signals deplete memory CD8 T cells by compromising their long-term survival and by diverting self-renewing CD127high cells toward terminal differentiation.


CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Immunologic Memory , Interferon-gamma , STAT1 Transcription Factor , Animals , CD8-Positive T-Lymphocytes/immunology , Interferon-gamma/metabolism , Interferon-gamma/immunology , CD4-Positive T-Lymphocytes/immunology , Mice , STAT1 Transcription Factor/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/deficiency , Mice, Inbred C57BL , Histocompatibility Antigens Class II/immunology , Histocompatibility Antigens Class II/genetics , Histocompatibility Antigens Class II/metabolism , Signal Transduction , Mice, Knockout , Memory T Cells/immunology , Memory T Cells/metabolism , Interleukin-7 Receptor alpha Subunit/metabolism , Cell Proliferation , Adoptive Transfer
14.
Rev Alerg Mex ; 71(1): 59, 2024 Feb 01.
Article Es | MEDLINE | ID: mdl-38683077

BACKGROUND: Variants in intracellular calcium transport genes have been associated with syndromic immunodeficiencies with a SCID phenotype. CASE REPORT: Seven-year-old girl of non-consanguineous parents, in Cartagena-Colombia. At two months of age, he presented hematochezia and was diagnosed with alimentary proctolitis without improvement with restriction to milk, wheat and eggs, and malnutrition developed. At eight months, a colon biopsy shows chronic lymphoid hyperplasia, presenting with anemia, eosinophilia, but total and specific IgE to normal foods. After four years, the Immunology Service found her asymptomatic, nutritionally recovered and without allergic sensitization, but eosinophilia and elevated calprotectin persisted, suggesting an early-onset inflammatory bowel disease. Immunoglobulins were normal, lymphocyte populations with CD3, CD4 and CD8 lymphopenia. At six years old, she presented atopic dermatitis, still had elevated calprotectin and was lymphopenic. Immunophenotyping by spectral cytometry using Cytek®cFluor®Immunoprofiling-Kit14 showed lymphopenia and CD4/CD8 inversion. Naïve CD4+ and CD8+ T lymphocytes were decreased, while T-CD8+CD45RA-CCR7- and T-CD8+CD45RA+CCR7- effector memory populations were expanded. Effector and central memory CD4+ T-lymphocytes were also increased1 (Image 1). The exome revealed a heterozygous variant in the ITPR3 gene (carrier father), c.7571G>A, p.(Arg2524His); predictors classify it as having a potential eliminating effect. CONCLUSIONS: The clinical features and immunophenotype of this candidate variant differ from others related to intracellular calcium transport. They are functional studies necessary to validate their causality. A patient with a potentially deleted variant presents an immunophenotype with CD3 lymphopenia and persistent lymphocyte activation.


ANTECEDENTES: Las variantes en genes del transporte de calcio intracelular han sido asociadas a inmunodeficiencias sindrómicas con un fenotipo IDCG. REPORTE DE CASO: Niña de siete años, de padres no consanguíneos, en Cartagena-Colombia. A los dos meses de vida, presenta hematoquecia y se diagnostica con proctolitis alimentaria sin mejoría con restricción a leche, trigo y huevo, desarrollando desnutrición. A los ocho meses, una biopsia de colon muestra hiperplasia linfoide crónica, cursa con anemia, eosinofilia, pero IgE total y específica a alimentos normales. A los cuatro años, el Servicio de Inmunología la encuentra asintomática, recuperada nutricionalmente y sin sensibilización alérgica, pero persiste eosinofilia y calprotectina elevada, sugiriendo una enfermedad inflamatoria intestinal de inicio temprano. Las inmunoglobulinas fueron normales, poblaciones linfocitarias con linfopenia CD3, CD4 y CD8. A los seis años, presenta dermatitis atópica, sigue con calprotectina elevada y linfopénica. El inmunofenotipo por citometría espectral mediante Cytek®cFluor®Immunoprofiling-Kit14, mostró linfopenia e inversión CD4/CD8. Los linfocitos T-vírgenes CD4+ y CD8+ estaban disminuidos, en cambio las poblaciones de memoria efectora T-CD8+CD45RA-CCR7- y T-CD8+CD45RA+CCR7­ estaban expandidas. Los linfocitos T-CD4+ de memoria efectora y central, también estaban aumentados1 (Imagen 1). El exoma reveló una variante heterocigótica en el gen ITPR3 (padre portador), c.7571G>A, p.(Arg2524His); los predictores la clasifican como de potencial efecto deletéreo. CONCLUSIONES: La clínica y el inmunofenotipo de esta variante candidata difiere de otras relacionadas con el transporte del calcio intracelular. Son necesarios estudios funcionales para validar su causalidad. Una paciente con una variante potencialmente deletérea, presenta un inmunofenotipo con linfopenia CD3 y activación persistente de los linfocitos.


Immunophenotyping , Inositol 1,4,5-Trisphosphate Receptors , Lymphopenia , Humans , Female , Child , Lymphopenia/genetics , Lymphopenia/etiology , Inositol 1,4,5-Trisphosphate Receptors/genetics , Mutation , Flow Cytometry , Memory T Cells/immunology
15.
Nat Rev Rheumatol ; 20(5): 258-271, 2024 May.
Article En | MEDLINE | ID: mdl-38600215

In rheumatoid arthritis, juvenile idiopathic arthritis and other forms of inflammatory arthritis, the immune system targets certain joints but not others. The pattern of joints affected varies by disease and by individual, with flares most commonly involving joints that were previously inflamed. This phenomenon, termed joint-specific memory, is difficult to explain by systemic immunity alone. Mechanisms of joint-specific memory include the involvement of synovial resident memory T cells that remain in the joint during remission and initiate localized disease recurrence. In addition, arthritis-induced durable changes in synovial fibroblasts and macrophages can amplify inflammation in a site-specific manner. Together with ongoing systemic processes that promote extension of arthritis to new joints, these local factors set the stage for a stepwise progression in disease severity, a paradigm for arthritis chronicity that we term the joint accumulation model. Although durable drug-free remission through early treatment remains elusive for most forms of arthritis, the joint accumulation paradigm defines new therapeutic targets, emphasizes the importance of sustained treatment to prevent disease extension to new joints, and identifies a rolling window of opportunity for altering the natural history of arthritis that extends well beyond the initiation phase of disease.


Arthritis, Rheumatoid , Memory T Cells , Humans , Memory T Cells/immunology , Arthritis, Rheumatoid/immunology , Joints/immunology , Joints/pathology , Immunologic Memory/immunology , Disease Progression , Animals , Synovial Membrane/immunology , Synovial Membrane/pathology , Arthritis/immunology
16.
Acta Biomater ; 180: 423-435, 2024 May.
Article En | MEDLINE | ID: mdl-38641183

Communication between tumors and lymph nodes carries substantial significance for antitumor immunotherapy. Remodeling the immune microenvironment of tumor-draining lymph nodes (TdLN) plays a key role in enhancing the anti-tumor ability of immunotherapy. In this study, we constructed a biomimetic artificial lymph node structure composed of F127 hydrogel loading effector memory T (TEM) cells and PD-1 inhibitors (aPD-1). The biomimetic lymph nodes facilitate the delivery of TEM cells and aPD-1 to the TdLN and the tumor immune microenvironment, thus realizing effective and sustained anti-tumor immunotherapy. Exploiting their unique gel-forming and degradation properties, the cold tumors were speedily transformed into hot tumors via TEM cell supplementation. Meanwhile, the efficacy of aPD-1 was markedly elevated compared with conventional drug delivery methods. Our finding suggested that the development of F127@TEM@aPD-1 holds promising potential as a future novel clinical drug delivery technique. STATEMENT OF SIGNIFICANCE: F127@TEM@aPD-1 show unique advantages in cancer treatment. When injected subcutaneously, F127@TEM@aPD-1 can continuously supplement TEM cells and aPD-1 to tumor draining lymph nodes (TdLN) and the tumor microenvironment, not only improving the efficacy of ICB therapy through slow release, but also exhibiting dual regulatory effects on the tumor and TdLN.


Delayed-Action Preparations , Hydrogels , Lymph Nodes , Memory T Cells , Programmed Cell Death 1 Receptor , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Lymph Nodes/drug effects , Lymph Nodes/pathology , Lymph Nodes/immunology , Mice , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Memory T Cells/drug effects , Memory T Cells/immunology , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacology , Delayed-Action Preparations/pharmacokinetics , Tumor Microenvironment/drug effects , Cell Line, Tumor , Immune Checkpoint Inhibitors/pharmacology , Immunotherapy/methods , Female , Mice, Inbred C57BL , Humans
17.
J Med Virol ; 96(5): e29627, 2024 May.
Article En | MEDLINE | ID: mdl-38659381

The immune mechanism underlying hepatitis B surface antigen (HBsAg) loss, particularly type I inflammatory response, during pegylated interferon-α (PEG-IFN) therapy remains unclear. In this study, we aimed to elucidate such immune mechanisms. Overall, 82 patients with chronic hepatitis B (CHB), including 41 with HBsAg loss (cured group) and 41 uncured patients, received nucleos(t)ide analogue and PEG-IFN treatments. Blood samples from all patients, liver tissues from 14 patients with CHB, and hepatic perfusate from 8 liver donors were collected for immune analysis. Jurkat, THP-1 and HepG2.2.15 cell lines were used in cell experiments. The proportion of IFN-γ+ Th1 cells was higher in the cured group than in the uncured group, which was linearly correlated with HBsAg decline and alanine aminotransferase (ALT) levels during treatment. However, CD8+ T cells were weakly associated with HBsAg loss. Serum and intrahepatic levels of Th1 cell-associated chemokines (C-X-C motif chemokine ligand [CXCL] 9, CXCL10, CXCL11, IFN-γ) were significantly lower in the cured patients than in patients with a higher HBsAg quantification during therapy. Serum from cured patients induced more M1 (CD68+CD86+ macrophage) cells than that from uncured patients. Patients with chronic HBV infection had significantly lower proportions of CD86+ M1 and CD206+ M2 macrophages in their livers than healthy controls. M1 polarization of intrahepatic Kupffer cells promoted HBsAg loss by upregulating the effector function of tissue-resident memory T cells with increased ALT levels. IFN-γ+ Th1 activates intrahepatic resident memory T cells to promote HBsAg loss by inducing M1 macrophage polarization.


Hepatitis B Surface Antigens , Hepatitis B, Chronic , Liver , Macrophages , Memory T Cells , Th1 Cells , Adult , Female , Humans , Male , Middle Aged , Antiviral Agents/therapeutic use , Antiviral Agents/pharmacology , Hepatitis B Surface Antigens/immunology , Hepatitis B virus/immunology , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/drug therapy , Interferon-alpha , Interferon-gamma , Liver/immunology , Macrophages/immunology , Memory T Cells/immunology , Th1 Cells/immunology
18.
Biomed Pharmacother ; 174: 116597, 2024 May.
Article En | MEDLINE | ID: mdl-38643544

Zhen-Wu-Tang (ZWT), a conventional herbal mixture, has been recommended for treating lupus nephritis (LN) in clinic. However, its mechanisms of action remain unknown. Here we aimed to define the immunological mechanisms underlying the effects of ZWT on LN and to determine whether it affects renal tissue-resident memory T (TRM) cells. Murine LN was induced by a single injection of pristane, while in vitro TRM cells differentiated with IL-15/TGF-ß. We found that ZWT or mycophenolate mofetil treatment significantly ameliorated kidney injury in LN mice by decreasing 24-h urine protein, Scr and anti-dsDNA Ab. ZWT also improved renal pathology and decreased IgG and C3 depositions. In addition, ZWT down-regulated renal Desmin expression. Moreover, it lowered the numbers of CD8+ TRM cells in kidney of mice with LN while decreasing their expression of TNF-α and IFN-γ. Consistent with in vivo results, ZWT-containing serum inhibited TRM cell differentiation induced by IL-15/TGF-ß in vitro. Mechanistically, it suppressed phosphorylation of STAT3 and CD122 (IL2/IL-15Rß)expression in CD8+ TRM cells. Importantly, ZWT reduced the number of total F4/80+CD11b+ and CD86+, but not CD206+, macrophages in the kidney of LN mice. Interestingly, ZWT suppressed IL-15 protein expression in macrophages in vivo and in vitro. Thus, we have provided the first evidence that ZWT decoction can be used to improve the outcome of LN by reducing CD8+ TRM cells via inhibition of IL-15/IL-15R /STAT3 signaling.


CD8-Positive T-Lymphocytes , Drugs, Chinese Herbal , Interleukin-15 , Kidney , Lupus Nephritis , STAT3 Transcription Factor , Signal Transduction , Animals , STAT3 Transcription Factor/metabolism , Interleukin-15/metabolism , Lupus Nephritis/drug therapy , Lupus Nephritis/immunology , Lupus Nephritis/metabolism , Lupus Nephritis/pathology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , Drugs, Chinese Herbal/pharmacology , Kidney/drug effects , Kidney/pathology , Kidney/metabolism , Mice , Signal Transduction/drug effects , Female , Mice, Inbred C57BL , Memory T Cells/drug effects , Memory T Cells/immunology , Memory T Cells/metabolism , Cell Differentiation/drug effects
19.
Nat Microbiol ; 9(5): 1356-1367, 2024 May.
Article En | MEDLINE | ID: mdl-38561497

Dengue human infection models present an opportunity to explore the potential of a vaccine, anti-viral or immuno-compound for clinical benefit in a controlled setting. Here we report the outcome of a phase 1 open-label assessment of a low-dose dengue virus 3 (DENV-3) challenge model (NCT04298138), in which nine participants received a subcutaneous inoculation with 0.5 ml of a 1.4 × 103 plaque-forming unit per ml suspension of the attenuated DENV-3 strain CH53489. The primary and secondary endpoints of the study were to assess the safety of this DENV-3 strain in healthy flavivirus-seronegative individuals. All participants developed RNAaemia within 7 days after inoculation with peak titre ranging from 3.13 × 104 to 7.02 × 108 genome equivalents per ml. Solicited symptoms such as fever and rash, clinical laboratory abnormalities such as lymphopenia and thrombocytopenia, and self-reported symptoms such as myalgia were consistent with mild-to-moderate dengue in all volunteers. DENV-3-specific seroconversion and memory T cell responses were observed within 14 days after inoculation as assessed by enzyme-linked immunosorbent assay and interferon-gamma-based enzyme-linked immunospot. RNA sequencing and serum cytokine analysis revealed anti-viral responses that overlapped with the period of viraemia. The magnitude and frequency of clinical and immunologic endpoints correlated with an individual's peak viral titre.


Antibodies, Viral , Dengue Vaccines , Dengue Virus , Dengue , Viremia , Humans , Dengue Virus/immunology , Dengue/immunology , Dengue/virology , Adult , Dengue Vaccines/immunology , Dengue Vaccines/administration & dosage , Dengue Vaccines/adverse effects , Male , Antibodies, Viral/blood , Antibodies, Viral/immunology , Female , Young Adult , Cytokines/blood , Cytokines/metabolism , RNA, Viral/blood , Seroconversion , Memory T Cells/immunology , Middle Aged
20.
CPT Pharmacometrics Syst Pharmacol ; 13(5): 837-852, 2024 05.
Article En | MEDLINE | ID: mdl-38594917

The association between memory CD4+ T cells and cancer prognosis is increasingly recognized, but their impact on lung adenocarcinoma (LUAD) prognosis remains unclear. In this study, using the cell-type identification by estimating relative subsets of RNA transcripts algorithm, we analyzed immune cell composition and patient survival in LUAD. Weighted gene coexpression network analysis helped identify memory CD4+ T cell-associated gene modules. Combined with module genes, a five-gene LUAD prognostic risk model (HOXB7, MELTF, ABCC2, GNPNAT1, and LDHA) was constructed by regression analysis. The model was validated using the GSE31210 data set. The validation results demonstrated excellent predictive performance of the risk scoring model. Correlation analysis was conducted between the clinical information and risk scores of LUAD samples, revealing that LUAD patients with disease progression exhibited higher risk scores. Furthermore, univariate and multivariate regression analyses demonstrated the model independent prognostic capability. The constructed nomogram results demonstrated that the predictive performance of the nomogram was superior to the prognostic model and outperformed individual clinical factors. Immune landscape assessment was performed to compare different risk score groups. The results revealed a better prognosis in the low-risk group with higher immune infiltration. The low-risk group also showed potential benefits from immunotherapy. Our study proposes a memory CD4+ T cell-associated gene risk model as a reliable prognostic biomarker for personalized treatment in LUAD patients.


Adenocarcinoma of Lung , CD4-Positive T-Lymphocytes , Immunotherapy , Lung Neoplasms , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , CD4-Positive T-Lymphocytes/immunology , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Prognosis , Immunotherapy/methods , Multidrug Resistance-Associated Protein 2 , Nomograms , Male , Biomarkers, Tumor/genetics , Memory T Cells/immunology , Female , Gene Expression Regulation, Neoplastic
...