Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 344
Filtrar
1.
Bull Exp Biol Med ; 177(1): 93-97, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38963595

RESUMEN

Squamous cell lung cancer (SCLC) occurs as a result of dysregenerative changes in the bronchial epithelium: basal cell hyperplasia (BCH), squamous cell metaplasia (SM), and dysplasia. We previously suggested that combinations of precancerous changes detected in the small bronchi of patients with SCLC may reflect various "scenarios" of the precancerous process: isolated BCH→stopping at the stage of hyperplasia, BCH+SM→progression of hyperplasia into metaplasia, SM+dysplasia→progression of metaplasia into dysplasia. In this study, DNA methylome of various forms of precancerous changes in the bronchial epithelium of SCLC patients was analyzed using the genome-wide bisulfite sequencing. In BCH combined with SM, in contrast to isolated BCH, differentially methylated regions were identified in genes of the pathogenetically significant MET signaling pathway (RNMT, HPN). Differentially methylated regions affecting genes involved in inflammation regulation (IL-23, IL-23R, IL12B, IL12RB1, and FIS1) were detected in SM combined with dysplasia in comparison with SM combined with BCH. The revealed changes in DNA methylation may underlie various "scenarios" of the precancerous process in the bronchial epithelium.


Asunto(s)
Bronquios , Metilación de ADN , Hiperplasia , Neoplasias Pulmonares , Metaplasia , Lesiones Precancerosas , Humanos , Hiperplasia/patología , Hiperplasia/genética , Metaplasia/genética , Metaplasia/patología , Metaplasia/metabolismo , Bronquios/patología , Bronquios/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Lesiones Precancerosas/metabolismo , Masculino , Femenino , Persona de Mediana Edad , Epigenoma/genética , Mucosa Respiratoria/patología , Mucosa Respiratoria/metabolismo , Anciano , Carcinoma Pulmonar de Células Pequeñas/genética , Carcinoma Pulmonar de Células Pequeñas/patología , Carcinoma Pulmonar de Células Pequeñas/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo
2.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 941-949, 2024 May 20.
Artículo en Chino | MEDLINE | ID: mdl-38862452

RESUMEN

OBJECTIVE: To explore the potential pathogenic genes of intestinal metaplasia. METHODS: Twenty-one patients with intestinal metaplasia admitted to the Department of Gastroenterology at the Second Affiliated Hospital of Anhui University of Chinese Medicine from January, 2022 to June, 2022, and 21 healthy subjects undergoing gastroscopic examination during the same period were enrolled in this study. All the participants underwent gastroscopy and pathological examination, and gastric tissue samples were collected for transcriptome sequencing to screen for differentially expressed genes (DEGs). The biological functions of the DEGs were analyzed using bioinformatics analysis, and qRT-PCR was used to validate the results. RESULTS: Transcriptomic sequencing identified a total of 1373 DEGs, including 827 upregulated and 546 downregulated ones. The top 6 upregulated genes (AGMAT, CCL25, FABP1, CDX1, SPINK4, and MUC2), ranked based on their significance and average expression level, were selected for validation, and qRT-PCR showed significant upregulation of their mRNAs in the gastric tissues of patients with intestinal metaplasia (P < 0.05). CONCLUSION: AGMAT, CCL25, FABP1, CDX1, SPINK4, and MUC2 participate in the occurrence and development of intestinal metaplasia, and may serve as potential biomarkers for diagnosing intestinal metaplasia.


Asunto(s)
Biología Computacional , Metaplasia , Humanos , Metaplasia/genética , Biología Computacional/métodos , Proteínas de Unión a Ácidos Grasos/genética , Transcriptoma , Mucina 2/genética , Mucina 2/metabolismo , Proteínas de Homeodominio/genética , Perfilación de la Expresión Génica , Masculino , Mucosa Gástrica/patología , Mucosa Gástrica/metabolismo , Intestinos/patología , Femenino , ARN Mensajero/genética
3.
Mol Cancer ; 23(1): 124, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849840

RESUMEN

BACKGROUND: Intestinal metaplasia (IM) is classified into complete intestinal metaplasia (CIM) and incomplete intestinal metaplasia (IIM). Patients diagnosed with IIM face an elevated susceptibility to the development of gastric cancer, underscoring the critical need for early screening measures. In addition to the complexities associated with diagnosis, the exact mechanisms driving the progression of gastric cancer in IIM patients remain poorly understood. OLFM4 is overexpressed in several types of tumors, including colorectal, gastric, pancreatic, and ovarian cancers, and its expression has been associated with tumor progression. METHODS: In this study, we used pathological sections from two clinical centers, biopsies of IM tissues, precancerous lesions of gastric cancer (PLGC) cell models, animal models, and organoids to explore the role of OLFM4 in IIM. RESULTS: Our results show that OLFM4 expression is highly increased in IIM, with superior diagnostic accuracy of IIM when compared to CDX2 and MUC2. OLFM4, along with MYH9, was overexpressed in IM organoids and PLGC animal models. Furthermore, OLFM4, in combination with Myosin heavy chain 9 (MYH9), accelerated the ubiquitination of GSK3ß and resulted in increased ß-catenin levels through the Wnt signaling pathway, promoting the proliferation and invasion abilities of PLGC cells. CONCLUSIONS: OLFM4 represents a novel biomarker for IIM and could be utilized as an important auxiliary means to delimit the key population for early gastric cancer screening. Finally, our study identifies cell signaling pathways involved in the progression of IM.


Asunto(s)
Progresión de la Enfermedad , Glucógeno Sintasa Quinasa 3 beta , Metaplasia , Cadenas Pesadas de Miosina , beta Catenina , Humanos , Metaplasia/metabolismo , Metaplasia/patología , Metaplasia/genética , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Animales , beta Catenina/metabolismo , beta Catenina/genética , Ratones , Cadenas Pesadas de Miosina/metabolismo , Cadenas Pesadas de Miosina/genética , Neoplasias Gástricas/patología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/genética , Femenino , Vía de Señalización Wnt , Proliferación Celular , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Modelos Animales de Enfermedad , Masculino , Organoides/metabolismo , Organoides/patología
4.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38731942

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) can originate from acinar-to-ductal metaplasia (ADM). Pancreatic acini harboring oncogenic Kras mutations are transdifferentiated to a duct-like phenotype that further progresses to become pancreatic intraepithelial neoplasia (PanIN) lesions, giving rise to PDAC. Although ADM formation is frequently observed in KrasG12D transgenic mouse models of PDAC, the exact mechanisms of how oncogenic KrasG12D regulates this process remain an enigma. Herein, we revealed a new downstream target of oncogenic Kras, cytokine CCL9, during ADM formation. Higher levels of CCL9 and its receptors, CCR1 and CCR3, were detected in ADM regions of the pancreas in p48cre:KrasG12D mice and human PDAC patients. Knockdown of CCL9 in KrasG12D-expressed pancreatic acini reduced KrasG12D-induced ADM in a 3D organoid culture system. Moreover, exogenously added recombinant CCL9 and overexpression of CCL9 in primary pancreatic acini induced pancreatic ADM. We also showed that, functioning as a downstream target of KrasG12D, CCL9 promoted pancreatic ADM through upregulation of the intracellular levels of reactive oxygen species (ROS) and metalloproteinases (MMPs), including MMP14, MMP3 and MMP2. Blockade of MMPs via its generic inhibitor GM6001 or knockdown of specific MMP such as MMP14 and MMP3 decreased CCL9-induced pancreatic ADM. In p48cre:KrasG12D transgenic mice, blockade of CCL9 through its specific neutralizing antibody attenuated pancreatic ADM structures and PanIN lesion formation. Furthermore, it also diminished infiltrating macrophages and expression of MMP14, MMP3 and MMP2 in the ADM areas. Altogether, our results provide novel mechanistic insight into how oncogenic Kras enhances pancreatic ADM through its new downstream target molecule, CCL9, to initiate PDAC.


Asunto(s)
Células Acinares , Carcinoma Ductal Pancreático , Metaplasia , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas p21(ras) , Especies Reactivas de Oxígeno , Animales , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Ratones , Especies Reactivas de Oxígeno/metabolismo , Humanos , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/genética , Metaplasia/metabolismo , Metaplasia/genética , Células Acinares/metabolismo , Células Acinares/patología , Ratones Transgénicos , Quimiocinas CC/metabolismo , Quimiocinas CC/genética , Proteínas Inflamatorias de Macrófagos/metabolismo , Proteínas Inflamatorias de Macrófagos/genética , Páncreas/metabolismo , Páncreas/patología
5.
Gut Liver ; 18(4): 611-620, 2024 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-38509701

RESUMEN

Background/Aims: While DNA methylation and gastric microbiome are each associated with gastric cancer (GC), their combined role in predicting GC remains unclear. This study investigated the potential of a combined DNA methylation and gastric microbiome signature to predict Helicobacter pylori-negative GC. Methods: In this case-control study, we conducted quantitative methylation-specific polymerase chain reaction to measure the methylation levels of DKK3, SFRP1, EMX1, NKX6-1, MIR124-3, and TWIST1 in the gastric mucosa from 75 H. pylori-negative patients, including chronic gastritis (CG), intestinal metaplasia (IM), and GC. A combined analysis of DNA methylation and gastric microbiome, using 16S rRNA gene sequencing, was performed in 30 of 75 patients. Results: The methylation levels of DKK3, SFRP1, EMX1, MIR124-3, and TWIST1 were significantly higher in patients with GC than in controls (all q<0.05). MIR124-3 and TWIST1 methylation levels were higher in patients with IM than those with CG and also in those with GC than in those with IM (all q<0.05). A higher methylation level of TWIST1 was an independent predictor for H. pylori-negative GC after adjusting for age, sex, and atrophy (odds ratio [OR], 15.15; 95% confidence interval [CI], 1.58 to 145.46; p=0.018). The combination of TWIST1 methylation and GC microbiome index (a microbiome marker) was significantly associated with H. pylori-negative GC after adjusting for age, sex, and atrophy (OR, 50.00; 95% CI, 1.69 to 1,476; p=0.024). Conclusions: The combination of TWIST1 methylation and GC microbiome index may offer potential as a biomarker for predicting H. pylori-negative GC.


Asunto(s)
Metilación de ADN , Mucosa Gástrica , Microbioma Gastrointestinal , Helicobacter pylori , Neoplasias Gástricas , Humanos , Masculino , Femenino , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/genética , Persona de Mediana Edad , Estudios de Casos y Controles , Helicobacter pylori/genética , Mucosa Gástrica/microbiología , Microbioma Gastrointestinal/genética , Proteína 1 Relacionada con Twist/genética , Anciano , MicroARNs/análisis , Proteínas Nucleares/genética , Gastritis/microbiología , Gastritis/genética , Biomarcadores de Tumor/genética , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética , Infecciones por Helicobacter/microbiología , Metaplasia/microbiología , Metaplasia/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Péptidos y Proteínas de Señalización Intercelular/genética , Proteínas de Homeodominio
6.
Ann Clin Lab Sci ; 54(1): 9-16, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38514066

RESUMEN

OBJECTIVE: Gastrointestinal metaplasia (GIM) has a close relationship with gastric cancer (GC), but it is unclear how to judge which GIM could develop into GC. This study aimed to assess the role of CDX2 and its association with Helicobacter pylori (H.pylori) genotypes in GIM. METHODS: CagA and vacA genes were identified via PCR in 466 H. pylori-positive gastric tissues, including gastritis (n=104), GIM diagnosed endoscopically (GIM-1; n=82), gastric cancer (GC; n=173), and paired adjacent GIM tumors resected surgically (GIM-2; n=107). GIM was subclassified per the HID- AB pH2.5-PAS as follows: type I (n=23), type II (n=43), and type III (n=16) in GIM-1; type I (n=8), type II (n=40), and type III (n=59) in GIM-2. CDX2 expression was evaluated immunohistochemically. RESULTS: In GIM-1, the infection rate of vacAm2 (55.8%) and vacAs1m2 (53.5%) was higher in subtype II than in others (P<0.05), while that of vacAm1 (49.2%) and vacAs1m1 (33.9%) was higher in subtype III than in others. The cagA+ rate was higher in subtypes I (75.0%) and III (64.4%) than in subtype II (40.0%; P<0.05) respectively. CDX2 was upregulated in subtype I than in subtypes II and III in GIM-1 and GIM-2. In GIM-2 and GC, CDX2 was downregulated in vacAm1, vacAs1m1, and cagA+ (P<0.05). The predominant genotype was vacAs1m2 in subtype II of GIM-1, CDX2 expression remaining unaltered; however, the predominant genotype was cagA+ vacAs1m1 in subtypes II and III of GIM-2, negatively correlated with CDX2 expression. CONCLUSION: These GIM subtypes (cagA+ vacAs1m1 H. pylori-positive GIM with negative CDX2 expression) resemble GC and should be evaluated similar to cancerous GIM.


Asunto(s)
Factor de Transcripción CDX2 , Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , Factor de Transcripción CDX2/genética , Genotipo , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/genética , Helicobacter pylori/genética , Metaplasia/genética , Metaplasia/complicaciones , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
7.
Gastroenterology ; 166(6): 1100-1113, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38325760

RESUMEN

BACKGROUND & AIMS: Acinar cells produce digestive enzymes that impede transcriptomic characterization of the exocrine pancreas. Thus, single-cell RNA-sequencing studies of the pancreas underrepresent acinar cells relative to histological expectations, and a robust approach to capture pancreatic cell responses in disease states is needed. We sought to innovate a method that overcomes these challenges to accelerate study of the pancreas in health and disease. METHODS: We leverage FixNCut, a single-cell RNA-sequencing approach in which tissue is reversibly fixed with dithiobis(succinimidyl propionate) before dissociation and single-cell preparation. We apply FixNCut to an established mouse model of acute pancreatitis, validate findings using GeoMx whole transcriptome atlas profiling, and integrate our data with prior studies to compare our method in both mouse and human pancreas datasets. RESULTS: FixNCut achieves unprecedented definition of challenging pancreatic cells, including acinar and immune populations in homeostasis and acute pancreatitis, and identifies changes in all major cell types during injury and recovery. We define the acinar transcriptome during homeostasis and acinar-to-ductal metaplasia and establish a unique gene set to measure deviation from normal acinar identity. We characterize pancreatic immune cells, and analysis of T-cell subsets reveals a polarization of the homeostatic pancreas toward type-2 immunity. We report immune responses during acute pancreatitis and recovery, including early neutrophil infiltration, expansion of dendritic cell subsets, and a substantial shift in the transcriptome of macrophages due to both resident macrophage activation and monocyte infiltration. CONCLUSIONS: FixNCut preserves pancreatic transcriptomes to uncover novel cell states during homeostasis and following pancreatitis, establishing a broadly applicable approach and reference atlas for study of pancreas biology and disease.


Asunto(s)
Células Acinares , Modelos Animales de Enfermedad , Homeostasis , Pancreatitis , Análisis de la Célula Individual , Transcriptoma , Animales , Pancreatitis/genética , Pancreatitis/inducido químicamente , Pancreatitis/patología , Pancreatitis/metabolismo , Humanos , Células Acinares/metabolismo , Células Acinares/patología , Ratones , Páncreas/patología , Páncreas/metabolismo , Perfilación de la Expresión Génica/métodos , RNA-Seq , Enfermedad Aguda , Páncreas Exocrino/metabolismo , Páncreas Exocrino/patología , Macrófagos/metabolismo , Metaplasia/genética , Metaplasia/patología , Ratones Endogámicos C57BL
8.
Cell Mol Gastroenterol Hepatol ; 17(5): 769-784, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38296052

RESUMEN

BACKGROUND & AIMS: Barrett's esophagus is the precursor of esophageal dysplasia and esophageal adenocarcinoma. CDKN2A-p16 deletions were reported in 34%-74% of patients with Barrett's esophagus who progressed to dysplasia and esophageal adenocarcinoma, suggesting that p16 loss may drive neoplastic progression. KRAS activation frequently occurs in esophageal adenocarcinoma and precancer lesions. LGR5+ stem cells in the squamocolumnar-junction (SCJ) of mouse stomach contribute as Barrett's esophagus progenitors. We aimed to determine the functional effects of p16 loss and KRAS activation in Barrett's-like metaplasia and dysplasia development. METHODS: We established mouse models with conditional knockout of CDKN2A-p16 (p16KO) and/or activated KRASG12D expression targeting SCJ LGR5+ cells in interleukin 1b transgenic mice and characterized histologic alterations (mucous-gland hyperplasia/metaplasia, inflammation, and dysplasia) in mouse SCJ. Gene expression was determined by microarray, RNA sequencing, and immunohistochemistry of SCJ tissues and cultured 3-dimensional organoids. RESULTS: p16KO mice exhibited increased mucous-gland hyperplasia/metaplasia versus control mice (P = .0051). Combined p16KO+KRASG12D resulted in more frequent dysplasia and higher dysplasia scores (P = .0036), with 82% of p16KO+KRASG12D mice developing high-grade dysplasia. SCJ transcriptome analysis showed several activated pathways in p16KO versus control mice (apoptosis, tumor necrosis factor-α/nuclear factor-kB, proteasome degradation, p53 signaling, MAPK, KRAS, and G1-to-S transition). CONCLUSIONS: p16 deletion in LGR5+ cell precursors triggers increased SCJ mucous-gland hyperplasia/metaplasia. KRASG12D synergizes with p16 deletion resulting in higher grades of SCJ glandular dysplasia, mimicking Barrett's high-grade dysplasia. These genetically modified mouse models establish a functional role of p16 and activated KRAS in the progression of Barrett's-like lesions to dysplasia in mice, representing an in vivo model of esophageal adenocarcinoma precancer. Derived 3-dimensional organoid models further provide in vitro modeling opportunities of esophageal precancer stages.


Asunto(s)
Adenocarcinoma , Esófago de Barrett , Neoplasias Esofágicas , Lesiones Precancerosas , Humanos , Ratones , Animales , Esófago de Barrett/genética , Esófago de Barrett/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Hiperplasia , Lesiones Precancerosas/patología , Adenocarcinoma/patología , Metaplasia/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo
9.
J Natl Cancer Inst ; 116(5): 681-693, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38258659

RESUMEN

BACKGROUND: Intestinal metaplasia (IM) and intraepithelial neoplasia (IEN) are considered precursors of gastric cardia cancer (GCC). Here, we investigated the histopathologic and molecular profiles of precancerous gastric cardia lesions (PGCLs) and biomarkers for risk stratification of gastric cardia IM. METHODS: We conducted a hospital-based evaluation (n = 4578) for PGCL profiles in high-incidence and non-high-incidence regions for GCC in China. We next performed 850K methylation arrays (n = 42) and RNA-seq (n = 44) in tissues with PGCLs. We then examined the protein expression of candidate biomarker using immunohistochemistry. RESULTS: Of the 4578 participants, 791 were diagnosed with PGCLs (600 IM, 62 IM with IEN, and 129 IEN). We found that individuals from high-incidence regions (26.7%) were more likely to develop PGCLs than those from non-high-incidence areas (13.5%). DNA methylation and gene expression alterations, indicated by differentially methylated probes (DMPs) and differentially expressed genes (DEGs), exhibited a progressive increase from type I IM (DMP = 210, DEG = 24), type II IM (DMP = 3402, DEG = 129), to type III IM (DMP = 3735, DEG = 328), peaking in IEN (DMP = 47 373, DEG = 2278). Three DEGs with aberrant promoter methylation were identified, shared exclusively by type III IM and IEN. Of these DEGs, we found that OLFM4 expression appears in IMs and increases remarkably in IENs (P < .001). CONCLUSIONS: We highlight that type III IM and IEN share similar epigenetic and transcriptional features in gastric cardia and propose biomarkers with potential utility in risk prediction.


Asunto(s)
Cardias , Metilación de ADN , Lesiones Precancerosas , Neoplasias Gástricas , Transcriptoma , Humanos , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Cardias/patología , Cardias/metabolismo , Masculino , Femenino , Persona de Mediana Edad , China/epidemiología , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Metaplasia/genética , Metaplasia/patología , Regulación Neoplásica de la Expresión Génica , Adulto , Incidencia , Anciano , Carcinoma in Situ/genética , Carcinoma in Situ/patología
10.
Gut ; 73(2): 255-267, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-37751933

RESUMEN

OBJECTIVE: The presence of intestinal metaplasia (IM) is a risk factor for gastric cancer. However, it is still controversial whether IM itself is precancerous or paracancerous. Here, we aimed to explore the precancerous nature of IM by analysing epigenetic alterations. DESIGN: Genome-wide DNA methylation analysis was conducted by EPIC BeadArray using IM crypts isolated by Alcian blue staining. Chromatin immunoprecipitation sequencing for H3K27ac and single-cell assay for transposase-accessible chromatin by sequencing were conducted using IM mucosa. NOS2 was induced using Tet-on gene expression system in normal cells. RESULTS: IM crypts had a methylation profile unique from non-IM crypts, showing extensive DNA hypermethylation in promoter CpG islands, including those of tumour-suppressor genes. Also, the IM-specific methylation profile, namely epigenetic footprint, was present in a fraction of gastric cancers with a higher frequency than expected, and suggested to be associated with good overall survival. IM organoids had remarkably high NOS2 expression, and NOS2 induction in normal cells led to accelerated induction of aberrant DNA methylation, namely epigenetic instability, by increasing DNA methyltransferase activity. IM mucosa showed dynamic enhancer reprogramming, including the regions involved in higher NOS2 expression. NOS2 had open chromatin in IM cells but not in gastric cells, and IM cells had frequent closed chromatin of tumour-suppressor genes, indicating their methylation-silencing. NOS2 expression in IM-derived organoids was upregulated by interleukin-17A, a cytokine secreted by extracellular bacterial infection. CONCLUSIONS: IM cells were considered to have a precancerous nature potentially with an increased chance of converting into cancer cells, and an accelerated DNA methylation induction due to abnormal NOS2 expression.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Lesiones Precancerosas , Neoplasias Gástricas , Humanos , Metilación de ADN , Neoplasias Gástricas/microbiología , ADN , Cromatina/metabolismo , Metaplasia/genética , Metaplasia/metabolismo , Lesiones Precancerosas/genética , Lesiones Precancerosas/metabolismo , Mucosa Gástrica/metabolismo , Helicobacter pylori/genética , Infecciones por Helicobacter/complicaciones
11.
Cytopathology ; 35(2): 283-285, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38084640

RESUMEN

Cases of metaplastic pleomorphic adenoma can be diagnostically challenging. Many of these cases fall into the Milan system's SUMP category, and some may be misdiagnosed. The author shows a case of pleomorphic adenoma with extensive squamous and mucinous metaplasia and a novel MALAT1::PLAG1 fusion.


Asunto(s)
Adenoma Pleomórfico , Carcinoma de Células Escamosas , ARN Largo no Codificante , Neoplasias de las Glándulas Salivales , Humanos , Adenoma Pleomórfico/diagnóstico , Adenoma Pleomórfico/genética , Proteínas de Unión al ADN/genética , Metaplasia/diagnóstico , Metaplasia/genética , ARN Largo no Codificante/genética , Factores de Transcripción/genética
12.
Cancer Cell ; 41(12): 2019-2037.e8, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37890493

RESUMEN

Intestinal metaplasia (IM) is a pre-malignant condition of the gastric mucosa associated with increased gastric cancer (GC) risk. Analyzing 1,256 gastric samples (1,152 IMs) across 692 subjects from a prospective 10-year study, we identify 26 IM driver genes in diverse pathways including chromatin regulation (ARID1A) and intestinal homeostasis (SOX9). Single-cell and spatial profiles highlight changes in tissue ecology and IM lineage heterogeneity, including an intestinal stem-cell dominant cellular compartment linked to early malignancy. Expanded transcriptome profiling reveals expression-based molecular subtypes of IM associated with incomplete histology, antral/intestinal cell types, ARID1A mutations, inflammation, and microbial communities normally associated with the healthy oral tract. We demonstrate that combined clinical-genomic models outperform clinical-only models in predicting IMs likely to transform to GC. By highlighting strategies for accurately identifying IM patients at high GC risk and a role for microbial dysbiosis in IM progression, our results raise opportunities for GC precision prevention and interception.


Asunto(s)
Lesiones Precancerosas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Estudios Prospectivos , Mucosa Gástrica/patología , Genómica , Metaplasia/genética , Lesiones Precancerosas/genética
13.
Cancer Discov ; 13(6): 1346-1363, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-36929873

RESUMEN

Intestinal metaplasia in the esophagus (Barrett's esophagus IM, or BE-IM) and stomach (GIM) are considered precursors for esophageal and gastric adenocarcinoma, respectively. We hypothesize that BE-IM and GIM follow parallel developmental trajectories in response to differing inflammatory insults. Here, we construct a single-cell RNA-sequencing atlas, supported by protein expression studies, of the entire gastrointestinal tract spanning physiologically normal and pathologic states including gastric metaplasia in the esophagus (E-GM), BE-IM, atrophic gastritis, and GIM. We demonstrate that BE-IM and GIM share molecular features, and individual cells simultaneously possess transcriptional properties of gastric and intestinal epithelia, suggesting phenotypic mosaicism. Transcriptionally E-GM resembles atrophic gastritis; genetically, it is clonal and has a lower mutational burden than BE-IM. Finally, we show that GIM and BE-IM acquire a protumorigenic, activated fibroblast microenvironment. These findings suggest that BE-IM and GIM can be considered molecularly similar entities in adjacent organs, opening the path for shared detection and treatment strategies. SIGNIFICANCE: Our data capture the gradual molecular and phenotypic transition from a gastric to intestinal phenotype (IM) in the esophagus and stomach. Because BE-IM and GIM can predispose to cancer, this new understanding of a common developmental trajectory could pave the way for a more unified approach to detection and treatment. See related commentary by Stachler, p. 1291. This article is highlighted in the In This Issue feature, p. 1275.


Asunto(s)
Esófago de Barrett , Gastritis Atrófica , Humanos , ARN , Metaplasia/genética , Esófago/metabolismo , Esófago/patología , Esófago de Barrett/genética , Esófago de Barrett/metabolismo , Esófago de Barrett/patología , Análisis de Secuencia de ARN , Microambiente Tumoral
14.
Breast Cancer Res ; 25(1): 11, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36707876

RESUMEN

BACKGROUND: Metaplastic breast carcinoma (MpBC) typically consists of carcinoma of no special type (NST) with various metaplastic components. Although previous transcriptomic and proteomic studies have reported subtype-related heterogeneity, the intracase transcriptomic alterations between metaplastic components and paired NST components, which are critical for understanding the pathogenesis underlying the metaplastic processes, remain unclear. METHODS: Fifty-nine NST components and paired metaplastic components (spindle carcinomatous [SPS], matrix-producing, rhabdoid [RHA], and squamous carcinomatous [SQC] components) were microdissected from specimens obtained from 27 patients with MpBC for gene expression profiling using the NanoString Breast Cancer 360 Panel on a NanoString nCounter FLEX platform. BC360-defined signatures were scored using nSolver software. RESULTS: Hierarchical clustering and principal component analysis revealed a heterogeneous gene expression profile (GEP) corresponding to the NST components, but the GEP of metaplastic components exhibited subtype dependence. Compared with the paired NST components, the SPS components demonstrated the upregulation of genes related to stem cells and epithelial-mesenchymal transition and displayed enrichment in claudin-low and macrophage signatures. Despite certain overlaps in the enriched functions and signatures between the RHA and SPS components, the specific differentially expressed genes differed. We observed the RHA-specific upregulation of genes associated with vascular endothelial growth factor signaling. The chondroid matrix-producing components demonstrated the upregulation of hypoxia-related genes and the downregulation of the immune-related MHC2 signature and the TIGIT gene. In the SQC components, TGF-ß and genes associated with cell adhesion were upregulated. The differentially expressed genes among metaplastic components in the 22 MpBC cases with one or predominantly one metaplastic component clustered paired NST samples into clusters with correlation with their associated metaplastic types. These genes could be used to separate the 31 metaplastic components according to respective metaplastic types with an accuracy of 74.2%, suggesting that intrinsic signatures of NST may determine paired metaplastic type. Finally, the EMT activity and stem cell traits in the NST components were correlated with specimens displaying lymph node metastasis. CONCLUSIONS: We presented the distinct transcriptomic alterations underlying metaplasia into specific metaplastic components in MpBCs, which contributes to the understanding of the pathogenesis underlying morphologically distinct metaplasia in MpBCs.


Asunto(s)
Neoplasias de la Mama , Carcinoma de Células Escamosas , Humanos , Femenino , Neoplasias de la Mama/patología , Transcriptoma , Proteómica , Factor A de Crecimiento Endotelial Vascular/genética , Perfilación de la Expresión Génica , Carcinoma de Células Escamosas/patología , Metaplasia/genética
15.
Scand J Gastroenterol ; 58(2): 133-141, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36124708

RESUMEN

OBJECTIVES: This study discusses whether olfactomedin 4 (OLFM4) could be used as a sensitive and specific biomarker in the early diagnosis of gastric cancer (GC) after gastric intestinal metaplasia (GIM). METHODS: An integrative analysis combining data derived from the Gene Expression Omnibus (GEO) and cBioPortal databases was performed to investigate the potential molecular biomarker. Immunohistochemistry and quantitative real-time polymerase chain reactions were used to measure the expression of messenger ribonucleic acid (mRNA) and protein by OLFM4. In combination with the gastroscopic findings and the OLFM4 expression in GIM-GC, a predictive model was established. The receiver operator characteristic curve (ROC) was applied to assess the diagnostic value of the model for GIM-GC. RESULTS: According to the GEO and cBioPortal databases, OLFM4 was identified as a key gene in the diagnosis of GIM-GC. Higher protein expression of OLFM4 was found in GIM and GIM-GC compared with chronic superficial gastritis (GS) (p < 0.05). The positive expression rate of OLFM4 in paracancerous tissue (GCP) was higher than in GIM (p > 0.05). There was no significant difference between GIM-GC and GCP (p > 0.05). The mRNA expression of OLFM4 was similar to the protein expression, and the positive expression rate was higher in early GIM-GC than in GIM (p < 0.05). CONCLUSION: Olfactomedin 4 could be used as a biomarker for the early diagnosis of GIM-GC, and the logistic predictive model could be an effective tool for increasing the early diagnostic rate.


Asunto(s)
Lesiones Precancerosas , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Estudios de Factibilidad , Detección Precoz del Cáncer , Biomarcadores , Metaplasia/genética , ARN Mensajero , Lesiones Precancerosas/diagnóstico , Lesiones Precancerosas/genética
16.
Saudi J Gastroenterol ; 28(6): 456-465, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36453428

RESUMEN

Background: Intestinal metaplasia (IM) of the gastric cardia is an important premalignant lesion. However, there is limited information concerning its epidemiological and molecular features. Herein, we aimed to provide an overview of the epidemiological data for gastric cardiac IM and evaluate the role of EYA transcriptional coactivator and phosphatase 4 (EYA4) as an epigenetic biomarker for gastric cardiac IM. Methods: The study was conducted in the context of the gastric cardiac precancerous lesion program in southern China, which included 718 non-cancer participants, who undertook endoscopic biopsy and pathological examination in three endoscopy centers, between November 2018 and November 2021. Pyrosequencing and immunohistochemistry were performed to examine the DNA methylation status and protein expression level of EYA4. Results: Gastric cardiac IM presented in 14.1% (101/718) of participants and was more common among older (>50 years; 22.0% [95% CI: 17.8-26.8]) than younger participants (≤50 years; 6.7% [95% CI: 4.5-9.9]; P < 0.001). IM was more common in male participants (16.9% [95% CI: 13.2-21.3] vs. 11.3% [95% CI: 8.3-15.1]; P = 0.04). Pyrosequencing revealed that IM tissues exhibited significantly higher DNA methylation levels in EYA4 gene than normal tissues (P = 0.016). Further, the protein expression level of EYA4 was reduced in IM and absent in intraepithelial neoplasia tissues compared to normal tissues (P < 0.001). Conclusions: Detection rates of gastric cardiac IM increase with age and are higher in men. Our findings highlight the important role of promoter hypermethylation and downregulation of EYA4 in gastric cardiac IM development.


Asunto(s)
Lesiones Precancerosas , Gastropatías , Masculino , Humanos , Cardias , Metilación de ADN , Metaplasia/genética , Transactivadores
17.
Cancer Res ; 82(9): 1712-1723, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35363856

RESUMEN

Intestinal metaplasia (IM) is a risk factor for gastric cancer following infection with Helicobacter pylori. To explore the susceptibility of pure gastric IM to cancer development, we investigated genetic alterations in single IM gastric glands. We isolated 50 single IM or non-IM glands from the inflamed gastric mucosa of 11 patients with intramucosal gastric carcinoma (IGC) and 4 patients without IGC; 19 single glands in the noninflamed gastric mucosa of 11 individuals from our cohort and previous dataset were also included as controls. Whole-exome sequencing of single glands revealed significantly higher accumulation of somatic mutations in various genes within IM glands compared with non-IM glands. Clonal ordering analysis showed that IM glands expanded to form clusters with shared mutations. In addition, targeted-capture deep sequencing and copy number (CN) analyses were performed in 96 clustered IM or non-IM gastric glands from 26 patients with IGC. CN analyses were also performed on 41 IGC samples and The Cancer Genome Atlas-Stomach Adenocarcinoma datasets. These analyses revealed that polyclonally expanded IM commonly acquired CN aberrations (CNA), including amplification of chromosomes 8, 20, and 2. A large portion of clustered IM glands typically consisted of common CNAs rather than other cancer-related mutations. Moreover, the CNA patterns of clustered IM glands were similar to those of IGC, indicative of precancerous conditions. Taken together, these findings suggest that, in the gastric mucosa inflamed with H. pylori infection, IM glands expand via acquisition of CNAs comparable with those of IGC, contributing to field cancerization. SIGNIFICANCE: This study contributes to our understanding of gastric intestinal metaplasia as a risk factor for gastric adenocarcinoma via their multifocal expansion and acquisition of CNAs and somatic mutations.


Asunto(s)
Adenocarcinoma , Infecciones por Helicobacter , Helicobacter pylori , Lesiones Precancerosas , Neoplasias Gástricas , Adenocarcinoma/genética , Adenocarcinoma/patología , Variaciones en el Número de Copia de ADN , Mucosa Gástrica/patología , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/genética , Humanos , Metaplasia/genética , Metaplasia/patología , Lesiones Precancerosas/genética , Lesiones Precancerosas/patología , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología
18.
Genomics ; 114(3): 110370, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35430283

RESUMEN

BACKGROUND: Helicobacter pylori infection is the most important risk factor for gastric cancer (GC). Human gastric adenocarcinoma develops after long-term H. pylori infection via the Correa cascade. This carcinogenic pathway describes the progression from gastritis to atrophy, intestinal metaplasia (IM), dysplasia and GC. Patients with atrophy and intestinal metaplasia are considered to have precancerous lesions of GC (PLGC). H. pylori eradication and endoscopy surveillance are currently the only interventions for preventing GC. Better knowledge of the biology of human PLGC may help find stratification markers and contribute to better understanding of biological mechanisms. One way to achieve this is by using co-expression network analysis. Weighted gene co-expression network analysis (WGCNA) is often used to identify modules from co-expression networks and relate them to clinical traits. It also allows identification of driver genes that may be critical for PLGC. AIM: The purpose of this study was to identify co-expression modules and differential gene expression in dyspeptic patients at different stages of the Correa pathway. METHODS: We studied 96 gastric biopsies from 78 patients that were clinically classified as: non-active (n = 10) and chronic-active gastritis (n = 20), atrophy (n = 12), and IM (n = 36). Gene expression of coding RNAs was determined by microarrays and non-coding RNAs by RNA-seq. The WGCNA package was used for network construction, module detection, module preservation and hub and driver gene selection. RESULTS: WGCNA identified 20 modules for coding RNAs and 4 for each miRNA and small RNA class. Modules were associated with antrum and corpus gastric locations, chronic gastritis and IM. Notably, coding RNA modules correlated with the Correa cascade. One was associated with the presence of H. pylori. In three modules, the module eigengene (ME) gradually increased in the stages toward IM, while in three others the inverse relationship was found. One miRNA module was negatively correlated to IM and was used for a mRNA-miRNA integration analysis. WGCNA also uncovered driver genes. Driver genes show both high connectivity within a module and are significantly associated with clinical traits. Some of those genes have been previously involved in H. pylori carcinogenesis, but others are new. Lastly, using similar external transcriptomic data, we confirmed that the discovered mRNA modules were highly preserved. CONCLUSION: Our analysis captured co-expression modules that provide valuable information to understand the pathogenesis of the progression of PLGC.


Asunto(s)
Gastritis , Infecciones por Helicobacter , Helicobacter pylori , MicroARNs , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/epidemiología , Mucosa Gástrica/patología , Gastritis/complicaciones , Gastritis/epidemiología , Gastritis/patología , Atrofia/complicaciones , Atrofia/patología , MicroARNs/genética , Metaplasia/genética , Metaplasia/complicaciones , Metaplasia/patología , ARN Mensajero
19.
Clin Transl Gastroenterol ; 13(5): e00483, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35347094

RESUMEN

INTRODUCTION: High expression of HOTAIR promotes tumor growth and carries a dismal prognosis for the patient. We investigated the prognostic value of HOTAIR expression in gastric cancer (GC) and systematically delineate the expression in relation to Helicobacter pylori infection and preneoplastic changes. METHODS: HOTAIR expression was analyzed in surgical paired tissue samples of patients with GC and biopsy samples from patients with atrophic gastritis and/or intestinal metaplasia (AG ± -IM), chronic nonatrophic gastritis, and controls. The cancer genome atlas (TCGA) data were used for validation. HOTAIR expression was evaluated in sera and ascites of patients with GC. Quantitative HOTAIR expression analysis was performed using quantitative polymerase chain reaction, and LINE-1 methylation was assessed by bisulfite pyrosequencing. RESULTS: HOTAIR was more frequently detected in tumor tissues compared with adjacent gastric mucosa (65.4% vs 8.6%). HOTAIR expression was associated with depth of tumor invasion and tumor location and with shorter overall survival in patients with diffuse-type GC as confirmed in the TCGA cohort. HOTAIR was not detectable in controls but was found in 2.2% of patients with chronic nonatrophic gastritis and 18.3% of patients with AG ± IM, which was further associated with IM, grade of IM, and H. pylori positivity. DISCUSSION: HOTAIR expression was associated with GC and preneoplastic changes of stomach mucosa. Although HOTAIR expression was strongly linked to IM, HOTAIR expression was only associated with worse prognosis in Lauren diffuse and not intestinal type of GC. Further studies are needed to evaluate the value of HOTAIR as diagnostic and predictive biomarker in IM and translational therapeutic relevance of HOTAIR in diffuse-type GC.


Asunto(s)
Gastritis Atrófica , Infecciones por Helicobacter , Helicobacter pylori , ARN Largo no Codificante , Neoplasias Gástricas , Gastritis Atrófica/genética , Gastritis Atrófica/patología , Infecciones por Helicobacter/complicaciones , Infecciones por Helicobacter/diagnóstico , Infecciones por Helicobacter/genética , Helicobacter pylori/genética , Humanos , Metaplasia/genética , ARN Largo no Codificante/genética , Neoplasias Gástricas/patología
20.
JCI Insight ; 7(3)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35132959

RESUMEN

Cells recognize both foreign and host-derived double-stranded RNA (dsRNA) via a signaling pathway that is usually studied in the context of viral infection. It has become increasingly clear that the sensing and handling of endogenous dsRNA is also critical for cellular differentiation and development. The adenosine RNA deaminase, ADAR1, has been implicated as a central regulator of the dsRNA response, but how regulation of the dsRNA response might mediate cell fate during injury and whether such signaling is cell intrinsic remain unclear. Here, we show that the ADAR1-mediated response to dsRNA was dramatically induced in 2 distinct injury models of gastric metaplasia. Mouse organoid and in vivo genetic models showed that ADAR1 coordinated a cell-intrinsic, epithelium-autonomous, and interferon signaling-independent dsRNA response. In addition, dsRNA accumulated within a differentiated epithelial population (chief cells) in mouse and human stomachs as these cells reprogrammed to a proliferative, reparative (metaplastic) state. Finally, chief cells required ADAR1 to reenter the cell cycle during metaplasia. Thus, cell-intrinsic ADAR1 signaling is critical for the induction of metaplasia. Because metaplasia increases cancer risk, these findings support roles for ADAR1 and the response to dsRNA in oncogenesis.


Asunto(s)
Adenosina Desaminasa/genética , Epitelio/patología , Mucosa Gástrica/patología , Regulación de la Expresión Génica , ARN Bicatenario/genética , Adenosina Desaminasa/biosíntesis , Animales , Modelos Animales de Enfermedad , Epitelio/metabolismo , Femenino , Mucosa Gástrica/metabolismo , Masculino , Metaplasia/genética , Metaplasia/metabolismo , Metaplasia/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Edición de ARN/genética , ARN Bicatenario/metabolismo , Proteínas de Unión al ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA