Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.543
1.
FASEB J ; 38(10): e23683, 2024 May 31.
Article En | MEDLINE | ID: mdl-38758184

Mesenchymal stromal cells (MSCs) have been shown to modulate the function of various subsets of T cells such as naïve CD4+ T cells and IFNγ+CD4+ Th1 cells; however, mechanisms underlying this regulation have not been fully deciphered. Our in vitro culture assays demonstrate that MSCs suppress the activation and function of CD4+ T cells by secreting interleukin 11, and neutralization of IL11 abrogates MSC-mediated suppression of CD4+ T cell function. Moreover, delayed-type, exogenous supplementation of IL11 significantly suppressed IFNγ+ expression by Th1 cells. Th1 and CD8+ cells play central roles in T cell-mediated tissue damage. Using a murine model of hypersensitivity response to study T cell-mediated tissue damage, we show that silencing IL11 in MSCs significantly abates the capacity of MSCs to suppress the generation of IFNγ-secreting CD4+ and CD8+ cells, failing to prevent T cell-mediated tissue inflammation and tissue damage.


CD8-Positive T-Lymphocytes , Interferon-gamma , Interleukin-11 , Mesenchymal Stem Cells , Mice, Inbred C57BL , Th1 Cells , Animals , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/immunology , Th1 Cells/immunology , Mice , Interleukin-11/metabolism , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Interferon-gamma/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism , Cells, Cultured , Female
2.
Front Immunol ; 15: 1382931, 2024.
Article En | MEDLINE | ID: mdl-38736882

Background: Neuroblastoma (NB) is characterized by both adrenergic (ADRN) and undifferentiated mesenchymal (MES) subsets. The ganglioside sialic acid-containing glycosphingolipid (GD2) is widely overexpressed on tumors of neuroectodermal origin promoting malignant phenotypes. MES cells are greatly enriched in post-therapy and relapsing tumors and are characterized by decreased expression of GD2. This event may cause failure of GD2-based immunotherapy. NK cells represent a key innate cell subset able to efficiently kill tumors. However, the tumor microenvironment (TME) that includes tumor cells and tumor-associated (TA) cells could inhibit their effector function. Methods: We studied eight NB primary cultures that, in comparison with commercial cell lines, more faithfully reflect the tumor cell characteristics. We studied four primary NB-MES cell cultures and two pairs of MES/ADRN (691 and 717) primary cultures, derived from the same patient. In particular, in the six human NB primary cultures, we assessed their phenotype, the expression of GD2, and the enzymes that control its expression, as well as their interactions with NK cells, using flow cytometry, RT-qPCR, and cytotoxicity assays. Results: We identified mature (CD105+/CD133-) and undifferentiated (CD133+/CD105-) NB subsets that express high levels of the MES transcripts WWTR1 and SIX4. In addition, undifferentiated MES cells display a strong resistance to NK-mediated killing. On the contrary, mature NB-MES cells display an intermediate resistance to NK-mediated killing and exhibit some immunomodulatory capacities on NK cells but do not inhibit their cytolytic activity. Notably, independent from their undifferentiated or mature phenotype, NB-MES cells express GD2 that can be further upregulated in undifferentiated NB-MES cells upon co-culture with NK cells, leading to the generation of mature mesenchymal GD2bright neuroblasts. Concerning 691 and 717, they show high levels of GD2 and resistance to NK cell-mediated killing that can be overcome by the administration of dinutuximab beta, the anti-GD2 monoclonal antibody applied in the clinic. Conclusions: NB is a heterogeneous tumor representing a further hurdle in NB immunotherapy. However, different from what was reported with NB commercial cells and independent of their MES/ADRN phenotype, the expression of GD2 and its displayed sensitivity to anti-GD2 mAb ADCC indicated the possible effectiveness of anti-GD2 immunotherapy.


Gangliosides , Killer Cells, Natural , Neuroblastoma , Tumor Escape , Tumor Microenvironment , Humans , Neuroblastoma/immunology , Neuroblastoma/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Gangliosides/immunology , Gangliosides/metabolism , Tumor Microenvironment/immunology , Cell Line, Tumor , Cytotoxicity, Immunologic , Tumor Cells, Cultured , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism
3.
Cells ; 13(10)2024 May 17.
Article En | MEDLINE | ID: mdl-38786082

Lung transplantation results are compromised by ischemia-reperfusion injury and alloimmune responses. Ex vivo lung perfusion (EVLP) is used to assess marginal donor lungs before transplantation but is also an excellent platform to apply novel therapeutics. We investigated donor lung immunomodulation using genetically engineered mesenchymal stromal cells with augmented production of human anti-inflammatory hIL-10 (MSCsIL-10). Pig lungs were placed on EVLP for 6 h and randomized to control (n = 7), intravascular delivery of 20 × 106 (n = 5, low dose) or 40 × 106 human MSCs IL-10 (n = 6, high dose). Subsequently, single-lung transplantation was performed, and recipient pigs were monitored for 3 days. hIL-10 secretion was measured during EVLP and after transplantation, and immunological effects were assessed by cytokine profile, T and myeloid cell characterization and mixed lymphocyte reaction. MSCIL-10 therapy rapidly increased hIL-10 during EVLP and resulted in transient hIL-10 elevation after lung transplantation. MSCIL-10 delivery did not affect lung function but was associated with dose-related immunomodulatory effects, with the low dose resulting in a beneficial decrease in apoptosis and lower macrophage activation, but the high MSCIL-10 dose resulting in inflammation and cytotoxic CD8+ T cell activation. MSCIL-10 therapy during EVLP results in a rapid and transient perioperative hIL-10 increase and has a therapeutic window for its immunomodulatory effects.


Immunomodulation , Interleukin-10 , Lung Transplantation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Lung Transplantation/methods , Animals , Interleukin-10/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/cytology , Swine , Mesenchymal Stem Cell Transplantation/methods , Humans , Genetic Engineering , Lung/metabolism , Lung/pathology , Lung/immunology
4.
Cell Biochem Funct ; 42(4): e4029, 2024 Jun.
Article En | MEDLINE | ID: mdl-38773914

Mesenchymal stem cell-derived exosomes (MSC-Exos) are emerging as remarkable agents in the field of immunomodulation with vast potential for diagnosing and treating various diseases, including cancer and autoimmune disorders. These tiny vesicles are laden with a diverse cargo encompassing proteins, nucleic acids, lipids, and bioactive molecules, offering a wealth of biomarkers and therapeutic options. MSC-Exos exhibit their immunomodulatory prowess by skillfully regulating pattern-recognition receptors (PRRs). They conduct a symphony of immunological responses, modulating B-cell activities, polarizing macrophages toward anti-inflammatory phenotypes, and fine-tuning T-cell activity. These interactions have profound implications for precision medicine, cancer immunotherapy, autoimmune disease management, biomarker discovery, and regulatory approvals. MSC-Exos promises to usher in a new era of tailored therapies, personalized diagnostics, and more effective treatments for various medical conditions. As research advances, their transformative potential in healthcare becomes increasingly evident.


Exosomes , Mesenchymal Stem Cells , Receptors, Pattern Recognition , Humans , Exosomes/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/cytology , Receptors, Pattern Recognition/metabolism , Animals , Immunomodulation
5.
Front Immunol ; 15: 1397005, 2024.
Article En | MEDLINE | ID: mdl-38779660

As major components of the tumor microenvironment, both mesenchymal stem cells (MSCs) and macrophages can be remodelled and exhibit different phenotypes and functions during tumor initiation and progression. In recent years, increasing evidence has shown that tumor-associated macrophages (TAMs) play a crucial role in the growth, metastasis, and chemotherapy resistance of hematological malignancies, and are associated with poor prognosis. Consequently, TAMs have emerged as promising therapeutic targets. Notably, MSCs exert a profound influence on modulating immune cell functions such as macrophages and granulocytes, thereby playing a crucial role in shaping the immunosuppressive microenvironment surrounding tumors. However, in hematological malignancies, the cellular and molecular mechanisms underlying the interaction between MSCs and macrophages have not been clearly elucidated. In this review, we provide an overview of the role of TAMs in various common hematological malignancies, and discuss the latest advances in understanding the interaction between MSCs and macrophages in disease progression. Additionally, potential therapeutic approaches targeting this relationship are outlined.


Mesenchymal Stem Cells , Tumor Microenvironment , Humans , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Tumor Microenvironment/immunology , Animals , Hematologic Neoplasms/immunology , Hematologic Neoplasms/therapy , Hematologic Neoplasms/pathology , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Macrophages/immunology , Macrophages/metabolism , Cell Communication/immunology
6.
Front Immunol ; 15: 1361596, 2024.
Article En | MEDLINE | ID: mdl-38690266

Mesenchymal stromal/stem cells (MSCs), which are distributed in many tissues including bone marrow, have been reported to play a critical role in tumor development. While bone marrow, the primary site for hematopoiesis, is important for establishing the immune system, whether MSCs in the bone marrow can promote tumor growth via influencing hematopoiesis remains unclear. We observed that the numbers of MSCs and neutrophils were increased in bone marrow in tumor-bearing mice. Moreover, co-culture assay showed that MSCs strongly protected neutrophils from apoptosis and induced their maturation. G-CSF and GM-CSF have been well-documented to be associated with neutrophil formation. We found a remarkably increased level of G-CSF, but not GM-CSF, in the supernatant of MSCs and the serum of tumor-bearing mice. The G-CSF expression can be enhanced with inflammatory cytokines (IFNγ and TNFα) stimulation. Furthermore, we found that IFNγ and TNFα-treated MSCs enhanced their capability of promoting neutrophil survival and maturation. Our results indicate that MSCs display robustly protective effects on neutrophils to contribute to tumor growth in bone niches.


Cytokines , Mesenchymal Stem Cells , Neutrophils , Animals , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Mice , Cytokines/metabolism , Mice, Inbred C57BL , Coculture Techniques , Granulocyte Colony-Stimulating Factor/metabolism , Apoptosis , Tumor Necrosis Factor-alpha/metabolism , Cell Line, Tumor , Neoplasms/immunology , Neoplasms/pathology
7.
Stem Cell Res Ther ; 15(1): 149, 2024 May 23.
Article En | MEDLINE | ID: mdl-38783393

BACKGROUND: Autoimmune uveitis is an inflammatory disease triggered by an aberrant immune response. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) are emerging as potential therapeutic agents for this condition. CD73, an ectoenzyme present on MSC-sEVs, is involved in mitigating inflammation by converting extracellular adenosine monophosphate into adenosine. We hypothesize that the inhibitory effect of MSC-sEVs on experimental autoimmune uveitis (EAU) could be partially attributed to the surface expression of CD73. METHODS: To investigate novel therapeutic approaches for autoimmune uveitis, we performed lentiviral transduction to overexpress CD73 on the surface of MSC-sEVs, yielding CD73-enriched MSC-sEVs (sEVs-CD73). Mice with interphotoreceptor retinoid-binding protein (IRBP)-induced EAU were grouped randomly and treated with 50 µg MSC-sEVs, vector infected MSC-sEVs, sEVs-CD73 or PBS via single tail vein injection. We evaluated the clinical and histological features of the induced mice and analyzed the proportion and functional capabilities of T helper cells. Furthermore, T-cells were co-cultured with various MSC-sEVs in vitro, and we quantified the resulting inflammatory response to assess the potential therapeutic benefits of sEVs-CD73. RESULTS: Compared to MSC-sEVs, sEVs-CD73 significantly alleviates EAU, leading to reduced inflammation and diminished tissue damage. Treatment with sEVs-CD73 results in a decreased proportion of Th1 cells in the spleen, draining lymph nodes, and eyes, accompanied by an increased proportion of regulatory T-cells (Treg cells). In vitro assays further reveal that sEVs-CD73 inhibits T-cell proliferation, suppresses Th1 cells differentiation, and enhances Treg cells proportion. CONCLUSION: Over-expression of CD73 on MSC-sEVs enhances their immunosuppressive effects in EAU, indicating that sEVs-CD73 has the potential as an efficient immunotherapeutic agent for autoimmune uveitis.


5'-Nucleotidase , Autoimmune Diseases , Extracellular Vesicles , Mesenchymal Stem Cells , Uveitis , Animals , Uveitis/pathology , Uveitis/therapy , Uveitis/metabolism , Uveitis/immunology , 5'-Nucleotidase/metabolism , 5'-Nucleotidase/genetics , Extracellular Vesicles/metabolism , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology , Mice , Autoimmune Diseases/therapy , Autoimmune Diseases/pathology , Autoimmune Diseases/immunology , Mice, Inbred C57BL , Disease Models, Animal , Female , Retinol-Binding Proteins , Humans
8.
Aging Dis ; 15(3): 965-976, 2024 May 07.
Article En | MEDLINE | ID: mdl-38722791

Emerging from several decades of extensive research, key genetic elements and biochemical mechanisms implicated in neuroinflammation have been delineated, contributing substantially to our understanding of neurodegenerative diseases (NDDs). In this minireview, we discuss data predominantly from the past three years, highlighting the pivotal roles and mechanisms of the two principal cell types implicated in neuroinflammation. The review also underscores the extended process of peripheral inflammation that predates symptomatic onset, the critical influence of neuroinflammation, and their dynamic interplay in the pathogenesis of NDDs. Confronting these complex challenges, we introduce compelling evidence supporting the use of mesenchymal stem cell-based cell-free therapy. This therapeutic strategy includes the regulation of microglia and astrocytes, modulation of peripheral nerve cell inflammation, and targeted anti-inflammatory interventions specifically designed for NDDs, while also discussing engineering and safety considerations. This innovative therapeutic approach intricately modulates the immune system across the peripheral and nervous systems, with an emphasis on achieving superior penetration and targeted delivery. The insights offered by this review have significant implications for the better understanding and management of neuroinflammation.


Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Neurodegenerative Diseases , Neuroinflammatory Diseases , Humans , Neuroinflammatory Diseases/therapy , Neuroinflammatory Diseases/immunology , Mesenchymal Stem Cell Transplantation/methods , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Neurodegenerative Diseases/therapy , Neurodegenerative Diseases/immunology , Animals , Microglia/metabolism , Microglia/immunology , Inflammation/therapy , Astrocytes/metabolism
9.
Nat Biomed Eng ; 8(4): 443-460, 2024 Apr.
Article En | MEDLINE | ID: mdl-38561490

Allogeneic mesenchymal stromal cells (MSCs) are a safe treatment option for many disorders of the immune system. However, clinical trials using MSCs have shown inconsistent therapeutic efficacy, mostly owing to MSCs providing insufficient immunosuppression in target tissues. Here we show that antigen-specific immunosuppression can be enhanced by genetically modifying MSCs with chimaeric antigen receptors (CARs), as we show for E-cadherin-targeted CAR-MSCs for the treatment of graft-versus-host disease in mice. CAR-MSCs led to superior T-cell suppression and localization to E-cadherin+ colonic cells, ameliorating the animals' symptoms and survival rates. On antigen-specific stimulation, CAR-MSCs upregulated the expression of immunosuppressive genes and receptors for T-cell inhibition as well as the production of immunosuppressive cytokines while maintaining their stem cell phenotype and safety profile in the animal models. CAR-MSCs may represent a widely applicable therapeutic technology for enhancing immunosuppression.


Graft vs Host Disease , Immunosuppression Therapy , Mesenchymal Stem Cells , Receptors, Chimeric Antigen , Animals , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Immunosuppression Therapy/methods , Receptors, Chimeric Antigen/metabolism , Receptors, Chimeric Antigen/immunology , Receptors, Chimeric Antigen/genetics , Graft vs Host Disease/immunology , Humans , Mesenchymal Stem Cell Transplantation/methods , T-Lymphocytes/immunology , Cadherins/metabolism , Mice, Inbred C57BL , Cytokines/metabolism
10.
Gene ; 916: 148446, 2024 Jul 20.
Article En | MEDLINE | ID: mdl-38583816

Mesenchymal stem cells (MSCs) have high priority in clinical applications for treatment of immune disorders because of their immunomodulatory function. A lot of researches have currently been undertaken to enhance the stemness capacities of the cells and pick an excellent type of MSCs for clinical approaches. This study aims to assess the immunomodulatory related MicroRNAs (miRNAs) expression as well as their target genes in both adipose derived stem cells (Ad-SCs) and dental pulp derived stem cell (DP-SCs) in the presence or lack of Crocin (saffron plant's bioactive compound). For this purpose, first MSCs were extracted from adipose and dental pulp tissues, and then their mesenchymal nature was confirmed using flow cytometry and differentiation tests. Following the cell treatment with an optimal-non-toxic dose of Crocin (Obtained by MTT test), the expression of 4 selected immunomodulatory-related micro-RNAs (Mir-126, -21, -23, and-155) and their target genes (PI3K/ Akt 1 and 2/ NFKB and RELA) were assessed by RT-PCR. Our findings revealed that miRNA-23 and miRNA-126 were up-regulated in both types of cells treated with Crocin, while in the other side, miRNA-21 and miRNA-155 were down-regulated in DP-SCs and were up-regulated in Ad-SCs under treatment. Moreover, the real-time PCR results indicated that Crocin could significantly down regulate the expression of PI3K/ Akt1/ Akt2/ NFKB/ RELA genes in DP-SCs and PI3K/Akt2 genes in Ad-SCs and up regulate the expression of Akt1/ NFKB/ RELA genes in recent cells. Based on the analysis of the obtained data, the immunoregulatory effects of Crocin were higher in DP-SCs than in Ad-SCs. In conclusion, Crocin could control essential signaling pathways related to the inflammation by regulating the expression of related- miRNAs genes that play a key function in the immune regulation pathways in MSCs. Our findings can give an understanding of the mechanisms by which Crocin enhances the immunomodulatory feature of MSCs. According to the research findings, DP-SCs are probably a better immunomodulator in Crocin treatment than Ad-SCs and it may be helpful for MSCs selection in clinical applications for modulation or treatment of autoimmune disorders.


Carotenoids , Mesenchymal Stem Cells , MicroRNAs , MicroRNAs/genetics , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/immunology , Carotenoids/pharmacology , Humans , Cells, Cultured , Gene Expression Regulation/drug effects , Cell Differentiation/drug effects , Immunomodulation/drug effects , Immunomodulation/genetics , Transcription Factor RelA/metabolism , Transcription Factor RelA/genetics , Adipose Tissue/cytology , Adipose Tissue/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Proto-Oncogene Proteins c-akt/metabolism
11.
Int Immunopharmacol ; 133: 112126, 2024 May 30.
Article En | MEDLINE | ID: mdl-38669946

Type 17 helper T cells (Th17)-dominant neutrophilic airway inflammation is critical in the pathogenesis of steroid-resistant airway inflammation such as severe asthma. Small extracellular vesicles (sEV) derived from human mesenchymal stem cells (MSCs) display extensive therapeutic effects and advantages in many diseases. However, the role of MSC-sEV in Th17-dominant neutrophilic airway inflammation and the related mechanisms are still poorly studied. Here we found that MSC-sEV significantly alleviated the infiltration of inflammatory cells in peribronchial interstitial tissues and reduced levels of inflammatory cells, especially neutrophils, in bronchoalveolar lavage fluids (BALF) of mice with neutrophilic airway inflammation. Consistently, MSC-sEV significantly decreased levels of IL-17A in BALF and Th17 in lung tissues. Furthermore, we found that labelled MSC-sEV were taken up by human CD4+ T cells most obviously at 12 h after incubation, and distributed mostly in mouse lungs. More importantly, potential signaling pathways involved in the MSC-sEV mediated inhibition of Th17 polarization were found using RNA sequencing. Using Western blot, JAK2-STAT3 pathway was identified as an important role in the inhibition of Th17 polarization by MSC-sEV. We found that proteins in MSC-sEV were mostly involved in the therapeutic effects of MSC-sEV. In total, our study suggested that MSC-sEV could be a potential therapeutic strategy for the treatment of neutrophilic airway inflammation.


Extracellular Vesicles , Mesenchymal Stem Cells , Neutrophils , STAT3 Transcription Factor , Th17 Cells , Th17 Cells/immunology , Humans , Animals , Extracellular Vesicles/metabolism , Extracellular Vesicles/immunology , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Mice , Neutrophils/immunology , STAT3 Transcription Factor/metabolism , Janus Kinase 2/metabolism , Interleukin-17/metabolism , Lung/immunology , Lung/pathology , Mice, Inbred C57BL , Cells, Cultured , Bronchoalveolar Lavage Fluid/immunology , Bronchoalveolar Lavage Fluid/cytology , Asthma/immunology , Asthma/therapy , Male , Signal Transduction , Female , Disease Models, Animal
12.
JCI Insight ; 9(10)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38652539

Mesenchymal stem cells (MSCs) have demonstrated potent immunomodulatory properties that have shown promise in the treatment of autoimmune diseases, including rheumatoid arthritis (RA). However, the inherent heterogeneity of MSCs triggered conflicting therapeutic outcomes, raising safety concerns and limiting their clinical application. This study aimed to investigate the potential of extracellular vesicles derived from human gingival mesenchymal stem cells (GMSC-EVs) as a therapeutic strategy for RA. Through in vivo experiments using an experimental RA model, our results demonstrate that GMSC-EVs selectively homed to inflamed joints and recovered Treg and Th17 cell balance, resulting in the reduction of arthritis progression. Our investigations also uncovered miR-148a-3p as a critical contributor to the Treg/Th17 balance modulation via IKKB/NF-κB signaling orchestrated by GMSC-EVs, which was subsequently validated in a model of human xenograft versus host disease (xGvHD). Furthermore, we successfully developed a humanized animal model by utilizing synovial fibroblasts obtained from patients with RA (RASFs). We found that GMSC-EVs impeded the invasiveness of RASFs and minimized cartilage destruction, indicating their potential therapeutic efficacy in the context of patients with RA. Overall, the unique characteristics - including reduced immunogenicity, simplified administration, and inherent ability to target inflamed tissues - position GMSC-EVs as a viable alternative for RA and other autoimmune diseases.


Arthritis, Rheumatoid , Extracellular Vesicles , Mesenchymal Stem Cells , MicroRNAs , NF-kappa B , T-Lymphocytes, Regulatory , Th17 Cells , Arthritis, Rheumatoid/therapy , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/metabolism , Humans , Animals , Th17 Cells/immunology , Th17 Cells/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , NF-kappa B/metabolism , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , Mice , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/immunology , Extracellular Vesicles/metabolism , Extracellular Vesicles/transplantation , I-kappa B Kinase/metabolism , Signal Transduction , Disease Models, Animal , Gingiva/cytology , Gingiva/metabolism , Gingiva/pathology , Gingiva/immunology , Male , Fibroblasts/metabolism
13.
Signal Transduct Target Ther ; 9(1): 102, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38653983

Patients with refractory immune thrombocytopenia (ITP) frequently encounter substantial bleeding risks and demonstrate limited responsiveness to existing therapies. Umbilical cord-derived mesenchymal stem cells (UC-MSCs) present a promising alternative, capitalizing on their low immunogenicity and potent immunomodulatory effects for treating diverse autoimmune disorders. This prospective phase I trial enrolled eighteen eligible patients to explore the safety and efficacy of UC-MSCs in treating refractory ITP. The research design included administering UC-MSCs at escalating doses of 0.5 × 106 cells/kg, 1.0 × 106 cells/kg, and 2.0 × 106 cells/kg weekly for four consecutive weeks across three cohorts during the dose-escalation phase, followed by a dose of 2.0 × 106 cells/kg weekly for the dose-expansion phase. Adverse events, platelet counts, and changes in peripheral blood immunity were monitored and recorded throughout the administration and follow-up period. Ultimately, 12 (with an addition of three patients in the 2.0 × 106 cells/kg group due to dose-limiting toxicity) and six patients were enrolled in the dose-escalation and dose-expansion phase, respectively. Thirteen patients (13/18, 72.2%) experienced one or more treatment emergent adverse events. Serious adverse events occurred in four patients (4/18, 22.2%), including gastrointestinal hemorrhage (2/4), profuse menstruation (1/4), and acute myocardial infarction (1/4). The response rates were 41.7% in the dose-escalation phase (5/12, two received 1.0 × 106 cells/kg per week, and three received 2.0 × 106 cells/kg per week) and 50.0% (3/6) in the dose-expansion phase. The overall response rate was 44.4% (8/18) among all enrolled patients. To sum up, UC-MSCs are effective and well tolerated in treating refractory ITP (ClinicalTrials.gov ID: NCT04014166).


Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Purpura, Thrombocytopenic, Idiopathic , Humans , Female , Male , Purpura, Thrombocytopenic, Idiopathic/therapy , Purpura, Thrombocytopenic, Idiopathic/immunology , Middle Aged , Adult , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cells/immunology , Umbilical Cord/cytology , Prospective Studies , Aged
14.
Biomater Adv ; 160: 213864, 2024 Jun.
Article En | MEDLINE | ID: mdl-38642519

Although calcium phosphate has been extensively utilized in orthopedic applications such as spine, limbs, dentistry, and maxillofacial surgery, the lack of osteoinductive properties often hinders its effectiveness in treating bone defects resulting from pathological micro-environment such as tumor surgery, osteoporosis, osteomyelitis, and diabetic. Therefore, a novel bone cement based on magnesium-doped bioactive glass was developed in this study. The moderate release of magnesium ions improved the mechanical properties by controlling the crystal size of hydroxyapatite. Through detailed discussion of element content and heat treatment temperature, it was found that 2Mg-BG-800 was suitable for the construction of bone cement. 2Mg-BG-BC exhibited favorable initial (15 min) and final (30 min) setting time, compressive strength (29.45 MPa), compressive modulus (1851.49 MPa), injectability, and shape-adaptability. Furthermore, Mg-BG-BC demonstrated the ability to enhance the osteogenic differentiation of BMSCs, and induce macrophage polarization towards the M2 phenotype, suggesting its potential for osteoporotic fracture regeneration.


Bone Cements , Glass , Magnesium , Osteogenesis , Bone Cements/chemistry , Bone Cements/pharmacology , Magnesium/chemistry , Magnesium/pharmacology , Osteogenesis/drug effects , Animals , Glass/chemistry , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/immunology , Cell Differentiation/drug effects , Mice , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Materials Testing , Macrophages/drug effects , Macrophages/immunology , Compressive Strength
15.
Cytotherapy ; 26(5): 512-523, 2024 May.
Article En | MEDLINE | ID: mdl-38441512

BACKGROUND: Given the high level of product complexity and limited regulatory guidance, designing and implementing appropriate potency assays is often the most challenging part of establishing a quality control testing matrix for a cell-based medicinal product. Among the most elusive tasks are the selection of suitable read-out parameters, the development of assay designs that most closely model the pathophysiological conditions, and the validation of the methods. Here we describe these challenges and how they were addressed in developing an assay that measures the anti-inflammatory potency of mesenchymal stromal cells (MSCs) in an M1 macrophage-dominated inflammatory environment. METHODS: An in vitro inflammation model was established by coculturing skin-derived ABCB5+ MSCs with THP-1 monocyte-derived M1-polarized macrophages. Readout was the amount of interleukin 1 receptor antagonist (IL-1RA) secreted by the MSCs in the coculture, measured by an enzyme-linked immunosorbent assay. RESULTS: IL-1RA was quantified with guideline-concordant selectivity, accuracy and precision over a relevant concentration range. Consistent induction of the macrophage markers CD36 and CD80 indicated successful macrophage differentiation and M1 polarization of THP-1 cells, which was functionally confirmed by release of proinflammatory tumor necrosis factor α. Testing a wide range of MSC/macrophage ratios revealed the optimal ratio for near-maximal stimulation of MSCs to secrete IL-1RA, providing absolute maximum levels per individual MSC that can be used for future comparison with clinical efficacy. Batch release testing of 71 consecutively manufactured MSC batches showed a low overall failure rate and a high comparability between donors. CONCLUSIONS: We describe the systematic development and validation of a therapeutically relevant, straightforward, robust and reproducible potency assay to measure the immunomodulatory capacity of MSCs in M1 macrophage-driven inflammation. The insights into the challenges and how they were addressed may also be helpful to developers of potency assays related to other cellular functions and clinical indications.


Cell- and Tissue-Based Therapy , Coculture Techniques , Interleukin 1 Receptor Antagonist Protein , Macrophages , Mesenchymal Stem Cells , Humans , Macrophages/immunology , Macrophages/metabolism , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/cytology , Cell- and Tissue-Based Therapy/methods , Coculture Techniques/methods , Cell Differentiation , Inflammation/therapy , Inflammation/immunology , Anti-Inflammatory Agents/pharmacology , THP-1 Cells
16.
Stem Cells ; 42(5): 403-415, 2024 May 15.
Article En | MEDLINE | ID: mdl-38310524

Polymorphonuclear neutrophils (PMNs), the predominant immune cell type in humans, have long been known as first-line effector cells against bacterial infections mainly through phagocytosis and production of reactive oxygen species (ROS). However, recent research has unveiled novel and pivotal roles of these abundant but short-lived granulocytes in health and disease. Human mesenchymal stromal/stem cells (MSCs), renowned for their regenerative properties and modulation of T lymphocytes from effector to regulatory phenotypes, exhibit complex and context-dependent interactions with PMNs. Regardless of species or source, MSCs strongly abrogate PMN apoptosis, a critical determinant of PMN function, except if PMNs are highly stimulated. MSCs also have the capacity to fine-tune PMN activation, particularly in terms of CD11b expression and phagocytosis. Moreover, MSCs can modulate numerous other PMN functions, spanning migration, ROS production, and neutrophil extracellular trap (NET) formation/NETosis, but directionality is remarkably dependent on the underlying context: in normal nondiseased conditions, MSCs enhance PMN migration and ROS production, whereas in inflammatory conditions, MSCs reduce both these functions and NETosis. Furthermore, the state of the MSCs themselves, whether isolated from diseased or healthy donors, and the specific secreted products and molecules, can impact interactions with PMNs; while healthy MSCs prevent PMN infiltration and NETosis, MSCs isolated from patients with cancer promote these functions. This comprehensive analysis highlights the intricate interplay between PMNs and MSCs and its profound relevance in healthy and pathological conditions, shedding light on how to best strategize the use of MSCs in the expanding list of diseases with PMN involvement.


Mesenchymal Stem Cells , Neutrophils , Humans , Mesenchymal Stem Cells/metabolism , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/immunology , Neutrophils/metabolism , Neutrophils/immunology , Reactive Oxygen Species/metabolism , Animals , Phagocytosis
17.
Chin J Traumatol ; 27(1): 1-10, 2024 Jan.
Article En | MEDLINE | ID: mdl-38065706

Programmed cell death 1 ligand 1 (PD-L1) is an important immunosuppressive molecule, which inhibits the function of T cells and other immune cells by binding to the receptor programmed cell death-1. The PD-L1 expression disorder plays an important role in the occurrence, development, and treatment of sepsis or other inflammatory diseases, and has become an important target for the treatment of these diseases. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells with multiple differentiation potential. In recent years, MSCs have been found to have a strong immunosuppressive ability and are used to treat various inflammatory insults caused by hyperimmune diseases. Moreover, PD-L1 is deeply involved in the immunosuppressive events of MSCs and plays an important role in the treatment of various diseases. In this review, we will summarize the main regulatory mechanism of PD-L1 expression, and discuss various biological functions of PD-L1 in the immune regulation of MSCs.


B7-H1 Antigen , Immunomodulation , Mesenchymal Stem Cells , Humans , B7-H1 Antigen/metabolism , Mesenchymal Stem Cells/immunology , T-Lymphocytes/metabolism
18.
Article En | WPRIM | ID: wpr-1009507

Programmed cell death 1 ligand 1 (PD-L1) is an important immunosuppressive molecule, which inhibits the function of T cells and other immune cells by binding to the receptor programmed cell death-1. The PD-L1 expression disorder plays an important role in the occurrence, development, and treatment of sepsis or other inflammatory diseases, and has become an important target for the treatment of these diseases. Mesenchymal stem cells (MSCs) are a kind of pluripotent stem cells with multiple differentiation potential. In recent years, MSCs have been found to have a strong immunosuppressive ability and are used to treat various inflammatory insults caused by hyperimmune diseases. Moreover, PD-L1 is deeply involved in the immunosuppressive events of MSCs and plays an important role in the treatment of various diseases. In this review, we will summarize the main regulatory mechanism of PD-L1 expression, and discuss various biological functions of PD-L1 in the immune regulation of MSCs.


Humans , B7-H1 Antigen/metabolism , Mesenchymal Stem Cells/immunology , T-Lymphocytes/metabolism , Immunomodulation
19.
Int J Nanomedicine ; 18: 3643-3662, 2023.
Article En | MEDLINE | ID: mdl-37427367

Pathological scars are the result of over-repair and excessive tissue proliferation of the skin injury. It may cause serious dysfunction, resulting in psychological and physiological burdens on the patients. Currently, mesenchymal stem cells-derived exosomes (MSC-Exo) displayed a promising therapeutic effect on wound repair and scar attenuation. But the regulatory mechanisms are opinions vary. In view of inflammation has long been proven as the initial factor of wound healing and scarring, and the unique immunomodulation mechanism of MSC-Exo, the utilization of MSC-Exo may be promising therapeutic for pathological scars. However, different immune cells function differently during wound repair and scar formation. The immunoregulatory mechanism of MSC-Exo would differ among different immune cells and molecules. Herein, this review gave a comprehensive summary of MSC-Exo immunomodulating different immune cells in wound healing and scar formation to provide basic theoretical references and therapeutic exploration of inflammatory wound healing and pathological scars.


Cicatrix , Exosomes , Immune System , Immunomodulation , Mesenchymal Stem Cells , Humans , Cicatrix/immunology , Cicatrix/pathology , Cicatrix/therapy , Exosomes/immunology , Exosomes/pathology , Immune System/immunology , Immune System/pathology , Immunomodulation/immunology , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/pathology , Wound Healing/immunology
20.
J Nanobiotechnology ; 21(1): 233, 2023 Jul 22.
Article En | MEDLINE | ID: mdl-37481646

BACKGROUND: The immunosuppressive microenvironment in glioma induces immunotherapy resistance and is associated with poor prognosis. Glioma-associated mesenchymal stem cells (GA-MSCs) play an important role in the formation of the immunosuppressive microenvironment, but the mechanism is still not clear. RESULTS: We found that GA-MSCs promoted the expression of CD73, an ectonucleotidase that drives immunosuppressive microenvironment maintenance by generating adenosine, on myeloid-derived suppressor cells (MDSCs) through immunosuppressive exosomal miR-21 signaling. This process was similar to the immunosuppressive signaling mediated by glioma exosomal miR-21 but more intense. Further study showed that the miR-21/SP1/DNMT1 positive feedback loop in MSCs triggered by glioma exosomal CD44 upregulated MSC exosomal miR-21 expression, amplifying the glioma exosomal immunosuppressive signal. Modified dendritic cell-derived exosomes (Dex) carrying miR-21 inhibitors could target GA-MSCs and reduce CD73 expression on MDSCs, synergizing with anti-PD-1 monoclonal antibody (mAb). CONCLUSIONS: Overall, this work reveals the critical role of MSCs in the glioma microenvironment as signal multipliers to enhance immunosuppressive signaling of glioma exosomes, and disrupting the positive feedback loop in MSCs with modified Dex could improve PD-1 blockade therapy.


Glioma , MicroRNAs , Myeloid-Derived Suppressor Cells , Humans , Feedback , Immunosuppressive Agents , MicroRNAs/genetics , Tumor Microenvironment , Mesenchymal Stem Cells/immunology , Mesenchymal Stem Cells/metabolism , Exosomes/genetics , Exosomes/metabolism , Sp1 Transcription Factor
...