RESUMEN
Primary isolation of avian metapneumovirus (aMPV) is carried out using tracheal organ culture (TOC) or chicken embryonated eggs with subsequent adaptation in chicken embryo fibroblasts (CEF) or Vero cultures. This study was conducted to evaluate six different cell lines and two avian culture systems for the propagation of aMPV subtypes A and B. The chicken embryo related (CER) cells were used successfully for primary isolation. In addition to Vero and baby hamster kidney (BHK-21) cells, CER cells were also shown to be the most appropriate for propagation of aMPV considering high titres. Propagation of A and B subtypes in CEF and TOC remained efficient after the primary isolation and several passages of viruses in the CER cell line. The growth curves were created using CER, Vero and BHK-21 cell lines. Compared with growth, both yielded higher titres in CER cells during the first 30 h after infection, but no significant difference was observed in the results obtained from CER and Vero cells. This data show that CER cells are adequate for aMPV subtypes A and B propagation, giving similar results to Vero cells.
Asunto(s)
Metapneumovirus/crecimiento & desarrollo , Animales , Bovinos , Células Cultivadas , Embrión de Pollo , Chlorocebus aethiops , Cricetinae , Caballos , Humanos , Técnicas de Cultivo de Órganos , Cultivo de Virus/métodosRESUMEN
Avian metapneumovirus (AMPV) is the primary causative agent of severe rhinotracheitis in turkeys. It is associated with swollen head syndrome in chickens and is the source of significant economic losses to animal food production. In this study, we designed specific short interfering RNA (siRNA) targeting the AMPV nucleoprotein (N) and fusion (F) genes. Three days post-virus infection, virus titration, real time RT-PCR, and RT-PCR assays were performed to verify the effect of siRNA in AMPV replication. A marked decrease in virus titers from transfected CER cells treated with siRNA/N was observed. Also, the production of N, F, and G mRNAs in AMPV was decreased. Results indicate that N-specific siRNA can inhibit virus replication. In future studies, a combination of siRNAs targeting the RNA polymerase complex may be used as a tool to study AMPV replication and/or antiviral therapy.