Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 849
1.
Molecules ; 27(3)2022 Feb 05.
Article En | MEDLINE | ID: mdl-35164333

BACKGROUND: Infectious diseases represent a significant global strain on public health security and impact on socio-economic stability all over the world. The increasing resistance to the current antimicrobial treatment has resulted in the crucial need for the discovery and development of novel entities for the infectious treatment with different modes of action that could target both sensitive and resistant strains. METHODS: Compounds were synthesized using the classical organic chemistry methods. Prediction of biological activity spectra was carried out using PASS and PASS-based web applications. Pharmacophore modeling in LigandScout software was used for quantitative modeling of the antibacterial activity. Antimicrobial activity was evaluated using the microdilution method. AutoDock 4.2® software was used to elucidate probable bacterial and fungal molecular targets of the studied compounds. RESULTS: All compounds exhibited better antibacterial potency than ampicillin against all bacteria tested. Three compounds were tested against resistant strains MRSA, P. aeruginosa and E. coli and were found to be more potent than MRSA than reference drugs. All compounds demonstrated a higher degree of antifungal activity than the reference drugs bifonazole (6-17-fold) and ketoconazole (13-52-fold). Three of the most active compounds could be considered for further development of the new, more potent antimicrobial agents. CONCLUSION: Compounds 5b (Z)-3-(3-hydroxyphenyl)-5-((1-methyl-1H-indol-3-yl)methylene)-2-thioxothiazolidin-4-one and 5g (Z)-3-[5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxo-thiazolidin-3-yl]-benzoic acid as well as 5h (Z)-3-(5-((5-methoxy-1H-indol-3-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)benzoic acid can be considered as lead compounds for further development of more potent and safe antibacterial and antifungal agents.


Anti-Bacterial Agents/chemical synthesis , Antifungal Agents/chemical synthesis , Fungi/growth & development , Thiazolidines/chemical synthesis , Ampicillin/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Escherichia coli/drug effects , Escherichia coli/growth & development , Fungi/drug effects , Imidazoles/pharmacology , Ketoconazole/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Microbial Sensitivity Tests , Microbial Viability/drug effects , Molecular Docking Simulation , Molecular Structure , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Structure-Activity Relationship , Thiazolidines/chemistry , Thiazolidines/pharmacology
2.
Biomolecules ; 11(12)2021 12 16.
Article En | MEDLINE | ID: mdl-34944534

There is a need for new antimicrobial systems due to increased global resistance to current antimicrobials. Pomegranate rind extract (PRE) and Zn (II) ions both possess a level of antimicrobial activity and work has previously shown that PRE/Zn (II) in combination possesses synergistic activity against Herpes simplex virus and Micrococcus luteus. Here, we determined whether such synergistic activity extended to other, more pathogenic, bacteria. Reference strains of methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus epidermidis, Escherichia coli, and Pseudomonas aeruginosa were cultured and subjected to challenge by PRE, Zn (II), or PRE + Zn (II), in time-kill assays. Data were obtained independently by two researchers using different PRE preparations. Statistically significant synergistic activity for PRE + Zn (II) was shown for all four bacterial strains tested compared to untreated controls, although the extent of efficacy and timescales varied. Zn (II) exerted activity and at 1 h, it was not possible to distinguish with PRE + Zn (II) combination treatment in all cases. PRE alone showed low activity against all four bacteria. Reproducible synergistic bactericidal activity involving PRE and Zn (II) has been confirmed. Potential mechanisms are discussed. The development of a therapeutic system that possesses demonstrable antimicrobial activity is supported which lends itself particularly to topical delivery applications, for example MRSA infections.


Escherichia coli/growth & development , Methicillin-Resistant Staphylococcus aureus/growth & development , Plant Extracts/pharmacology , Pomegranate/chemistry , Pseudomonas aeruginosa/growth & development , Staphylococcus epidermidis/growth & development , Zinc/pharmacology , Drug Synergism , Escherichia coli/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Microbial Viability/drug effects , Plant Extracts/chemistry , Pseudomonas aeruginosa/drug effects , Staphylococcus epidermidis/drug effects
3.
Cell Mol Biol (Noisy-le-grand) ; 67(3): 204-211, 2021 Nov 25.
Article En | MEDLINE | ID: mdl-34933707

Nettle (Urtica dioica L), as a plant rich in biologically active compounds, is one of the most important plants used in herbal medicine. Studies have shown that this plant has antioxidant, antiplatelet, hypoglycemic and hypocholesterolemia effects. In this study, we characterized three Alternaria endophytic fungi isolated from their host U. dioica. We hypothesized that these endophytic fungi can produce new bioactive metabolites, which may possess the bioactive property with potential application in the medical and pharmaceutical industries. The antibacterial activity was evaluated against reference and isolated strains, including Methicillin-Resistant Staphylococcus aureus. A wide range of antimicrobial activities similar to those measured in nettle leaves was detected especially for Alternaria sorghi. Furthermore, the highest antioxidant activity detected with DPPH free radical scavenging was measured for A. sorghi and nettle leaves ethyl acetate extracts. In addition, whereas catalase activity was similar in the three isolated fungi and nettle leaves, total thiol content and superoxide dismutase activity were significantly higher in leaves. A. sorghi showed the best activities compared to other isolated fungi. The characterization and further production of bioactive compounds produced by this endophyte should be investigated to fight bacteria and especially those that develop drug multi-resistance.


Alternaria/chemistry , Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Endophytes/chemistry , Plant Leaves/chemistry , Urtica dioica/chemistry , Alternaria/physiology , Bacillus cereus/drug effects , Bacillus cereus/growth & development , Biological Products/pharmacology , Endophytes/physiology , Escherichia coli/drug effects , Escherichia coli/growth & development , Free Radical Scavengers/pharmacology , Host-Pathogen Interactions , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/growth & development , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Microbial Sensitivity Tests/methods , Plant Extracts/pharmacology , Plant Leaves/microbiology , Plants, Medicinal/chemistry , Plants, Medicinal/microbiology , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development , Urtica dioica/microbiology
4.
Molecules ; 26(22)2021 Nov 09.
Article En | MEDLINE | ID: mdl-34833864

Novel complexes of type [Cu(N-N)(dmtp)2(OH2)](ClO4)2·dmtp ((1) N-N: 2,2'-bipyridine; (2) L: 1,10-phenantroline and dmtp: 5,7-dimethyl-1,2,4-triazolo[1,5-a]pyrimidine) were designed in order to obtain biologically active compounds. Complexes were characterized as mononuclear species that crystallized in the space group P-1 of the triclinic system with a square pyramidal geometry around the copper (II). In addition to the antiproliferative effect on murine melanoma B16 cells, complex (1) exhibited low toxicity on normal BJ cells and did not affect membrane integrity. Complex (2) proved to be a more potent antimicrobial in comparison with (1), but both compounds were more active in comparison with dmtp-both against planktonic cells and biofilms. A stronger antimicrobial and antibiofilm effect was noticed against the Gram-positive strains, including methicillin-resistant Staphylococcus aureus (MRSA). Both electron paramagnetic resonance (EPR) and Saccharomyces cerevisiae studies indicated that the complexes were scavengers rather than reactive oxygen species promoters. Their DNA intercalating capacity was evidenced by modifications in both absorption and fluorescence spectra. Furthermore, both complexes exhibited nuclease-like activity, which increased in the presence of hydrogen peroxide.


Anti-Infective Agents , Chelating Agents , Coordination Complexes , Methicillin-Resistant Staphylococcus aureus/growth & development , Pyrimidines , Saccharomyces cerevisiae/growth & development , Animals , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Cell Line, Tumor , Chelating Agents/chemical synthesis , Chelating Agents/chemistry , Chelating Agents/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , Humans , Mice , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Pyrimidines/pharmacology
5.
BMC Microbiol ; 21(1): 305, 2021 11 04.
Article En | MEDLINE | ID: mdl-34736405

BACKGROUND: This study investigated the effects of terpinen-4-ol on methicillin-resistant Staphylococcus aureus (MRSA) and its biofilm, and the possible mechanisms governing this effect. RESULTS: We observed that terpinen-4-ol has good antibacterial activity and inhibits the formation of MRSA biofilm. The MIC and MBC values for terpinen-4-ol against S. aureus were 0.08% ~ 0.32%. And terpinen-4-ol at 0.32% could kill all bacteria and clear all biofilms. Untargeted metabolomic and transcriptomic analyses showed that terpinen-4-ol strongly inhibited DNA and RNA biosynthesis in MRSA at 2 h after treatment by affecting genes and metabolites related to purine and pyrimidine metabolic pathways. Some differential genes which play important roles in DNA synthesis and the production of eDNA from biofilm exposed to terpinen-4-ol was also significantly decreased compared with that of the control. CONCLUSIONS: Terpinen-4-ol has good antibacterial activity and significantly inhibits the formation of MRSA biofilm by inhibiting purine and pyrimidine metabolism.


Anti-Bacterial Agents/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Terpenes/pharmacology , Biofilms/drug effects , Metabolomics , Methicillin-Resistant Staphylococcus aureus/growth & development , Methicillin-Resistant Staphylococcus aureus/metabolism , Microbial Sensitivity Tests , Transcriptome
6.
PLoS One ; 16(10): e0258592, 2021.
Article En | MEDLINE | ID: mdl-34669727

Understating how antibiotic tolerance impacts subsequent resistance development in the clinical setting is important to identifying effective therapeutic interventions and prevention measures. This study describes a patient case of methicillin-resistant Staphylococcus aureus (MRSA) bacteremia which rapidly developed resistance to three primary MRSA therapies and identifies genetic and metabolic changes selected in vivo that are associated with rapid resistance evolution. Index blood cultures displayed susceptibility to all (non-beta-lactam) antibiotics with the exception of trimethoprim/ sulfamethoxazole. One month after initial presentation, during the same encounter, blood cultures were again positive for MRSA, now displaying intermediate resistance to vancomycin and ceftaroline and resistance to daptomycin. Two weeks later, blood cultures were positive for a third time, still intermediate resistant to vancomycin and ceftaroline and resistant to daptomycin. Mutations in mprF and vraT were common to all multidrug resistant isolates whereas mutations in tagH, agrB and saeR and secondary mprF mutation emerged sequentially and transiently resulting in distinct in vitro phenotypes. The baseline mutation rate of the patient isolates was unremarkable ruling out the hypermutator phenotype as a contributor to the rapid emergence of resistance. However, the index isolate demonstrated pronounced tolerance to the antibiotic daptomycin, a phenotype that facilitates the subsequent development of resistance during antibiotic exposure. This study exemplifies the capacity of antibiotic-tolerant pathogens to rapidly develop both stable and transient genetic and phenotypic changes, over the course of a single patient encounter.


Anti-Bacterial Agents/pharmacology , Bacteremia/microbiology , Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial , Methicillin-Resistant Staphylococcus aureus/growth & development , Staphylococcal Infections/microbiology , Aged , Aminoacyltransferases/genetics , Anti-Bacterial Agents/classification , Anti-Bacterial Agents/therapeutic use , Bacteremia/drug therapy , Evolution, Molecular , Humans , Male , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Microbial Sensitivity Tests , Microbial Viability/drug effects , Mutation , Staphylococcal Infections/drug therapy , Transcription Factors/genetics
7.
PLoS One ; 16(9): e0257004, 2021.
Article En | MEDLINE | ID: mdl-34534230

AIM: To investigate the epidemiology of S. aureus and MRSA nasal carriage among people with diabetes at the Korle Bu Teaching Hospital in Accra, including the prevalence, predictors of carriage, and antibiotic resistance. METHODOLOGY: This study was cross-sectional, involving 300 diabetes patients and 106 non-diabetic individuals. Swab specimens of the nares were obtained from the participants and bacteriologically-cultured. Identification and characterization of S. aureus and MRSA were based on standard bacteriological methods; antimicrobial susceptibility testing was by the Kirby-Bauer method. RESULTS: The prevalence of staphylococcal carriage, the diabetes group relative to the non-diabetes group, were 31.0% and 10.4% (S. aureus), and 3.3% and 0.0% (MRSA). Presence of diabetes predisposed to S. aureus carriage, but not MRSA nor coagulase-negative staphylococci (CoNS) carriage (OR = 3.88; p < 0.0001). Colonization with CoNS was protective of S. aureus (OR = 0.039, p < 0.001) and MRSA (OR = 0.115, p = 0.043) colonization among the diabetics. The antimicrobial resistance patterns recorded among the S. aureus isolated from the diabetic individuals relative to the non-diabetics were as follows: penicillin (95% vs. 91%), tetracycline (37% vs. 27%), cotrimoxazole (30% vs. 36%), erythromycin (17% vs. 0%), norfloxacin (13% vs. 0%), clindamycin (12% vs. 0%), gentamicin (9% vs. 0%), fusidic acid (10% vs. 9%), linezolid (4% vs. 0%), and rifampicin (5% vs. 0%). The proportion of multidrug resistant S. aureus was 41% (n = 38) in the diabetes group and 0% in the non-diabetes group; this difference was statistically significant (p = 0.01). CONCLUSIONS: The presence of diabetes predisposed the participants to S. aureus carriage by almost four folds, but not MRSA carriage. Colonization with CoNS was protective of S. aureus and MRSA carriage in the diabetes group. Finally, linezolid remains a good therapeutic agent for anti-MRSA therapy.


Diabetes Complications/microbiology , Diabetes Mellitus/microbiology , Drug Resistance, Multiple, Bacterial , Methicillin-Resistant Staphylococcus aureus/drug effects , Staphylococcal Infections/microbiology , Adolescent , Adult , Anti-Bacterial Agents/therapeutic use , Carrier State , Clindamycin/therapeutic use , Cross-Sectional Studies , Diabetes Complications/diagnosis , Diabetes Complications/drug therapy , Diabetes Mellitus/diagnosis , Diabetes Mellitus/drug therapy , Erythromycin/therapeutic use , Female , Fusidic Acid/therapeutic use , Gentamicins/therapeutic use , Humans , Linezolid/therapeutic use , Male , Methicillin-Resistant Staphylococcus aureus/growth & development , Microbial Sensitivity Tests , Middle Aged , Nasal Cavity/microbiology , Norfloxacin/therapeutic use , Penicillins/therapeutic use , Rifampin/therapeutic use , Staphylococcal Infections/diagnosis , Staphylococcal Infections/drug therapy , Tetracycline/therapeutic use , Trimethoprim, Sulfamethoxazole Drug Combination/therapeutic use
8.
Pak J Biol Sci ; 24(6): 656-662, 2021 Jan.
Article En | MEDLINE | ID: mdl-34486341

<b>Background and Objective:</b> Antibacterial resistance is one of the top global public health problems. The use of natural substances, which can enhance the antibacterial activity of currently used medications, is a promising alternative to oppose antibacterial resistance. The pharmacological activities of lupinifolin, a prenylated flavanone isolated from stems of <i>Derris reticulata</i> Craib., against growth and biofilm formation of <i>Streptococcus mutans</i> and <i>Staphylococcus aureus</i> have been previously documented. Nonetheless, interactions between lupinifolin and other antibacterial agents have not been determined. This study aimed to investigate the effects of lupinifolin in combinations with some antibacterial agents, specifically ampicillin, cloxacillin or vancomycin, against <i>S. mutans</i>, Methicillin-Sensitive <i>S. aureus</i> (MSSA) and Methicillin-Resistant <i>S. aureus</i> (MRSA). <b>Materials and Methods:</b> The checkerboard assay was performed to determine the antibacterial activity of lupinifolin plus the testing antibacterial agents. The Fractional Inhibitory Concentration Index (FICI) was calculated to indicate the interaction between lupinifolin and the antibacterial agent tested. <b>Results:</b> Lupinifolin exerted the synergistic activity when using in combination with ampicillin or cloxacillin against MSSA with the FICIs of <u><</u>0.5. The potential synergistic effect was also observed with lupinifolin plus ampicillin or cloxacillin against MRSA. However, the combination of lupinifolin plus vancomycin resulted in no interaction against MRSA. The combined effects of lupinifolin and ampicillin or cloxacillin against <i>S. mutans</i> were somewhat ambiguous with the borderline values of FICI of 0.5156 and 0.5625, respectively. <b>Conclusion:</b> Lupinifolin potentially plays a role as an antibacterial intensifier against some pathogenic gram-positive bacteria, particularly MSSA and MRSA. Nonetheless, further experiments are required to explain the precise mechanism of synergy.


Anti-Bacterial Agents/pharmacology , Flavonoids/pharmacology , Staphylococcus aureus/drug effects , Ampicillin/pharmacology , Cloxacillin/pharmacology , Drug Synergism , Drug Therapy, Combination , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Microbial Sensitivity Tests , Staphylococcus aureus/growth & development , Vancomycin/pharmacology
9.
Int J Biol Macromol ; 187: 858-866, 2021 Sep 30.
Article En | MEDLINE | ID: mdl-34343582

The antibacterial and antioxidant packaging films were fabricated by incorporating licorice residue extracts (LREs) into oxidized starch (OS) films. The bioactive fraction (BF) was firstly obtained from LREs by using bioassay-guided isolation method. The BF showed potent anti-Gram(+) bacteria effects, especially against methicillin-resistant S. aureus (MRSA) with MIC of 32.5 µg/mL. The present results also indicated that the addition of BF could significantly decrease the moisture content, water vapor permeability, light transmittance of OS films. Notably, the antibacterial and antioxidant activities of OS films significantly enhanced with the concentration of BF increasing. Moreover, the films with the highest concentration of BF showed the lowest tensile strength (4.23 MPa) and the highest elongation at break (63.89%). Meanwhile, the bioactive films could release bioactive compounds such as licochalcone A and licochalcone B into the alcoholic and fatty food simulants. Taken together, the active OS films containing LREs have the potential for application in food packaging films, due to its potential against MRSA and antioxidant activity as well as good physicochemical properties.


Anti-Bacterial Agents/pharmacology , Antioxidants/pharmacology , Food Packaging , Glycyrrhiza , Methicillin-Resistant Staphylococcus aureus/drug effects , Plant Extracts/pharmacology , Starch/chemistry , Waste Products , Anti-Bacterial Agents/isolation & purification , Antioxidants/isolation & purification , Biphenyl Compounds/chemistry , Glycyrrhiza/chemistry , Methicillin-Resistant Staphylococcus aureus/growth & development , Microbial Sensitivity Tests , Oxidation-Reduction , Picrates/chemistry , Plant Extracts/isolation & purification , Tensile Strength , Water/chemistry
10.
BMC Pharmacol Toxicol ; 22(1): 42, 2021 07 14.
Article En | MEDLINE | ID: mdl-34261542

BACKGROUND: Melittin is one of the most studied antimicrobial peptides, and several in vitro experiments have demonstrated its antibacterial efficacy. However, there is evidence showing melittin has non-promising effects such as cytotoxicity and hemolysis. Therefore, concerns about unwanted collateral toxicity of melittin lie ahead in the path toward its clinical development. With these considerations, the present study aimed to fill the gap between in vitro and in vivo studies. METHODS: In the first step, in vitro toxicity profile of melittin was assessed using cytotoxicity and hemolysis tests. Next, a maximum intraperitoneal (i.p.) sub-lethal dose was determined using BALB/c mice. Besides toxicity, antimicrobial efficacy of melittin against extensively drug-resistant (XDR) Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus (MRSA), and KPC-producing Klebsiella pneumonia (KPC-KP) pathogens were tested using both in vitro and in vivo methods. RESULTS: Melittin showed extensive hemolysis (HD50 = 0.44 µg/mL), and cytotoxicity (IC50 = 6.45 µg/mL) activities with i.p. LD50 value of 4.98 mg/kg in BALB/c mice. In vitro antimicrobial evaluation showed melittin MIC range from 8 to 32 µg/mL for the studied pathogens. Treatment of infected mice with repeated sub-lethal doses of melittin (2.4 mg/kg) displayed no beneficial effect on their survival and peritoneal bacterial loads. CONCLUSIONS: These results indicate that melittin at its safe dose could not exhibit antimicrobial activity, which hinders its application in clinical practice.


Anti-Bacterial Agents/toxicity , Melitten/toxicity , Acinetobacter Infections/drug therapy , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/growth & development , Animals , Anti-Bacterial Agents/therapeutic use , Cell Line , Drug Resistance, Bacterial , Hemolysis/drug effects , Humans , Klebsiella Infections/drug therapy , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/growth & development , Male , Melitten/therapeutic use , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Mice, Inbred BALB C , Microbial Sensitivity Tests , Peritonitis/drug therapy , Sepsis/drug therapy , Staphylococcal Infections/drug therapy
11.
Microbiol Spectr ; 9(1): e0005121, 2021 09 03.
Article En | MEDLINE | ID: mdl-34259550

The host defense peptide caerin 1.9 was originally isolated from skin secretions of an Australian tree frog and inhibits the growth of a wide range of bacteria in vitro. In this study, we demonstrated that caerin 1.9 shows high bioactivity against several bacteria strains, such as Staphylococcus aureus, Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus (MRSA), and Streptococcus haemolyticus in vitro. Importantly, unlike the antibiotic Tazocin, caerin 1.9 does not induce bacterial resistance after 30 rounds of in vitro culture. Moreover, caerin 1.1, another peptide of the caerin family, has an additive antibacterial effect when used together with caerin 1.9. Furthermore, caerin 1.1 and 1.9 prepared in the form of a temperature-sensitive gel inhibit MRSA growth in a skin bacterial infection model of two murine strains. These results indicate that caerin 1.1 and 1.9 peptides could be considered an alternative for conventional antibiotics. IMPORTANCE Antibiotic-resistant bacteria cause severe problems in the clinic. We show in our paper that two short peptides isolated from an Australian frog and prepared in the form of a gel are able to inhibit the growth of antibiotic-resistant bacteria in mice, and, unlike antibiotics, these peptides do not lead to the development of peptide-resistant bacteria strains.


Amphibian Proteins/pharmacology , Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Bacterial Infections/microbiology , Drug Resistance, Bacterial , Skin/microbiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/growth & development , Animals , Anura , Australia , Bacterial Infections/drug therapy , Female , Humans , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Microbial Sensitivity Tests , Skin/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/growth & development
12.
Microb Genom ; 7(7)2021 07.
Article En | MEDLINE | ID: mdl-34227933

A key characteristic of Staphylococcus aureus infections, and one that also varies phenotypically between clones, is that of biofilm formation, which aids in bacterial persistence through increased adherence and immune evasion. Though there is a general understanding of the process of biofilm formation - adhesion, proliferation, maturation and dispersal - the tightly orchestrated molecular events behind each stage, and what drives variation between S. aureus strains, has yet to be unravelled. Herein we measure biofilm progression and dispersal in real-time across the five major S. aureus CDC-types (USA100-USA500) revealing adherence patterns that differ markedly amongst strains. To gain insight into this, we performed transcriptomic profiling on these isolates at multiple timepoints, compared to planktonically growing counterparts. Our findings support a model in which eDNA release, followed by increased positive surface charge, perhaps drives initial abiotic attachment. This is seemingly followed by cooperative repression of autolysis and activation of poly-N-acetylglucosamine (PNAG) production, which may indicate a developmental shift in structuring the biofilm matrix. As biofilms mature, diminished translational capacity was apparent, with 53 % of all ribosomal proteins downregulated, followed by upregulation of anaerobic respiration enzymes. These findings are noteworthy because reduced cellular activity and an altered metabolic state have been previously shown to contribute to higher antibiotic tolerance and bacterial persistence. In sum, this work is, to our knowledge, the first study to investigate transcriptional regulation during the early, establishing phase of biofilm formation, and to compare global transcriptional regulation both temporally and across multiple clonal lineages.


Bacterial Adhesion/genetics , Biofilms/growth & development , Methicillin-Resistant Staphylococcus aureus/growth & development , Methicillin-Resistant Staphylococcus aureus/genetics , Polysaccharides, Bacterial/biosynthesis , Community-Acquired Infections/microbiology , Cross Infection/microbiology , DNA, Bacterial/genetics , Gene Expression Profiling , Humans , Methicillin-Resistant Staphylococcus aureus/classification , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Staphylococcal Infections/pathology , Transcriptome/genetics
13.
Protein Expr Purif ; 188: 105949, 2021 12.
Article En | MEDLINE | ID: mdl-34324967

PURPOSE: The production of alternative novel antimicrobial agents is considered an efficient way to cope with multidrug resistance among pathogenic bacteria. E50-52 and Ib-AMP4 antimicrobial peptides (AMPs) have illustrated great proven antibacterial effects. The aim of this study was recombinant production of these AMPs and investigation of their synergistic effects on methicillin-resistant Staphylococcus aureus (MRSA). METHOD: At first, the codon optimized sequences of the Ib-AMP4 (UniProt: 024006 (PRO_0000020721), and E50-52 (UniProtKB: P85148) were individually ligated into the pET-32α vector and transformed into E. coli. After the optimization of production and purification steps, the MIC (Minimum inhibitory concentration), time kill and growth kinetic tests of recombinant proteins were determined against MRSA. Finally, the in vivo wound healing efficiency was tested. RESULTS AND CONCLUSION: The recorded MIC of recombinant Trx-Ib-AMP4, Trx-E50-52 against MRSA bacterium were 0.375 and 0.0875 mg/mL respectively. The combination application of the produced AMPs by the checkerboard method confirmed their synergic activity. The results of the time-kill showed sharply decrease of the number of viable cells with over five time reductions in log10 CFU/mL by the combination of Trx-E50-52 and Trx-IbAMP4 at 2 × MIC within 240 min. The growth kinetic results confirmed the combination of Trx-E50-52 and Trx-IbAMP4 had much greater success in the reduction of over 50 % of MRSA suspensions' turbidity within the first hour. Wound healing assay and histological analysis of infected mice treated with Trx-Ib-AMP4 or Trx-E50-52 compared with those treated with a combination of Trx-Ib-AMP4 and Trx-E50-52 showed significant synergic effects.


Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Staphylococcal Infections/drug therapy , Staphylococcal Skin Infections/drug therapy , Wounds, Nonpenetrating/drug therapy , Animals , Anti-Bacterial Agents/biosynthesis , Antimicrobial Cationic Peptides/biosynthesis , Antimicrobial Cationic Peptides/genetics , Cloning, Molecular , Drug Synergism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Male , Methicillin-Resistant Staphylococcus aureus/growth & development , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Microbial Sensitivity Tests , Rats , Rats, Wistar , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Skin/drug effects , Skin/injuries , Skin/microbiology , Staphylococcal Infections/microbiology , Staphylococcal Infections/pathology , Staphylococcal Skin Infections/microbiology , Staphylococcal Skin Infections/pathology , Wound Healing/drug effects , Wounds, Nonpenetrating/microbiology , Wounds, Nonpenetrating/pathology
14.
Molecules ; 26(14)2021 Jul 19.
Article En | MEDLINE | ID: mdl-34299627

Despite intensified efforts to develop an effective antibiotic, S. aureus is still a major cause of mortality and morbidity worldwide. The multidrug resistance of bacteria has considerably increased the difficulties of scientific research and the concomitant emergence of resistance is to be expected. In this study we have investigated the in vitro activity of 15 ethanol extracts prepared from Moroccan medicinal plants traditionally used for treatment of skin infections. Among the tested species I. viscosa, C. oxyacantha, R. tinctorum, A. herba alba, and B. hispanica showed moderate anti-staphylococcal activity. However, R. alaternus showed promising growth-inhibitory effects against specific pathogenic bacteria especially methicillin-susceptible Staphylococcus aureus Panton-Valentine leucocidin positive (MSSA-PVL) and methicillin-resistant S. aureus (MRSA). The bioguided fractionation of this plant using successive chromatographic separations followed by nuclear magnetic resonance (NMR) and mass spectrometry (MS) including EIMS and HREIMS analysis yielded the emodin (1) and kaempferol (2). Emodin being the most active with MICs ranging between 15.62 and 1.95 µg/mL and showing higher activity against the tested strains in comparison with the crude extract, its mechanism of action and the structure-activity relationship were interestingly discussed. The active compound has not displayed toxicity toward murine macrophage cells. The results obtained in the current study support the traditional uses of R. alaternus and suggest that this species could be a good source for the development of new anti-staphylococcal agents.


Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus/growth & development , Phytochemicals , Rhamnus/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/pharmacology , Bacterial Toxins , Exotoxins , Leukocidins , Phytochemicals/chemistry , Phytochemicals/isolation & purification , Phytochemicals/pharmacology
15.
Sci Rep ; 11(1): 14647, 2021 07 19.
Article En | MEDLINE | ID: mdl-34282225

Multiresistant pathogens such as methicillin-resistant Staphylococcus aureus (MRSA) cause serious postoperative infections. A skin tolerant far-UVC (< 240 nm) irradiation system for their inactivation is presented here. It uses UVC LEDs in combination with a spectral filter and provides a peak wavelength of 233 nm, with a full width at half maximum of 12 nm, and an irradiance of 44 µW/cm2. MRSA bacteria in different concentrations on blood agar plates were inactivated with irradiation doses in the range of 15-40 mJ/cm2. Porcine skin irradiated with a dose of 40 mJ/cm2 at 233 nm showed only 3.7% CPD and 2.3% 6-4PP DNA damage. Corresponding irradiation at 254 nm caused 15-30 times higher damage. Thus, the skin damage caused by the disinfectant doses is so small that it can be expected to be compensated by the skin's natural repair mechanisms. LED-based far-UVC lamps could therefore soon be used in everyday clinical practice to eradicate multiresistant pathogens directly on humans.


Disinfection/methods , Drug Resistance, Multiple/radiation effects , Skin Physiological Phenomena/radiation effects , Ultraviolet Rays , Animals , Cross Infection/prevention & control , DNA Damage , Methicillin-Resistant Staphylococcus aureus/growth & development , Methicillin-Resistant Staphylococcus aureus/radiation effects , Microbial Viability/radiation effects , Postoperative Complications/prevention & control , Radiation Tolerance/physiology , Skin/metabolism , Skin/pathology , Skin/radiation effects , Swine , Ultraviolet Rays/adverse effects
16.
Appl Environ Microbiol ; 87(16): e0074421, 2021 07 27.
Article En | MEDLINE | ID: mdl-34105987

Gram-positive methicillin-resistant Staphylococcus aureus (MRSA) is an emerging cause of hospital-associated urinary tract infections (UTI), especially in catheterized individuals. Despite being rare, MRSA UTI are prone to potentially life-threatening exacerbations such as bacteremia that can be refractory to routine antibiotic therapy. To delineate the molecular mechanisms governing MRSA urinary pathogenesis, we exposed three S. aureus clinical isolates, including two MRSA strains, to human urine for 2 h and analyzed virulence characteristics and changes in gene expression. The in vitro virulence assays showed that human urine rapidly alters adherence to human bladder epithelial cells and fibronectin, hemolysis of sheep red blood cells (RBCs), and surface hydrophobicity in a staphylococcal strain-specific manner. In addition, transcriptome sequencing (RNA-Seq) analysis of uropathogenic strain MRSA-1369 revealed that 2-h-long exposure to human urine alters MRSA transcriptome by modifying expression of genes encoding enzymes catalyzing metabolic pathways, virulence factors, and transcriptional regulators. In summary, our results provide important insights into how human urine specifically and rapidly alters MRSA physiology and facilitates MRSA survival in the nutrient-limiting and hostile urinary microenvironment. IMPORTANCE Methicillin-resistant Staphylococcus aureus (MRSA) is an uncommon cause of urinary tract infections (UTI) in the general population. However, it is important to understand MRSA pathophysiology in the urinary tract because isolation of MRSA in urine samples often precedes potentially life-threatening MRSA bacteremia. In this report, we describe how exposure to human urine alters MRSA global gene expression and virulence. We hypothesize that these alterations may aid MRSA in acclimating to the nutrient-limiting, immunologically hostile conditions within the urinary tract leading to MRSA UTI.


Bacterial Proteins/genetics , Methicillin-Resistant Staphylococcus aureus/pathogenicity , Staphylococcal Infections/microbiology , Urinary Tract Infections/microbiology , Urine/microbiology , Animals , Bacterial Adhesion , Bacterial Proteins/metabolism , Erythrocytes/microbiology , Gene Expression Regulation, Bacterial , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/growth & development , Methicillin-Resistant Staphylococcus aureus/physiology , Sheep , Transcriptome , Urinary Tract Infections/urine , Virulence
17.
Nanotheranostics ; 5(4): 472-487, 2021.
Article En | MEDLINE | ID: mdl-34150471

Purpose: The growing prevalence of multidrug-resistant (MDR) bacteria makes it clinically urgent to develop an agent able to detect and treat infections simultaneously. Silver has served as a broad-spectrum antimicrobial since ancient times but suffers from major challenges such as moderate antimicrobial activity, nonspecific toxicity, and difficulty to be visualized in situ. Here, we propose a new photoactive silver nanoagent that relies on a photosensitizer-triggered cascade reaction to liberate Ag+ on bacterial surfaces exclusively, allowing the precise killing of MDR bacteria. Additionally, the AgNP core acts as a backgroundless surface-enhanced Raman scattering (SERS) substrate for imaging the distribution of the nanoagents on bacterial surfaces and monitoring their metabolic dynamics in the infection sites. Methods: In this strategy, the photoactive antibacterial AgNP was decorated with photosensitizers (Chlorin e6, Ce6) and Raman reporter (4-Mercaptobenzonitrile, 4-MB) to provide new opportunities for clinically monitoring and fighting MDR bacterial infections. Upon 655 nm laser activation, the Ce6 molecules produce ROS efficiently, triggering the rapid release of Ag+ from the AgNP core to kill bacteria. Poly[4-O-(α-D-glucopyranosyl)-D-glucopyranose] (GP) was introduced as bacteria-specific targeting ligands. SERS spectra of the prepared GP-Ce6/MB-AgNPs were recorded after injecting for 0.5, 4, 8, 12, 24, and 48 h to track the dynamic metabolism of the nanoagents and thus guiding the antibacterial therapy. Results: This new antimicrobial strategy exerts a dramatically enhanced antibacterial activity. The in vitro antibacterial efficiencies of this non-antibiotic technique were up to 99.6% against Methicillin-resistant Staphylococcus aureus (MRSA) and 98.8% against Escherichia coli (EC), while the in vivo antibacterial efficiencies for MRSA- and Carbapenem-resistant Pseudomonas aeruginosa (CRPA)-infected mice models were 96.8% and 93.6%, respectively. Besides, backgroundless SERS signal intensity of the wound declined to the level of normal tissue until 24 h, indicating that the nanoagents had been completely metabolized from the infected area. Conclusion: Given the backgroundless monitoring ability, high antibacterial efficacy, and low toxicity, the photoactive cascading agents would hold great potential for MDR-bacterial detection and elimination in diverse clinical settings.


Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial/drug effects , Escherichia coli/growth & development , Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus/growth & development , Photosensitizing Agents , Pseudomonas aeruginosa/growth & development , Silver , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Silver/chemistry , Silver/pharmacology
18.
Int J Mol Sci ; 22(11)2021 May 28.
Article En | MEDLINE | ID: mdl-34071337

Cellulose nanofibers (CNF) isolated from plant biomass have attracted considerable interests in polymer engineering. The limitations associated with CNF-based nanocomposites are often linked to the time-consuming preparation methods and lack of desired surface functionalities. Herein, we demonstrate the feasibility of preparing a multifunctional CNF-zinc oxide (CNF-ZnO) nanocomposite with dual antibacterial and reinforcing properties via a facile and efficient ultrasound route. We characterized and examined the antibacterial and mechanical reinforcement performances of our ultrasonically induced nanocomposite. Based on our electron microscopy analyses, the ZnO deposited onto the nanofibrous network had a flake-like morphology with particle sizes ranging between 21 to 34 nm. pH levels between 8-10 led to the formation of ultrafine ZnO particles with a uniform size distribution. The resultant CNF-ZnO composite showed improved thermal stability compared to pure CNF. The composite showed potent inhibitory activities against Gram-positive (methicillin-resistant Staphylococcus aureus (MRSA)) and Gram-negative Salmonella typhi (S. typhi) bacteria. A CNF-ZnO-reinforced natural rubber (NR/CNF-ZnO) composite film, which was produced via latex mixing and casting methods, exhibited up to 42% improvement in tensile strength compared with the neat NR. The findings of this study suggest that ultrasonically-synthesized palm CNF-ZnO nanocomposites could find potential applications in the biomedical field and in the development of high strength rubber composites.


Anti-Bacterial Agents/chemistry , Arecaceae/chemistry , Cellulose/chemistry , Nanocomposites/chemistry , Nanofibers/chemistry , Zinc Oxide/chemistry , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Drug Stability , Hydrogen-Ion Concentration , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Microscopy, Electron , Nanocomposites/ultrastructure , Nanofibers/ultrastructure , Particle Size , Rubber/chemistry , Salmonella/drug effects , Salmonella/growth & development , Spectroscopy, Fourier Transform Infrared , Temperature , X-Ray Diffraction
19.
PLoS One ; 16(6): e0253445, 2021.
Article En | MEDLINE | ID: mdl-34161391

Prodigiosin, a red linear tripyrrole pigment, has long been recognised for its antimicrobial property. However, the physiological contribution of prodigiosin to the survival of its producing hosts still remains undefined. Hence, the aim of this study was to investigate the biological role of prodigiosin from Serratia marcescens, particularly in microbial competition through its antimicrobial activity, towards the growth and secreted virulence factors of four clinical pathogenic bacteria (methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa) as well as Staphylococcus aureus and Escherichia coli. Prodigiosin was first extracted from S. marcescens and its purity confirmed by absorption spectrum, high performance liquid chromatography (HPLC) and liquid chromatography-tandem mass spectrophotometry (LC-MS/MS). The extracted prodigiosin was antagonistic towards all the tested bacteria. A disc-diffusion assay showed that prodigiosin is more selective towards Gram-positive bacteria and inhibited the growth of MRSA, S. aureus and E. faecalis and Gram-negative E. coli. A minimum inhibitory concentration of 10 µg/µL of prodigiosin was required to inhibit the growth of S. aureus, E. coli and E. faecalis whereas > 10 µg/µL was required to inhibit MRSA growth. We further assessed the effect of prodigiosin towards bacterial virulence factors such as haemolysin and production of protease as well as on biofilm formation. Prodigiosin did not inhibit haemolysis activity of clinically associated bacteria but was able to reduce protease activity for MRSA, E. coli and E. faecalis as well as decrease E. faecalis, Salmonella Typhimurium and E. coli biofilm formation. Results of this study show that in addition to its role in inhibiting bacterial growth, prodigiosin also inhibits the bacterial virulence factor protease production and biofilm formation, two strategies employed by bacteria in response to microbial competition. As clinical pathogens were more resistant to prodigiosin, we propose that prodigiosin is physiologically important for S. marcescens to compete against other bacteria in its natural soil and surface water environments.


Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Prodigiosin/pharmacology , Virulence Factors , Biofilms/growth & development , Enterococcus faecalis/drug effects , Enterococcus faecalis/growth & development , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/growth & development , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/growth & development , Salmonella typhi/drug effects , Salmonella typhi/growth & development
20.
Eur J Clin Microbiol Infect Dis ; 40(10): 2177-2183, 2021 Oct.
Article En | MEDLINE | ID: mdl-33977413

Enrichment culture (EC) remains gold standard for detecting MRSA colonisation, but molecular methods shorten turnaround time. The CE-marked automated Hologic Panther Fusion MRSA Assay (HPFM) is validated for nasal swabs. We compared HPFM with EC following an in-house PCR for detection of MRSA in nasal, pharyngeal, and perineal ESwabs. The same ESwabs were analysed using HPFM and inoculated in selective Tryptic Soy Broth (TSB) for overnight incubation. TSBs were screened by a PCR targeting nuc, femA, mecA, and mecC. Only samples with PCR results compatible with MRSA presence were inoculated onto 5% blood agar and chromogenic MRSA plates. HPFM detected MRSA in 103 of 132 EC positive samples indicating a sensitivity of 78.0% across sample types. When paired TSBs of 29 EC positive/HPFM negative samples were re-analysed by HPFM, MRSA was detected in 17/29 TSBs indicating that enrichment will increase the sensitivity of HPFM. HPFM analyses of cultured isolates from the remaining 12 EC positive/HPFM negative samples failed to detect orfX. HPFM reported the presence of MRSA in 22 samples where EC failed to identify MRSA. Fifteen of these ESwabs had been kept and direct culture without enrichment identified MRSA in seven samples. HPFM was useful for all sample sites. Compared to EC, the sensitivity of HPFM was limited because of lack of analytical sensitivity and failure to detect all MRSA variants. Failure of some MRSA-containing samples to enrich in cefoxitin-containing TSB indicates an unappreciated limitation of EC, which may lead to underestimation of the specificity of molecular assays.


Methicillin-Resistant Staphylococcus aureus/isolation & purification , Nose/microbiology , Perineum/microbiology , Pharynx/microbiology , Staphylococcal Infections/microbiology , Humans , Methicillin-Resistant Staphylococcus aureus/classification , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/growth & development , Multiplex Polymerase Chain Reaction , Staphylococcal Infections/diagnosis
...