Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 5.383
1.
Cells ; 13(9)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38727297

Spinal fusion, a common surgery performed for degenerative lumbar conditions, often uses recombinant human bone morphogenetic protein 2 (rhBMP-2) that is associated with adverse effects. Mesenchymal stromal/stem cells (MSCs) and their extracellular vesicles (EVs), particularly exosomes, have demonstrated efficacy in bone and cartilage repair. However, the efficacy of MSC exosomes in spinal fusion remains to be ascertained. This study investigates the fusion efficacy of MSC exosomes delivered via an absorbable collagen sponge packed in a poly Ɛ-caprolactone tricalcium phosphate (PCL-TCP) scaffold in a rat posterolateral spinal fusion model. Herein, it is shown that a single implantation of exosome-supplemented collagen sponge packed in PCL-TCP scaffold enhanced spinal fusion and improved mechanical stability by inducing bone formation and bridging between the transverse processes, as evidenced by significant improvements in fusion score and rate, bone structural parameters, histology, stiffness, and range of motion. This study demonstrates for the first time that MSC exosomes promote bone formation to enhance spinal fusion and mechanical stability in a rat model, supporting its translational potential for application in spinal fusion.


Exosomes , Mesenchymal Stem Cells , Rats, Sprague-Dawley , Spinal Fusion , Animals , Exosomes/metabolism , Exosomes/transplantation , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Spinal Fusion/methods , Rats , Osteogenesis/drug effects , Calcium Phosphates/pharmacology , Male , Humans , Tissue Scaffolds/chemistry , Bone Morphogenetic Protein 2/metabolism , Mesenchymal Stem Cell Transplantation/methods
2.
Cells ; 13(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38727312

We investigated the impact of mesenchymal stem cell (MSC) therapy on treating bilateral human hip osteonecrosis, analyzing 908 cases. This study assesses factors such as tissue source and cell count, comparing core decompression with various cell therapies. This research emphasizes bone repair according to pre-treatment conditions and the specificities of cell therapy in osteonecrosis repair, indicating a potential for improved bone repair strategies in hips without femoral head collapse. This study utilized a single-center retrospective analysis to investigate the efficacy of cellular approaches in the bone repair of osteonecrosis. It examined the impact on bone repair of tissue source (autologous bone marrow concentrate, allogeneic expanded, autologous expanded), cell quantity (from none in core decompression alone to millions in cell therapy), and osteonecrosis stage and volume. Excluding hips with femoral head collapse, it focused on patients who had bilateral hip osteonecrosis, both pre-operative and post-operative MRIs, and a follow-up of over five years. The analysis divided these patients into seven groups based on match control treatment variations in bilateral hip osteonecrosis, primarily investigating the outcomes between core decompression, washing effect, and different tissue sources of MSCs. Younger patients (<30 years) demonstrated significantly better repair volumes, particularly in stage II lesions, than older counterparts. Additionally, bone repair volume increased with the number of implanted MSCs up to 1,000,000, beyond which no additional benefits were observed. No significant difference was observed in repair outcomes between different sources of MSCs (BMAC, allogenic, or expanded cells). The study also highlighted that a 'washing effect' was beneficial, particularly for larger-volume osteonecrosis when combined with core decompression. Partial bone repair was the more frequent event observed, while total bone repair of osteonecrosis was rare. The volume and stage of osteonecrosis, alongside the number of injected cells, significantly affected treatment outcomes. In summary, this study provides comprehensive insights into the effectiveness and variables influencing the use of mesenchymal stem cells in treating human hip osteonecrosis. It emphasizes the potential of cell therapy while acknowledging the complexity and variability of results based on factors such as age, cell count, and disease stage.


Femur Head Necrosis , Mesenchymal Stem Cell Transplantation , Humans , Mesenchymal Stem Cell Transplantation/methods , Male , Female , Adult , Middle Aged , Femur Head Necrosis/therapy , Femur Head Necrosis/pathology , Retrospective Studies , Mesenchymal Stem Cells/cytology , Cell Count , Young Adult , Aged , Treatment Outcome , Adolescent , Magnetic Resonance Imaging
3.
Aging Dis ; 15(3): 965-976, 2024 May 07.
Article En | MEDLINE | ID: mdl-38722791

Emerging from several decades of extensive research, key genetic elements and biochemical mechanisms implicated in neuroinflammation have been delineated, contributing substantially to our understanding of neurodegenerative diseases (NDDs). In this minireview, we discuss data predominantly from the past three years, highlighting the pivotal roles and mechanisms of the two principal cell types implicated in neuroinflammation. The review also underscores the extended process of peripheral inflammation that predates symptomatic onset, the critical influence of neuroinflammation, and their dynamic interplay in the pathogenesis of NDDs. Confronting these complex challenges, we introduce compelling evidence supporting the use of mesenchymal stem cell-based cell-free therapy. This therapeutic strategy includes the regulation of microglia and astrocytes, modulation of peripheral nerve cell inflammation, and targeted anti-inflammatory interventions specifically designed for NDDs, while also discussing engineering and safety considerations. This innovative therapeutic approach intricately modulates the immune system across the peripheral and nervous systems, with an emphasis on achieving superior penetration and targeted delivery. The insights offered by this review have significant implications for the better understanding and management of neuroinflammation.


Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Neurodegenerative Diseases , Neuroinflammatory Diseases , Humans , Neuroinflammatory Diseases/therapy , Neuroinflammatory Diseases/immunology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Neurodegenerative Diseases/therapy , Neurodegenerative Diseases/immunology , Animals , Microglia/metabolism , Microglia/immunology , Inflammation/therapy , Astrocytes/metabolism
4.
J Cell Mol Med ; 28(9): e18351, 2024 May.
Article En | MEDLINE | ID: mdl-38693854

Coronary artery bypass grafting (CABG) is an effective treatment for coronary heart disease, with vascular transplantation as the key procedure. Intimal hyperplasia (IH) gradually leads to vascular stenosis, seriously affecting the curative effect of CABG. Mesenchymal stem cells (MSCs) were used to alleviate IH, but the effect was not satisfactory. This work aimed to investigate whether lncRNA MIR155HG could improve the efficacy of MSCs in the treatment of IH and to elucidate the role of the competing endogenous RNA (ceRNA). The effect of MIR155HG on MSCs function was investigated, while the proteins involved were assessed. IH was detected by HE and Van Gieson staining. miRNAs as the target of lncRNA were selected by bioinformatics analysis. qRT-PCR and dual-luciferase reporter assay were performed to verify the binding sites of lncRNA-miRNA. The apoptosis, Elisa and tube formation assay revealed the effect of ceRNA on the endothelial protection of MIR155HG-MSCs. We observed that MIR155HG improved the effect of MSCs on IH by promoting viability and migration. MIR155HG worked as a sponge for miR-205. MIR155HG/miR-205 significantly improved the function of MSCs, avoiding apoptosis and inducing angiogenesis. The improved therapeutic effects of MSCs on IH might be due to the ceRNA role of MIR155HG/miR-205.


Apoptosis , Hyperplasia , Mesenchymal Stem Cells , MicroRNAs , RNA, Long Noncoding , MicroRNAs/genetics , MicroRNAs/metabolism , Mesenchymal Stem Cells/metabolism , Humans , RNA, Long Noncoding/genetics , Apoptosis/genetics , Cell Movement/genetics , Animals , Mesenchymal Stem Cell Transplantation/methods , Tunica Intima/pathology , Tunica Intima/metabolism , Gene Expression Regulation , Cell Proliferation/genetics , Male , Cell Survival/genetics , RNA, Competitive Endogenous
5.
Biol Res ; 57(1): 20, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698488

BACKGROUND: Diabetes mellitus (DM) is a global epidemic with increasing incidences. DM is a metabolic disease associated with chronic hyperglycemia. Aside from conventional treatments, there is no clinically approved cure for DM up till now. Differentiating mesenchymal stem cells (MSCs) into insulin-producing cells (IPCs) is a promising approach for curing DM. Our study was conducted to investigate the effect of DM on MSCs differentiation into IPCs in vivo and in vitro. METHODS: We isolated adipose-derived mesenchymal stem cells (Ad-MSCs) from the epididymal fat of normal and STZ-induced diabetic Sprague-Dawley male rats. Afterwards, the in vitro differentiation of normal-Ad-MSCs (N-Ad-MSCs) and diabetic-Ad-MSCs (DM-Ad-MSCs) into IPCs was compared morphologically then through determining the gene expression of ß-cell markers including neurogenin-3 (Ngn-3), homeobox protein (Nkx6.1), musculoaponeurotic fibrosarcoma oncogene homolog A (MafA), and insulin-1 (Ins-1) and eventually, through performing glucose-stimulated insulin secretion test (GSIS). Finally, the therapeutic potential of N-Ad-MSCs and DM-Ad-MSCs transplantation was compared in vivo in STZ-induced diabetic animals. RESULTS: Our results showed no significant difference in the characteristics of N-Ad-MSCs and DM-Ad-MSCs. However, we demonstrated a significant difference in their abilities to differentiate into IPCs in vitro morphologically in addition to ß-cell markers expression, and functional assessment via GSIS test. Furthermore, the abilities of both Ad-MSCs to control hyperglycemia in diabetic rats in vivo was assessed through measuring fasting blood glucose (FBGs), body weight (BW), histopathological examination of both pancreas and liver and immunoexpression of insulin in pancreata of study groups. CONCLUSION: Our findings reveal the effectiveness of N-Ad-MSCs in differentiating into IPCs in vitro and controlling the hyperglycemia of STZ-induced diabetic rats in vivo compared to DM-Ad-MSCs.


Cell Differentiation , Diabetes Mellitus, Experimental , Insulin-Secreting Cells , Insulin , Mesenchymal Stem Cells , Rats, Sprague-Dawley , Animals , Cell Differentiation/physiology , Diabetes Mellitus, Experimental/therapy , Male , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Rats , Mesenchymal Stem Cell Transplantation/methods , Cells, Cultured , Streptozocin , Blood Glucose/analysis
6.
Sci Rep ; 14(1): 10349, 2024 05 06.
Article En | MEDLINE | ID: mdl-38710789

Mastitis is a multifactorial inflammatory disease. The increase in antibiotic resistance of bacteria that cause mastitis means that cattle breeders would prefer to reduce the use of antibiotics. Recently, therapies using mesenchymal stem cells (MSCs) from various sources have gained significant interest in the development of regenerative medicine in humans and animals, due to their extraordinary range of properties and functions. The aim of this study was to analyze the effectiveness of an allogeneic stem cells derived from bone marrow (BMSC) and adipose tissue (ADSC) in treating mastitis in dairy cattle. The research material consisted of milk and blood samples collected from 39 Polish Holstein-Friesian cows, 36 of which were classified as having mastitis, based on cytological evaluation of their milk. The experimental group was divided into subgroups according to the method of MSC administration: intravenous, intramammary, and intravenous + intramammary, and according to the allogeneic stem cells administered: BMSC and ADSC. The research material was collected at several time intervals: before the administration of stem cells, after 24 and 72 h, and after 7 days. Blood samples were collected to assess hematological parameters and the level of pro-inflammatory cytokines, while the milk samples were used for microbiological assessment and to determine the somatic cells count (SCC). The administration of allogeneic MSCs resulted in a reduction in the total number of bacterial cells, Staphylococcus aureus, bacteria from the Enterobacteriaceae group, and a systematic decrease in SCC in milk. The therapeutic effect was achieved via intravenous + intramammary or intramammary administration.


Mastitis, Bovine , Mesenchymal Stem Cell Transplantation , Milk , Animals , Cattle , Female , Mastitis, Bovine/therapy , Mastitis, Bovine/microbiology , Milk/cytology , Milk/microbiology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology , Adipose Tissue/cytology , Cytokines/metabolism , Cytokines/blood
7.
Clin Transl Sci ; 17(5): e13821, 2024 May.
Article En | MEDLINE | ID: mdl-38742709

Inflammatory bowel disease (IBD) is characterized by a chronically dysregulated immune response in the gastrointestinal tract. Bone marrow multipotent mesenchymal stromal cells have an important immunomodulatory function and support regeneration of inflamed tissue by secretion of soluble factors as well as through direct local differentiation. CXCR4 is the receptor for CXCL12 (SDF-1, stromal-derived factor-1) and has been shown to be the main chemokine receptor, required for homing of MSCs. Increased expression of CXCL12 by inflamed intestinal tissue causes constitutive inflammation by attracting lymphocytes but can also be used to direct MSCs to sites of injury/inflammation. Trypsin is typically used to dissociate MSCs into single-cell suspensions but has also been shown to digest surface CXCR4. Here, we assessed the regenerative effects of CXCR4high and CXCR4low MSCs in an immune-deficient mouse model of DSS-induced colitis. We found that transplantation of MSCs resulted in clinical improvement and histological recovery of intestinal epithelium. In contrary to our expectations, the levels of CXCR4 on transplanted MSCs did not affect their regenerative supporting potential, indicating that paracrine effects of MSCs may be largely responsible for their regenerative/protective effects.


Colitis , Disease Models, Animal , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Mice, Inbred C57BL , Receptors, CXCR4 , Regeneration , Animals , Receptors, CXCR4/metabolism , Receptors, CXCR4/genetics , Mesenchymal Stem Cells/metabolism , Colitis/chemically induced , Colitis/pathology , Colitis/immunology , Colitis/therapy , Colitis/metabolism , Mesenchymal Stem Cell Transplantation/methods , Mice , Dextran Sulfate , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Intestinal Mucosa/immunology , Chemokine CXCL12/metabolism , Chemokine CXCL12/genetics , Bone Marrow Cells/metabolism
8.
Stem Cell Res Ther ; 15(1): 140, 2024 May 14.
Article En | MEDLINE | ID: mdl-38745184

BACKGROUND: Perianal fistulas (PF) affect one-third patients with Crohn's disease (CD) with limited therapeutic options. There is dearth of literature on safety and efficacy of bone marrow-derived mesenchymal stromal cells (BMSCs) in this population. METHODS: An open-label, phase I/II, single-arm study was conducted involving local administration of human allogeneic bone marrow-derived mesenchymal stromal cells in perianal fistula of patients with Crohn's disease refractory to standard therapies. Clinical severity and biomarkers were assessed at baseline and periodically until week 104 , and MRI at week 24 and 104. Primary and secondary objectives were to assess safety and efficacy respectively. Fistula remission was complete closure of fistula openings with < 2 cm perianal collection on MRI, and fistula response was decrease in drainage by ≥ 50%. Change in perianal disease activity index, quality-of-life and Van Assche index on MRI over time was assessed using mixed-effect linear regression model. RESULTS: Ten patients (male:8, mean age:27.4 ± 12.0years) were recruited. Self-resolving procedure-related adverse events occurred in three patients, with no follow-up adverse events. In intention to treat analysis at week 24, two patients (20%) achieved fistula remission and seven (70%) had fistula response. At week 52, two (20%) patients were in remission and seven (70%) maintained response. At 104 weeks, two (20%) patients maintained response and one (10%) was in remission. Statistically significant decrease in perianal disease activity index (P = 0.008), Van Assche Index (P = 0.008) and improvement in quality-of-life (P = 0.001) were observed over time. CONCLUSIONS: Allogeneic BMSCs are safe and effective for the treatment of perianal fistulizing CD with significant improvement in clinical severity and radiological healing. TRIAL REGISTRATION: The study was prospectively registered on Clinical trials registry - India (CTRI), CTRI/2020/01/022743 on 14 January 2020, http://ctri.nic.in .


Crohn Disease , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Rectal Fistula , Humans , Crohn Disease/complications , Crohn Disease/therapy , Male , Adult , Female , Mesenchymal Stem Cell Transplantation/methods , Rectal Fistula/therapy , Rectal Fistula/etiology , Mesenchymal Stem Cells/cytology , Young Adult , Transplantation, Homologous/methods , Adolescent , Middle Aged , Magnetic Resonance Imaging , Treatment Outcome , Quality of Life
9.
Stem Cell Res Ther ; 15(1): 134, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715091

BACKGROUND: Hypoxic-Ischemic Encephalopathy (HIE) is a leading cause of mortality and morbidity in newborns. Recent research has shown promise in using intranasal mesenchymal stem cell (MSC) therapy if administered within 10 days after Hypoxia-Ischemia (HI) in neonatal mice. MSCs migrate from the nasal cavity to the cerebral lesion in response to chemotactic cues. Which exact chemokines are crucial for MSC guidance to the HI lesion is currently not fully understood. This study investigates the role of CXCL10 in MSC migration towards the HI-injured brain. METHODS: HI was induced in male and female 9-day-old C57BL/6 mice followed by intranasal MSC treatment at day 10 or 17 post-HI. CXCL10 protein levels, PKH26-labeled MSCs and lesion size were assessed by ELISA, immunofluorescent imaging and MAP2 staining respectively. At day 17 post-HI, when CXCL10 levels were reduced, intracranial CXCL10 injection and intranasal PKH26-labeled MSC administration were combined to assess CXCL10-guided MSC migration. MSC treatment efficacy was evaluated after 18 days, measuring lesion size, motor outcome (cylinder rearing task), glial scarring (GFAP staining) and neuronal density (NeuN staining) around the lesion. Expression of the receptor for CXCL10, i.e. CXCR3, on MSCs was confirmed by qPCR and Western Blot. Moreover, CXCL10-guided MSC migration was assessed through an in vitro transwell migration assay. RESULTS: Intranasal MSC treatment at day 17 post-HI did not reduce lesion size in contrast to earlier treatment timepoints. Cerebral CXCL10 levels were significantly decreased at 17 days versus 10 days post-HI and correlated with reduced MSC migration towards the brain. In vitro experiments demonstrated that CXCR3 receptor inhibition prevented CXCL10-guided migration of MSCs. Intracranial CXCL10 injection at day 17 post-HI significantly increased the number of MSCs reaching the lesion which was accompanied by repair of the HI lesion as measured by reduced lesion size and glial scarring, and an increased number of neurons around the lesion. CONCLUSIONS: This study underscores the crucial role of the chemoattractant CXCL10 in guiding MSCs to the HI lesion after intranasal administration. Strategies to enhance CXCR3-mediated migration of MSCs may improve the efficacy of MSC therapy or extend its regenerative therapeutic window.


Administration, Intranasal , Chemokine CXCL10 , Hypoxia-Ischemia, Brain , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Mice, Inbred C57BL , Animals , Chemokine CXCL10/metabolism , Chemokine CXCL10/genetics , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Hypoxia-Ischemia, Brain/therapy , Hypoxia-Ischemia, Brain/metabolism , Hypoxia-Ischemia, Brain/pathology , Mice , Female , Male , Animals, Newborn , Cell Movement
10.
Trials ; 25(1): 309, 2024 May 08.
Article En | MEDLINE | ID: mdl-38715140

BACKGROUND: Inflamm-aging is associated with the rate of aging and is significantly related to diseases such as Alzheimer's disease, Parkinson's disease, atherosclerosis, heart disease, and age-related degenerative diseases such as type II diabetes and osteoporosis. This study aims to evaluate the safety and efficiency of autologous adipose tissue-derived mesenchymal stem cell (AD-MSC) transplantation in aging-related low-grade inflammation patients. METHODS: This study is a single-group, open-label, phase I clinical trial in which patients treated with 2 infusions (100 million cells i.v) of autologous AD-MSCs were initially evaluated in 12 inflamm-aging patients who concurrently had highly proinflammatory cytokines and 2 of the following 3 diseases: diabetes, dyslipidemia, and obesity. The treatment effects were evaluated based on plasma cytokines. RESULTS: During the study's follow-up period, no adverse effects were observed in AD-MSC injection patients. Compared to baseline (D-44), the inflammatory cytokines IL-1α, IL-1ß, IL-8, IL-6, and TNF-α were significantly reduced after 180 days (D180) of MSC infusion. IL-4/IL-10 at 90 days (D90) and IL-2/IL-10 at D180 increased, reversing the imbalance between proinflammatory and inflammatory ratios in the patients. CONCLUSION: AD-MSCs represent a potential intervention to prevent age-related inflammation in patients. TRIAL REGISTRATION: ClinicalTrials.gov number is NCT05827757, first registered on 13th Oct 2020.


Adipose Tissue , Cytokines , Inflammation , Mesenchymal Stem Cell Transplantation , Transplantation, Autologous , Humans , Female , Male , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cell Transplantation/methods , Middle Aged , Cytokines/blood , Inflammation/blood , Treatment Outcome , Aged , Aging , Inflammation Mediators/blood , Time Factors , Age Factors , Adult
11.
Sci Rep ; 14(1): 10251, 2024 05 04.
Article En | MEDLINE | ID: mdl-38704512

Mesenchymal stem cells (MSCs) exert their anti-inflammatory and anti-fibrotic effects by secreting various humoral factors. Interferon-gamma (IFN-γ) can enhance these effects of MSCs, and enhancement of regulatory T (Treg) cell induction is thought to be an underlying mechanism. However, the extent to which Treg cell induction by MSCs pretreated with IFN-γ (IFN-γ MSCs) ameliorates renal fibrosis remains unknown. In this study, we investigated the effects of Treg cell induction by IFN-γ MSCs on renal inflammation and fibrosis using an siRNA knockdown system. Administration of IFN-γ MSCs induced Treg cells and inhibited infiltration of inflammatory cells in ischemia reperfusion injury (IRI) rats more drastically than control MSCs without IFN-γ pretreatment. In addition, administration of IFN-γ MSCs more significantly attenuated renal fibrosis compared with control MSCs. Indoleamine 2,3-dioxygenase (IDO) expression levels in conditioned medium from MSCs were enhanced by IFN-γ pretreatment. Moreover, IDO1 knockdown in IFN-γ MSCs reduced their anti-inflammatory and anti-fibrotic effects in IRI rats by reducing Treg cell induction. Our findings suggest that the increase of Treg cells induced by enhanced secretion of IDO by IFN-γ MSCs played a pivotal role in their anti-fibrotic effects. Administration of IFN-γ MSCs may potentially be a useful therapy to prevent renal fibrosis progression.


Fibrosis , Indoleamine-Pyrrole 2,3,-Dioxygenase , Interferon-gamma , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , T-Lymphocytes, Regulatory , Animals , Interferon-gamma/metabolism , T-Lymphocytes, Regulatory/immunology , Mesenchymal Stem Cells/metabolism , Rats , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Male , Mesenchymal Stem Cell Transplantation/methods , Kidney/pathology , Kidney/drug effects , Reperfusion Injury/immunology , Kidney Diseases/therapy , Kidney Diseases/pathology , Rats, Sprague-Dawley
12.
Am J Reprod Immunol ; 91(5): e13853, 2024 May.
Article En | MEDLINE | ID: mdl-38706383

BACKGROUND: The amniotic membrane (AM) has shown immense potential in repairing wounds due to its great regenerative qualities. Although the role of AM as a biological scaffold in repairing wounds has been studied well, the tissue regenerative potential of AM-derived mesenchymal stem cells (MSCs) and conditioned media (CM) derived from it remains to be discovered as of now. Here, we examined the wound healing abilities of fresh and frozen thawed rabbit AM (rAM) along with the MSCs and their lyophilised CM in rabbits challenged with skin wounds. METHODS: To elucidate the role of rAM-MSCs and its CM in repairing the wound, we isolated it from the freshly derived placenta and characterised their differentiation potential by performing an in vitro tri-lineage differentiation assay besides other standard confirmations. We compared the wound repair capacities of rAM-MSCs and lyophilised CM with the fresh and cryopreserved AM at different timelines by applying them to excision wounds created in rabbits. RESULTS: By monitoring wound contractions and tissue histology of wounded skin at different time points after the application, we observed that rAM-MSCs and rAM-MSC-derived CM significantly promoted wound closure compared to the control group. We also observed that the wound closure capacity of rAM-MSCs and rAM-MSC-derived CM is as efficient as fresh and cryopreserved rAM. CONCLUSION: Our findings suggest that rAM-MSCs and rAM-MSC derived CM can be effectively used to treat skin wounds in animals and correctly delivered to the damaged tissue using AM as a bioscaffold, either fresh or frozen.


Amnion , Mesenchymal Stem Cells , Wound Healing , Animals , Rabbits , Female , Mesenchymal Stem Cells/cytology , Cell Differentiation , Culture Media, Conditioned/pharmacology , Mesenchymal Stem Cell Transplantation/methods , Skin/injuries , Skin/pathology , Pregnancy , Disease Models, Animal , Cells, Cultured , Transplantation, Homologous
14.
Int J Mol Sci ; 25(9)2024 May 02.
Article En | MEDLINE | ID: mdl-38732198

Osteoporotic vertebral compression fractures (OVCFs) significantly increase morbidity and mortality, presenting a formidable challenge in healthcare. Traditional interventions such as vertebroplasty and kyphoplasty, despite their widespread use, are limited in addressing the secondary effects of vertebral fractures in adjacent areas and do not facilitate bone regeneration. This review paper explores the emerging domain of regenerative therapies, spotlighting stem cell therapy's transformative potential in OVCF treatment. It thoroughly describes the therapeutic possibilities and mechanisms of action of mesenchymal stem cells against OVCFs, relying on recent clinical trials and preclinical studies for efficacy assessment. Our findings reveal that stem cell therapy, particularly in combination with scaffolding materials, holds substantial promise for bone regeneration, spinal stability improvement, and pain mitigation. This integration of stem cell-based methods with conventional treatments may herald a new era in OVCF management, potentially improving patient outcomes. This review advocates for accelerated research and collaborative efforts to translate laboratory breakthroughs into clinical practice, emphasizing the revolutionary impact of regenerative therapies on OVCF management. In summary, this paper positions stem cell therapy at the forefront of innovation for OVCF treatment, stressing the importance of ongoing research and cross-disciplinary collaboration to unlock its full clinical potential.


Fractures, Compression , Osteoporotic Fractures , Regenerative Medicine , Spinal Fractures , Humans , Spinal Fractures/therapy , Fractures, Compression/therapy , Osteoporotic Fractures/therapy , Regenerative Medicine/methods , Bone Regeneration , Animals , Stem Cell Transplantation/methods , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/cytology
15.
Int J Mol Sci ; 25(9)2024 May 05.
Article En | MEDLINE | ID: mdl-38732257

In transplantation, hypothermic machine perfusion (HMP) has been shown to be superior to static cold storage (SCS) in terms of functional outcomes. Ex vivo machine perfusion offers the possibility to deliver drugs or other active substances, such as Mesenchymal Stem Cells (MSCs), directly into an organ without affecting the recipient. MSCs are multipotent, self-renewing cells with tissue-repair capacities, and their application to ameliorate ischemia- reperfusion injury (IRI) is being investigated in several preclinical and clinical studies. The aim of this study was to introduce MSCs into a translational model of hypothermic machine perfusion and to test the efficiency and feasibility of this method. Methods: three rodent kidneys, six porcine kidneys and three human kidneys underwent HMP with 1-5 × 106 labelled MSCs within respective perfusates. Only porcine kidneys were compared to a control group of 6 kidneys undergoing HMP without MSCs, followed by mimicked reperfusion with whole blood at 37 °C for 2 h for all 12 kidneys. Reperfusion perfusate samples were analyzed for levels of NGAL and IL-ß by ELISA. Functional parameters, including urinary output, oxygen consumption and creatinine clearance, were compared and found to be similar between the MSC treatment group and the control group in the porcine model. IL-1ß levels were higher in perfusate and urine samples in the MSC group, with a median of 285.3 ng/mL (IQR 224.3-407.8 ng/mL) vs. 209.2 ng/mL (IQR 174.9-220.1), p = 0.51 and 105.3 ng/mL (IQR 71.03-164.7 ng/mL) vs. 307.7 ng/mL (IQR 190.9-349.6 ng/mL), p = 0.16, respectively. MSCs could be traced within the kidneys in all models using widefield microscopy after HMP. The application of Mesenchymal Stem Cells in an ex vivo hypothermic machine perfusion setting is feasible, and MSCs can be delivered into the kidney grafts during HMP. Functional parameters during mimicked reperfusion were not altered in treated kidney grafts. Changes in levels of IL-1ß suggest that MSCs might have an effect on the kidney grafts, and whether this leads to a positive or a negative outcome on IRI in transplantation needs to be determined in further experiments.


Kidney Transplantation , Kidney , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Perfusion , Reperfusion Injury , Animals , Swine , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Kidney/metabolism , Mesenchymal Stem Cell Transplantation/methods , Perfusion/methods , Humans , Kidney Transplantation/methods , Reperfusion Injury/therapy , Reperfusion Injury/metabolism , Organ Preservation/methods , Translational Research, Biomedical , Male , Hypothermia, Induced/methods
16.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article En | MEDLINE | ID: mdl-38732156

During the last three decades, mesenchymal stem/stromal cells (MSCs) were extensively studied, and are mainly considered within the setting of their regenerative and immunomodulatory properties in tissue regeneration [...].


Mesenchymal Stem Cells , Regeneration , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Humans , Animals , Mesenchymal Stem Cell Transplantation/methods , Tissue Engineering/methods , Regenerative Medicine/methods , Cell Differentiation
17.
Tissue Eng Regen Med ; 21(4): 545-556, 2024 Jun.
Article En | MEDLINE | ID: mdl-38573476

BACKGROUND: Coronavirus disease 2019 (COVID-19) has a clinical manifestation of hypoxic respiratory failure and acute respiratory distress syndrome. However, COVID-19 still lacks of effective clinical treatments so far. As a promising potential treatment against COVID-19, stem cell therapy raised recently and had attracted much attention. Here we review the mechanisms of mesenchymal stem cell-based treatments against COVID-19, and provide potential cues for the effective control of COVID-19 in the future. METHODS: Literature is obtained from databases PubMed and Web of Science. Key words were chosen for COVID- 19, acute respiratory syndrome coronavirus 2, mesenchymal stem cells, stem cell therapy, and therapeutic mechanism. Then we summarize and critically analyze the relevant articles retrieved. RESULTS: Mesenchymal stem cell therapy is a potential effective treatment against COVID-19. Its therapeutic efficacy is mainly reflected in reducing severe pulmonary inflammation, reducing lung injury, improving pulmonary function, protecting and repairing lung tissue of the patients. Possible therapeutic mechanisms might include immunoregulation, anti-inflammatory effect, tissue regeneration, anti-apoptosis effect, antiviral, and antibacterial effect, MSC - EVs, and so on. CONCLUSION: Mesenchymal stem cells can effectively treat COVID-19 through immunoregulation, anti-inflammatory, tissue regeneration, anti-apoptosis, anti-virus and antibacterial, MSC - EVs, and other ways. Systematically elucidating the mechanisms of mesenchymal stem cell-based treatments for COVID-19 will provide novel insights into the follow-up research and development of new therapeutic strategies in next step.


COVID-19 , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , SARS-CoV-2 , Humans , COVID-19/therapy , Mesenchymal Stem Cell Transplantation/methods , Lung
18.
Tissue Eng Regen Med ; 21(4): 625-639, 2024 Jun.
Article En | MEDLINE | ID: mdl-38578425

BACKGROUND: Syringomyelia is a progressive chronic disease that leads to nerve pain, sensory dissociation, and dyskinesia. Symptoms often do not improve after surgery. Stem cells have been widely explored for the treatment of nervous system diseases due to their immunoregulatory and neural replacement abilities. METHODS: In this study, we used a rat model of syringomyelia characterized by focal dilatation of the central canal to explore an effective transplantation scheme and evaluate the effect of mesenchymal stem cells and induced neural stem cells for the treatment of syringomyelia. RESULTS: The results showed that cell transplantation could not only promote syrinx shrinkage but also stimulate the proliferation of ependymal cells, and the effect of this result was related to the transplantation location. These reactions appeared only when the cells were transplanted into the cavity. Additionally, we discovered that cell transplantation transformed activated microglia into the M2 phenotype. IGF1-expressing M2 microglia may play a significant role in the repair of nerve pain. CONCLUSION: Cell transplantation can promote cavity shrinkage and regulate the local inflammatory environment. Moreover, the proliferation of ependymal cells may indicate the activation of endogenous stem cells, which is important for the regeneration and repair of spinal cord injury.


Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Neural Stem Cells , Rats, Sprague-Dawley , Syringomyelia , Animals , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Syringomyelia/therapy , Rats , Cell Proliferation , Ependyma , Male , Microglia/metabolism , Disease Models, Animal
19.
Tissue Eng Regen Med ; 21(4): 513-527, 2024 Jun.
Article En | MEDLINE | ID: mdl-38598059

BACKGROUND: Mesenchymal stem cells (MSCs) have undergone extensive investigation for their potential therapeutic applications, primarily attributed to their paracrine activity. Recently, researchers have been exploring the therapeutic potential of extracellular vesicles (EVs) released by MSCs. METHODS: MEDLINE/PubMed and Google scholar databases were used for the selection of literature. The keywords used were mesenchymal stem cells, extracellular vesicles, clinical application of EVs and challenges EVs production. RESULTS: These EVs have demonstrated robust capabilities in transporting intracellular cargo, playing a critical role in facilitating cell-to-cell communication by carrying functional molecules, including proteins, RNA species, DNAs, and lipids. Utilizing EVs as an alternative to stem cells offers several benefits, such as improved safety, reduced immunogenicity, and the ability to traverse biological barriers. Consequently, EVs have emerged as an increasingly attractive option for clinical use. CONCLUSION: From this perspective, this review delves into the advantages and challenges associated with employing MSC-EVs in clinical settings, with a specific focus on their potential in treating conditions like lung diseases, cancer, and autoimmune disorders.


Extracellular Vesicles , Mesenchymal Stem Cells , Humans , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Animals , Neoplasms/therapy , Mesenchymal Stem Cell Transplantation/methods , Autoimmune Diseases/therapy , Lung Diseases/therapy , Cell Communication
20.
Int J Mol Sci ; 25(8)2024 Apr 18.
Article En | MEDLINE | ID: mdl-38674027

Stem cell therapy stands out as a promising avenue for addressing arthritis treatment. However, its therapeutic efficacy requires further enhancement. In this study, we investigated the anti-arthritogenic potential of human amniotic mesenchymal stem cells (AMM) overexpressing insulin-like growth factor 1 (IGF-1) in a collagen-induced mouse model. The IGF-1 gene was introduced into the genome of AMM through transcription activator-like effector nucleases (TALENs). We assessed the in vitro immunomodulatory properties and in vivo anti-arthritogenic effects of IGF-1-overexpressing AMM (AMM/I). Co-culture of AMM/I with interleukin (IL)-1ß-treated synovial fibroblasts significantly suppressed NF-kB levels. Transplantation of AMM/I into mice with collagen-induced arthritis (CIA) led to significant attenuation of CIA progression. Furthermore, AMM/I administration resulted in the expansion of regulatory T-cell populations and suppression of T-helper-17 cell activation in CIA mice. In addition, AMM/I transplantation led to an increase in proteoglycan expression within cartilage and reduced infiltration by inflammatory cells and also levels of pro-inflammatory factors including cyclooxygenase-2 (COX-2), IL-1ß, NF-kB, and tumor necrosis factor (TNF)-α. In conclusion, our findings suggest that IGF-1 gene-edited human AMM represent a novel alternative therapeutic strategy for the treatment of arthritis.


Arthritis, Experimental , Gene Editing , Insulin-Like Growth Factor I , Mesenchymal Stem Cells , Animals , Humans , Arthritis, Experimental/genetics , Arthritis, Experimental/pathology , Arthritis, Experimental/immunology , Mesenchymal Stem Cells/metabolism , Insulin-Like Growth Factor I/metabolism , Insulin-Like Growth Factor I/genetics , Mice , Mesenchymal Stem Cell Transplantation/methods , Male , Mice, Inbred DBA , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Th17 Cells/immunology , Th17 Cells/metabolism , NF-kappa B/metabolism , Interleukin-1beta/metabolism
...