Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 25.835
1.
J Zhejiang Univ Sci B ; 25(5): 410-421, 2024 Mar 12.
Article En, Zh | MEDLINE | ID: mdl-38725340

Pheochromocytomas and paragangliomas (PPGLs) cause symptoms by altering the circulation levels of catecholamines and peptide hormones. Currently, the diagnosis of PPGLs relies on diagnostic imaging and the detection of catecholamines. In this study, we used ultra-performance liquid chromatography (UPLC)/quadrupole time-of-flight mass spectrometry (Q-TOF MS) analysis to identify and measure the perioperative differential metabolites in the plasma of adrenal pheochromocytoma patients. We identified differentially expressed genes by comparing the transcriptomic data of pheochromocytoma with the normal adrenal medulla. Through conducting two steps of metabolomics analysis, we identified 111 differential metabolites between the healthy group and the patient group, among which 53 metabolites were validated. By integrating the information of differential metabolites and differentially expressed genes, we inferred that the cysteine-methionine, pyrimidine, and tyrosine metabolism pathways were the three main metabolic pathways altered by the neoplasm. The analysis of transcription levels revealed that the tyrosine and cysteine-methionine metabolism pathways were downregulated in pheochromocytoma, whereas the pyrimidine pathway showed no significant difference. Finally, we developed an optimized diagnostic model of two metabolites, L-dihydroorotic acid and vanylglycol. Our results for these metabolites suggest that they may serve as potential clinical biomarkers and can be used to supplement and improve the diagnosis of pheochromocytoma.


Adrenal Gland Neoplasms , Cysteine , Methionine , Pheochromocytoma , Pyrimidines , Tyrosine , Pheochromocytoma/metabolism , Pheochromocytoma/blood , Humans , Adrenal Gland Neoplasms/metabolism , Adrenal Gland Neoplasms/blood , Pyrimidines/metabolism , Methionine/metabolism , Tyrosine/metabolism , Tyrosine/blood , Cysteine/metabolism , Male , Metabolomics/methods , Female , Middle Aged , Adult , Metabolic Networks and Pathways
2.
Eur J Med Chem ; 271: 116456, 2024 May 05.
Article En | MEDLINE | ID: mdl-38691890

Since last century, peptides have emerged as potential drugs with >90 FDA approvals for various targets with several in the pipeline. Sulphur, in peptides is present either as thiol (-SH) from Cys or thioether from Met. In this review, all the peptides approved by FDA since 2000 containing sulphur have been included. Among them ∼50 % contains disulphide bridges. This clearly demonstrates the significance of disulphide bonds in peptide drugs. This can be achieved synthetically by using orthogonal protecting groups (PGs) for -SH. These PGs are compatible with Solid Phase Peptide Synthesis (SPPS), which is still the method of choice for peptide synthesis. The orthogonal PGs used for Cys thiol side chain protecting for disulphide bond formation have been included which are currently in use both by academia and industry from small scale to large scale synthesis. In addition, the details of the FDA approved drugs containing Cys and Met (or both) have also been discussed.


Cysteine , Methionine , Peptides , Cysteine/chemistry , Cysteine/pharmacology , Peptides/chemistry , Peptides/pharmacology , Peptides/chemical synthesis , Methionine/chemistry , Methionine/pharmacology , Humans , Animals , Molecular Structure
3.
Chem Biol Drug Des ; 103(5): e14532, 2024 May.
Article En | MEDLINE | ID: mdl-38725089

Nonalcoholic steatohepatitis (NASH) is a progressive form of nonalcoholic fatty liver disease (NAFLD) that causes severe liver damage, fibrosis, and scarring. Despite its potential to progress to cirrhosis or hepatic failure, approved drugs or treatments are currently unavailable. We developed 4,4-diallyl curcumin bis(2,2-hydroxymethyl)propanoate, also known as 35e, which induces upregulation of mitochondrial proteins including carnitine palmitoyltransferase I (CPT-I), carnitine palmitoyltransferase II, heat shock protein 60, and translocase of the outer mitochondrial membrane 20. Among these proteins, the upregulated expression of CPT-I was most prominent. CPT-I plays a crucial role in transporting carnitine across the mitochondrial inner membrane, thereby initiating mitochondrial ß-oxidation of fatty acids. Given recent research showing that CPT-I activation could be a viable pathway for NASH treatment, we hypothesized that 35e could serve as a potential agent for treating NASH. The efficacy of 35e in treating NASH was evaluated in methionine- and choline-deficient (MCD) diet- and Western diet (WD)-induced models that mimic human NASH. In the MCD diet-induced model, both short-term (2 weeks) and long-term (7 weeks) treatment with 35e effectively regulated elevated serum alanine aminotransferase (ALT)/aspartate aminotransferase (AST) concentrations and histological inflammation. However, the antisteatotic effect of 35e was obtained only in the short-term treatment group. As a comparative compound in the MCD diet-induced model, curcumin treatment did not produce significant regulatory effects on the liver triglyceride/total cholesterol, serum ALT/AST, or hepatic steatosis. In the WD-induced model, 35e ameliorated hepatic steatosis and hepatic inflammation, while increasing serum AST and hepatic lipid content. A decrease in epididymal adipose tissue weight and serum free fatty acid concentration suggested that 35e may promote lipid metabolism or impede lipid accumulation. Overall, 35e displayed significant antilipid accumulation and antifibrotic effects in the two complementary mice models. The development of new curcumin derivatives with the ability to induce CPT-I upregulation could further underscore their efficacy as anti-NASH agents.


Curcumin , Disease Models, Animal , Methionine , Non-alcoholic Fatty Liver Disease , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Methionine/metabolism , Methionine/deficiency , Curcumin/pharmacology , Curcumin/chemistry , Curcumin/therapeutic use , Mice , Male , Diet, Western/adverse effects , Mice, Inbred C57BL , Carnitine O-Palmitoyltransferase/metabolism , Liver/metabolism , Liver/drug effects , Liver/pathology , Propionates/pharmacology , Propionates/therapeutic use , Propionates/metabolism , Humans , Choline/metabolism , Choline/pharmacology
4.
BMC Plant Biol ; 24(1): 377, 2024 May 08.
Article En | MEDLINE | ID: mdl-38714916

BACKGROUND: European beech (Fagus sylvatica L.) trees produce seeds irregularly; therefore, it is necessary to store beech seeds for forestation. Despite the acquisition of desiccation tolerance during development, beech seeds are classified as intermediate because they lose viability during long-term storage faster than typical orthodox seeds. In this study, beech seeds stored for short (3 years) or long (20 years) periods under optimal conditions and displaying 92 and 30% germination capacity, respectively, were compared. RESULTS: Aged seeds displayed increased membrane damage, manifested as electrolyte leakage and lipid peroxidation levels. Analyses have been based on embryonic axes, which contained higher levels of reactive oxygen species (ROS) and higher levels of protein-bound methionine sulfoxide (MetO) in aged seeds. Using label-free quantitative proteomics, 3,949 proteins were identified, of which 2,442 were reliably quantified pointing to 24 more abundant proteins and 35 less abundant proteins in beech seeds under long-term storage conditions. Functional analyses based on gene ontology annotations revealed that nucleic acid binding activity (molecular function), ribosome organization or biogenesis and transmembrane transport (cellular processes), translational proteins (protein class) and membranous anatomical entities (cellular compartment) were affected in aged seeds. To verify whether MetO, the oxidative posttranslational modification of proteins that can be reversed via the action of methionine sulfoxide reductase (Msr) enzymes, is involved in the aging of beech seeds, we identified and quantified 226 MetO-containing proteins, among which 9 and 19 exhibited significantly up- and downregulated MetO levels, respectively, in beech seeds under long-term storage conditions. Several Msr isoforms were identified and recognized as MsrA1-like, MsrA4, MsrB5 and MsrB5-like in beech seeds. Only MsrA1-like displayed decreased abundance in aged seeds. CONCLUSIONS: We demonstrated that the loss of membrane integrity reflected in the elevated abundance of membrane proteins had a higher impact on seed aging progress than the MetO/Msr system. Proteome analyses enabled us to propose protein Sec61 and glyceraldehyde-3-phosphate dehydrogenase as potential longevity modulators in beech seeds.


Fagus , Methionine , Plant Proteins , Proteomics , Seeds , Fagus/metabolism , Methionine/metabolism , Methionine/analogs & derivatives , Seeds/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Germination , Reactive Oxygen Species/metabolism , Gene Expression Regulation, Plant
5.
BMC Pediatr ; 24(1): 304, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704558

BACKGROUND: T-cell acute lymphoblastic leukemia (T-ALL) tends to involve central nervous system (CNS) infiltration at diagnosis. However, cases of residual CNS lesions detected at the end of induction and post early intensification have not been recorded in patients with T-ALL. Also, the ratio and prognosis of patients with residual intracranial lesions have not been defined. CASE PRESENTATION: A 9-year-old boy with T-ALL had multiple intracranial tumors, which were still detected post early intensification. To investigate residual CNS lesions, we used 11C-methionine (MET)-positron emission tomography. Negative MET uptake in CNS lesions and excellent MRD status in bone marrow allowed continuing therapies without hematopoietic cell transplantation. CONCLUSIONS: In cases with residual lesions on imaging studies, treatment strategies should be considered by the systemic response, direct assessment of spinal fluid, along with further development of noninvasive imaging methods in CNS. Further retrospective or prospective studies are required to determine the prognosis and frequency of cases with residual intracranial lesions after induction therapy.


Neoplasm, Residual , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Male , Child , Brain Neoplasms/diagnostic imaging , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Positron-Emission Tomography , Methionine
6.
Vet Med Sci ; 10(3): e1460, 2024 05.
Article En | MEDLINE | ID: mdl-38654672

BACKGROUND: In the broiler's diets based on corn-soya bean meal, methionine (Met) and cystine (Cys), known as sulphur amino acids (SAAs), are the first limiting indispensable amino acids because of their limited presence, which are supplemented with different synthetic sources. Evaluation of the biological effectiveness of these sources can be important in their correct replacement, especially in the starter and growth diets. OBJECTIVES: The current study was done to assess the relative biological efficacy (RBE) of liquid Met hydroxy analogue-free acid (MHA-FA) in comparison with dl-Met (dl-Met) based on broiler performance traits at different levels of digestible SAA in the 1-11 (starter) and 11-25 (grower) days of age periods. METHODS: Two experiments were developed with treatments consisting of a basal diet without Met addition that met the nutrient and energy requirements of broilers with the exception of SAAs (Met + Cys) and five increasing Met doses for both sources (dl-Met and/or MHA-FA), resulting in digestible SAA concentrations from 0.62% to 1.02% of diet in the starter period (Trial 1) and 0.59% to 0.94% of diet in the grower period (Trial 2). The multi-linear regression model and slope ratio method were employed to calculate the RBE of MHA-FA compared with dl-Met for measured variables. RESULTS: In both experiments, the results obtained during the starter and grower periods with the different Met supplementations show significant growth responses to digestible SAAs levels. By increasing dietary dl-Met and/or MHA-FA levels, the growth performance traits and immune responses were improved (quadratic; p < 0.05). The RBE of MHA-FA compared to dl-Met on an equimolar basis was estimated 66%-89% (59%-79% on a weight-to-weight basis). CONCLUSIONS: It is concluded that the RBE of MHA-FA in comparison with dl-Met depends on broiler chicken age and what attribute is being evaluated.


Animal Feed , Animal Nutritional Physiological Phenomena , Chickens , Diet , Dietary Supplements , Methionine , Animals , Chickens/growth & development , Chickens/physiology , Animal Feed/analysis , Diet/veterinary , Methionine/analogs & derivatives , Methionine/administration & dosage , Methionine/metabolism , Animal Nutritional Physiological Phenomena/drug effects , Dietary Supplements/analysis , Male , Racemethionine/metabolism , Racemethionine/drug effects , Racemethionine/administration & dosage , Random Allocation
7.
Cell Death Differ ; 31(5): 558-573, 2024 May.
Article En | MEDLINE | ID: mdl-38570607

Esophageal squamous cell carcinoma (ESCC) is a deadly malignancy with notable metabolic reprogramming, yet the pivotal metabolic feature driving ESCC progression remains elusive. Here, we show that methionine cycle exhibits robust activation in ESCC and is reversely associated with patient survival. ESCC cells readily harness exogenous methionine to generate S-adenosyl-methionine (SAM), thus promoting cell proliferation. Mechanistically, methionine augments METTL3-mediated RNA m6A methylation through SAM and revises gene expression. Integrative omics analysis highlights the potent influence of methionine/SAM on NR4A2 expression in a tumor-specific manner, mediated by the IGF2BP2-dependent stabilization of methylated NR4A2 mRNA. We demonstrate that NR4A2 facilitates ESCC growth and negatively impacts patient survival. We further identify celecoxib as an effective inhibitor of NR4A2, offering promise as a new anti-ESCC agent. In summary, our findings underscore the active methionine cycle as a critical metabolic characteristic in ESCC, and pinpoint NR4A2 as a novel methionine-responsive oncogene, thereby presenting a compelling target potentially superior to methionine restriction.


Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Methionine , Nuclear Receptor Subfamily 4, Group A, Member 2 , Humans , Methionine/metabolism , Esophageal Squamous Cell Carcinoma/metabolism , Esophageal Squamous Cell Carcinoma/pathology , Esophageal Squamous Cell Carcinoma/genetics , Esophageal Neoplasms/metabolism , Esophageal Neoplasms/pathology , Esophageal Neoplasms/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2/metabolism , Nuclear Receptor Subfamily 4, Group A, Member 2/genetics , Cell Line, Tumor , Animals , Oncogenes , Mice , Cell Proliferation/drug effects , Gene Expression Regulation, Neoplastic , Mice, Nude
8.
Int J Mol Sci ; 25(7)2024 Mar 25.
Article En | MEDLINE | ID: mdl-38612469

Dietary methionine restriction (MetR) offers an integrated set of beneficial health effects, including delaying aging, extending health span, preventing fat accumulation, and reducing oxidative stress. This study aimed to investigate whether MetR exerts entero-protective effects by modulating intestinal flora, and the effect of MetR on plasma metabolites in rats. Rats were fed diets containing 0.86% methionine (CON group) and 0.17% methionine (MetR group) for 6 weeks. Several indicators of inflammation, gut microbiota, plasma metabolites, and intestinal barrier function were measured. 16S rRNA gene sequencing was used to analyze the cecal microbiota. The MetR diet reduced the plasma and colonic inflammatory factor levels. The MetR diet significantly improved intestinal barrier function by increasing the mRNA expression of tight junction proteins, such as zonula occludens (ZO)-1, claudin-3, and claudin-5. In addition, MetR significantly increased the levels of short-chain fatty acids (SCFAs) by increasing the abundance of SCFAs-producing Erysipclotxichaceae and Clostridium_sensu_stricto_1 and decreasing the abundance of pro-inflammatory bacteria Proteobacteria and Escherichia-Shigella. Furthermore, MetR reduced the plasma levels of taurochenodeoxycholate-7-sulfate, taurocholic acid, and tauro-ursodeoxycholic acid. Correlation analysis identified that colonic acetate, total colonic SCFAs, 8-acetylegelolide, collettiside I, 6-methyladenine, and cholic acid glucuronide showed a significant positive correlation with Clostridium_sensu_stricto_1 abundance but a significant negative correlation with Escherichia-Shigella and Enterococcus abundance. MetR improved gut health and altered the plasma metabolic profile by regulating the gut microbiota in rats.


Gastrointestinal Microbiome , Methionine , Animals , Rats , RNA, Ribosomal, 16S/genetics , Racemethionine , Metabolomics
9.
Nutrients ; 16(7)2024 Mar 28.
Article En | MEDLINE | ID: mdl-38613029

Methionine dependence is a characteristic of most cancer cells where they are unable to proliferate when the essential amino acid methionine is replaced with its precursor homocysteine in the growing media. Normal cells, on the other hand, thrive under these conditions and are referred to as methionine-independent. The reaction that adds a methyl group from 5-methyltetrahydrofolate to homocysteine to regenerate methionine is catalyzed by the enzyme methionine synthase with the cofactor cobalamin (vitamin B12). However, decades of research have shown that methionine dependence in cancer is not due to a defect in the activity of methionine synthase. Cobalamin metabolism has been tied to the dependent phenotype in rare cell lines. We have identified a human colorectal cancer cell line in which the cells regain the ability to proliferation in methionine-free, L-homocystine-supplemented media when cyanocobalamin is supplemented at a level of 1 µg/mL. In human SW48 cells, methionine replacement with L-homocystine does not induce any measurable increase in apoptosis or reactive oxygen species production in this cell line. Rather, proliferation is halted, then restored in the presence of cyanocobalamin. Our data show that supplementation with cyanocobalamin prevents the activation of the integrated stress response (ISR) in methionine-deprived media in this cell line. The ISR-associated cell cycle arrest, characteristic of methionine-dependence in cancer, is also prevented, leading to the continuation of proliferation in methionine-deprived SW48 cells with cobalamin. Our results highlight differences between cancer cell lines in the response to cobalamin supplementation in the context of methionine dependence.


Colorectal Neoplasms , Methionine , Humans , Methionine/pharmacology , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase , Vitamin B 12/pharmacology , Homocystine , Racemethionine , Cell Line , Homocysteine , Colorectal Neoplasms/drug therapy
10.
Front Immunol ; 15: 1319698, 2024.
Article En | MEDLINE | ID: mdl-38646543

This study explored the impacts of supplementation of different levels of coated methionine (Met) in a high-plant protein diet on growth, blood biochemistry, antioxidant capacity, digestive enzymes activity and expression of genes related to TOR signaling pathway in gibel carp (Carassius auratus gibeilo). A high-plant protein diet was formulated and used as a basal diet and supplemented with five different levels of coated Met at 0.15, 0.30, 0.45, 0.60 and 0.75%, corresponding to final analyzed Met levels of 0.34, 0.49, 0.64, 0.76, 0.92 and 1.06%. Three replicate groups of fish (initial mean weight, 11.37 ± 0.02 g) (20 fish per replicate) were fed the test diets over a 10-week feeding period. The results indicated that with the increase of coated Met level, the final weight, weight gain (WG) and specific growth rate initially boosted and then suppressed, peaking at 0.76% Met level (P< 0.05). Increasing dietary Met level led to significantly increased muscle crude protein content (P< 0.05) and reduced serum alanine aminotransferase activity (P< 0.05). Using appropriate dietary Met level led to reduced malondialdehyde concentration in hepatopancreas (P< 0.05), improved superoxide dismutase activity (P< 0.05), and enhanced intestinal amylase and protease activities (P< 0.05). The expression levels of genes associated with muscle protein synthesis such as insulin-like growth factor-1, protein kinase B, target of rapamycin and eukaryotic initiation factor 4E binding protein-1 mRNA were significantly regulated, peaking at Met level of 0.76% (P< 0.05). In conclusion, supplementing optimal level of coated Met improved on fish growth, antioxidant capacity, and the expression of TOR pathway related genes in muscle. The optimal dietary Met level was determined to be 0.71% of the diet based on quadratic regression analysis of WG.


Animal Feed , Antioxidants , Dietary Supplements , Methionine , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Methionine/administration & dosage , TOR Serine-Threonine Kinases/metabolism , Antioxidants/metabolism , Animal Feed/analysis , Goldfish/growth & development , Goldfish/genetics , Goldfish/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Gene Expression Regulation/drug effects
11.
Animal ; 18(4): 101127, 2024 Apr.
Article En | MEDLINE | ID: mdl-38574452

Supplementing a diet with rumen-protected amino acids (AAs) is a common feeding strategy for efficient production. For a cost-effective use of rumen-protected AA, the accurate bioavailability of rumen-protected amino acids should be known and their metabolism after absorption needs to be well understood. The current study determined the bioavailability, absorption, utilization, and excretion of rumen-protected Lys (RP-Lys). Four ruminally cannulated cows in a 4 × 4 Latin square design (12 d for diet adaptation; 5 or 6 d for total collections) received the following treatments: L0, a basal diet; L25, the basal diet and L-Lys infused into the abomasum to provide 25.9 g/d L-Lys; L50, the basal diet and L-Lys infused into the abomasum to provide 51.8 g/d L-Lys; and RPL, the basal diet supplemented with 105 g/d (as-is) of RP-Lys to provide 26.7 g of digestible Lys. During the last 5 or 6 d in each period, 15N-Lys (0.38 g/d) was infused into the abomasum for all cows to label the pool of AA, and the total collection of milk, urine, and feces were conducted. 15N enrichment of samples on d 4 and 5 were used to calculate the bioavailability and Lys metabolism. We used a model containing a fast AA turnover (≤ 5 d) and slow AA turnover pool (> 5 d) to calculate fluxes of Lys. The Lys flux to the fast AA turnover pool (absorbed Lys + Lys from the slow AA turnover pool to fast AA turnover pool) was calculated using 15N enrichment of milk Lys. The flux of Lys from the fast AA turnover pool to milk and urine was calculated using 15N transfer into milk and urine. Then, absorbed Lys was estimated by the sum of Lys flux to milk and urine assuming no net utilization of Lys by body tissues. Duodenal Lys flow was estimated by 15N enrichment of fecal Lys. The bioavailability of RP-Lys was calculated from duodenal Lys flows and Lys absorption for RPL. Increasing Lys supply from L25 to L50 increased Lys utilization for milk by 9 g/d but also increased urinary excretion by 10 g/d. For RPL, absorbed Lys was estimated to be 136 g/d where 28 g of absorbed Lys originated from RP-Lys. In conclusion, 68% of bioavailability was obtained for RP-Lys. The Lys provided from RP-Lys was not only utilized for milk protein (48%) but also excreted in urine (20%) after oxidation.


Lactation , Lysine , Female , Cattle , Animals , Lysine/metabolism , Rumen/metabolism , Biological Availability , Diet/veterinary , Amino Acids/metabolism , Milk Proteins/metabolism , Amines/metabolism , Methionine/metabolism
12.
PLoS One ; 19(4): e0299002, 2024.
Article En | MEDLINE | ID: mdl-38626086

Tropical theileriosis is a fatal leukemic-like disease of cattle caused by the tick-transmitted protozoan parasite Theileria annulata. The economics of cattle meat and milk production is severely affected by theileriosis in endemic areas. The hydroxynaphtoquinone buparvaquone (BPQ) is the only available drug currently used to treat clinical theileriosis, whilst BPQ resistance is emerging and spreading in endemic areas. Here, we chronically exposed T. annulata-transformed macrophages in vitro to BPQ and monitored the emergence of drug-resistant parasites. Surviving parasites revealed a significant increase in BPQ IC50 compared to the wild type parasites. Drug resistant parasites from two independent cloned lines had an identical single mutation, M128I, in the gene coding for T. annulata cytochrome B (Tacytb). This in vitro generated mutation has not been reported in resistant field isolates previously, but is reminiscent of the methionine to isoleucine mutation in atovaquone-resistant Plasmodium and Babesia. The M128I mutation did not appear to exert any deleterious effect on parasite fitness (proliferation and differentiation to merozoites). To gain insight into whether drug-resistance could have resulted from altered drug binding to TaCytB we generated in silico a 3D-model of wild type TaCytB and docked BPQ to the predicted 3D-structure. Potential binding sites cluster in four areas of the protein structure including the Q01 site. The bound drug in the Q01 site is expected to pack against an alpha helix, which included M128, suggesting that the change in amino acid in this position may alter drug-binding. The in vitro generated BPQ resistant T. annulata is a useful tool to determine the contribution of the various predicted docking sites to BPQ resistance and will also allow testing novel drugs against theileriosis for their potential to overcome BPQ resistance.


Antiprotozoal Agents , Naphthoquinones , Parasites , Theileria annulata , Theileriasis , Ticks , Animals , Cattle , Theileriasis/drug therapy , Theileriasis/parasitology , Theileria annulata/genetics , Cytochromes b/genetics , Isoleucine/pharmacology , Methionine/pharmacology , Antiprotozoal Agents/pharmacology , Mutation , Racemethionine/pharmacology , Antiparasitic Agents/pharmacology , Ticks/parasitology
13.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1310-1317, 2024 Mar.
Article Zh | MEDLINE | ID: mdl-38621978

This study investigated the effect of Erchen Decoction(ECD) on the prevention of non-alcoholic steatohepatitis(NASH) in mice and explored its possible mechanism, so as to provide scientific data for the clinical application of ECD in the prevention of NASH. C57BL/6 male mice were randomly divided into normal group(methionine and choline supplement, MCS), model group(methionine and choline deficient, MCD), low-dose ECD group(ECD_L, 6 g·kg~(-1)), medium-dose ECD group(ECD_M, 12 g·kg~(-1)), and high-dose ECD group(ECD_H, 24 g·kg~(-1)), with eight mice in each group. The MCS group was fed with an MCS diet, and the other groups were fed with an MCD diet. The mice in each group were given corresponding diets, but the drug intervention group was given low-, medium-, and high-dose ECD(10 mL·kg~(-1)·d~(-1)) by intragastric administration for six weeks on the basis of MCD diet feeding, and the mice could eat and drink freely during the whole experiment. At the end of the experiment, mice were fasted overnight(12 h) and were anesthetized with 20% urethane. Thereafter, the blood and liver tissue were collected. The serum was used to detect the levels of alanine aminotransferase(ALT), aspartate aminotransaminase(AST), interleukin-1ß(IL-1ß), interleukin-6(IL-6), interleukin-10(IL-10), and tumor necrosis factor-α(TNF-α). Liver tissue was processed by hematoxylin-eosin(HE) staining and used for hepatic histological analysis and detection of the expression levels of genes and proteins related to nuclear factor erythroid 2-related factor 2/glutathione peroxidase 4(Nrf2/GPX4) pathway by real-time quantitative reverse transcriptase-polymerase chain reaction(RT-qPCR) and Western blot analysis, respectively. The results showed that compared with the MCS group, the MCD group showed higher serum ALT and AST levels; the HE staining exhibited fat vacuoles and obvious inflammatory cell infiltration in liver tissue; serum IL-1ß, IL-6, and TNF-α levels were significantly increased, and the serum IL-10 level was significantly decreased. The mRNA expressions of fatty acid synthase(FASN), monocyte chemoattractant protein-1(MCP-1), and IL-1ß in liver tissue were significantly up-regulated, while those of GPX4, Nrf2, and NAD(P)H:quinine oxidoreductase(NQO1) were significantly down-regulated. Compared with the MCD group, the serum ALT and AST levels of ECD_M and ECD_H groups were significantly decreased, and the AST level in the ECD_L group was significantly decreased. The number of fat vacuoles and the degree of inflammatory cell infiltration in liver tissue were improved; serum IL-1ß, IL-6, and TNF-α levels were significantly decreased, but the serum IL-10 level was significantly increased only in the ECD_H group. The mRNA expressions of FASN, MCP-1, and IL-1ß in liver tissue were significantly down-regulated, and those of GPX4 and NQO1 were significantly up-regulated. The mRNA expressions of Nrf2 in ECD_M and ECD_H groups were significantly up-regulated. Western blot results showed that compared with the MCD group, the protein expression levels of Nrf2 and GPX4 in each group were significantly increased after ECD administration, and the protein expression level of FASN was significantly decreased; the protein expression of NQO1 was increased in ECD_M and ECD_H groups. In summary, ECD can reduce hepatic lipid accumulation, oxidative stress, liver inflammation, and liver injury in NASH mice, which may be related to the activation of the Nrf2/GPX4 pathway.


Non-alcoholic Fatty Liver Disease , Mice , Male , Animals , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Methionine/metabolism , Methionine/pharmacology , Interleukin-10/genetics , Choline/metabolism , Choline/pharmacology , Choline/therapeutic use , Tumor Necrosis Factor-alpha/metabolism , Interleukin-6/metabolism , NF-E2-Related Factor 2/metabolism , Mice, Inbred C57BL , Liver , Racemethionine/metabolism , Racemethionine/pharmacology , Diet , RNA, Messenger/metabolism
14.
Adv Exp Med Biol ; 1446: 99-134, 2024.
Article En | MEDLINE | ID: mdl-38625526

The determination of amino acid (AA) requirements for mammals has traditionally been done through nitrogen (N) balance studies, but this technique underestimates AA requirements in adult animals. There has been a shift toward researchers using the indicator amino acid oxidation (IAAO) technique for the determination of AA requirements in humans, and recently in dogs. However, the determination of AA requirements specific to adult dogs and cats at maintenance is lacking and the current requirements outlined by the National Research Council are based on a dearth of data and are likely underreporting the requirements of indispensable AA (IAA) for the population. To ensure the physiological requirements of our cats and dogs are met, we need methods to accurately and precisely measure digestibility. In vivo methods, such as ileal cannulation, are most commonly used, however, due to ethical considerations, we are moving away from animal models and toward in vitro methods. Harmonized static digestion models have the potential to replace in vivo methods but work needs to be done to have these methods more accurately represent the gastrointestinal tract (GIT) of cats and dogs. The Digestible IAA Score (DIAAS) is one metric that can help define protein quality for individual ingredients or mixed diets that uses AA SID estimates and ideally those can be replaced with in vitro AA digestibility estimates. Finally, we need accurate and reliable laboratory AA analyses to measure the AA present in complete diets, especially those used to quantify methionine (Met) and cysteine (Cys), both often limiting AAs in cat and dog diets. Together, this will guide accurate feed formulation for our companion animals to satisfy requirements while avoiding over-supplying protein, which inevitably contributes to excess N excretion, affecting both the environment and feed sustainability.


Cat Diseases , Dog Diseases , Adult , Humans , Cats , Dogs , Animals , Amino Acids , Food , Methionine , Mammals
15.
Microb Biotechnol ; 17(4): e14441, 2024 Apr.
Article En | MEDLINE | ID: mdl-38568774

Rhizoctonia solani is a polyphagous necrotrophic fungal pathogen that causes sheath blight disease in rice. It deploys effector molecules as well as carbohydrate-active enzymes and enhances the production of reactive oxygen species for killing host tissues. Understanding R. solani ability to sustain growth under an oxidative-stress-enriched environment is important for developing disease control strategies. Here, we demonstrate that R. solani upregulates methionine biosynthetic genes, including Rs_MET13 during infection in rice, and double-stranded RNA-mediated silencing of these genes impairs the pathogen's ability to cause disease. Exogenous treatment with methionine restores the disease-causing ability of Rs_MET13-silenced R. solani and facilitates its growth on 10 mM H2O2-containing minimal-media. Notably, the Rs_MsrA gene that encodes methionine sulfoxide reductase A, an antioxidant enzyme involved in the repair of oxidative damage of methionine, is upregulated upon H2O2 treatment and also during infection in rice. Rs_MsrA-silenced R. solani is unable to cause disease, suggesting that it is important for the repair of oxidative damage in methionine during host colonization. We propose that spray-induced gene silencing of Rs_MsrA and designing of antagonistic molecules that block MsrA activity can be exploited as a drug target for effective control of sheath blight disease in rice.


Methionine Sulfoxide Reductases , Oryza , Rhizoctonia , Oryza/microbiology , Methionine , Hydrogen Peroxide/pharmacology , Racemethionine/pharmacology , Plant Diseases/microbiology
16.
PLoS One ; 19(4): e0301205, 2024.
Article En | MEDLINE | ID: mdl-38625974

The present study investigated the potential role of different essential amino acids (AA) in striped catfish (Pangasius hypophthalmus). Fish (initial weight = 17.91±0.27 g, n = 260) were fed with eight isonitrogenous (30%), and isolipidic diets (6%) formulated to include different combinations of tryptophan (Trp), methionine (Met), and lysine (Lys) (T0: Zero AA, T1: Trp, T2: Lys, T3: Met, T4: Trp+Met, T5: Lys+Trp, T6: Met+Lys, T7: Lys+Trp+Met) for eight weeks. The dose of amino acid supplementation, whether individually or in combination, was 5g of each amino acid per kg of diet. The trial comprised eight treatments, with each treatment consisted of three replicates (n = 10/replicate). At the end of the growth experiment, the highest total body weight, crude protein, digestive enzymatic activity, immune response, and amino acids level were observed in treatments supplemented with amino acids compared to T0. After the growth experiment, fish in all treatments were exposed to Staphylococcus aureus (5×105 CFU/ml). For bacterial challenge trial, the T0 treatment was designated as positive (+ve T0) and negative control (-ve T0). Following the S. aureus challenge, fish fed with amino acids showed a better response to reactive oxygen species and lipid peroxidation, as indicated by the increased levels of catalase and superoxide dismutase. Conversely, the concentration of malondialdehyde gradually decreased in all treatments compared to the +ve T0 treatment. It is concluded that supplementation of amino acids improved the growth, protein content, and immunocompetency against S. aureus in striped catfish. The most favorable outcomes in striped catfish were shown by fish supplemented with T7 diet. These essential amino acids hold potential as efficient supplements for use in the intensive aquaculture for striped catfish.


Catfishes , Lysine , Animals , Amino Acids , Animal Feed/analysis , Diet/veterinary , Dietary Supplements , Disease Resistance , Lysine/pharmacology , Methionine/pharmacology , Racemethionine , Staphylococcus aureus , Tryptophan/pharmacology
17.
Microb Cell Fact ; 23(1): 120, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38664812

BACKGROUND: The conversion of plant biomass into biochemicals is a promising way to alleviate energy shortage, which depends on efficient microbial saccharification and cellular metabolism. Trichoderma spp. have plentiful CAZymes systems that can utilize all-components of lignocellulose. Acetylation of polysaccharides causes nanostructure densification and hydrophobicity enhancement, which is an obstacle for glycoside hydrolases to hydrolyze glycosidic bonds. The improvement of deacetylation ability can effectively release the potential for polysaccharide degradation. RESULTS: Ammonium sulfate addition facilitated the deacetylation of xylan by inducing the up-regulation of multiple carbohydrate esterases (CE3/CE4/CE15/CE16) of Trichoderma harzianum. Mainly, the pathway of ammonium-sulfate's cellular assimilates inducing up-regulation of the deacetylase gene (Thce3) was revealed. The intracellular metabolite changes were revealed through metabonomic analysis. Whole genome bisulfite sequencing identified a novel differentially methylated region (DMR) that existed in the ThgsfR2 promoter, and the DMR was closely related to lignocellulolytic response. ThGsfR2 was identified as a negative regulatory factor of Thce3, and methylation in ThgsfR2 promoter released the expression of Thce3. The up-regulation of CEs facilitated the substrate deacetylation. CONCLUSION: Ammonium sulfate increased the polysaccharide deacetylation capacity by inducing the up-regulation of multiple carbohydrate esterases of T. harzianum, which removed the spatial barrier of the glycosidic bond and improved hydrophilicity, and ultimately increased the accessibility of glycosidic bond to glycoside hydrolases.


Esterases , Methionine , Esterases/metabolism , Esterases/genetics , Methionine/metabolism , Xylans/metabolism , Ammonium Sulfate/metabolism , Fungal Proteins/metabolism , Fungal Proteins/genetics , Hypocreales/metabolism , Hypocreales/enzymology , Hypocreales/genetics , Lignin/metabolism , Acetylation
18.
J Cancer Res Clin Oncol ; 150(4): 208, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38647690

PURPOSE: To investigate and compare the dynamic positron emission tomography (PET) imaging with [18F]Alfatide II Imaging and [11C]Methionine ([11C]MET) in orthotopic rat models of glioblastoma multiforme (GBM), and to assess the utility of [18F]Alfatide II in detecting and evaluating neoangiogenesis in GBM. METHODS: [18F]Alfatide II and [11C]MET were injected into the orthotopic GBM rat models (n = 20, C6 glioma cells), followed by dynamic PET/MR scans 21 days after surgery of tumor implantation. On the PET image with both radiotracers, the MRI-based volume-of-interest (VOI) was manually delineated encompassing glioblastoma. Time-activity curves were expressed as tumor-to-normal brain ratio (TNR) parameters and PET pharmacokinetic modeling (PKM) performed using 2-tissue-compartment models (2TCM). Immunofluorescent staining (IFS), western blotting and blocking experiment of tumor tissue were performed for the validation. RESULTS: Compared to 11C-MET, [18F]Alfatide II presented a persistent accumulation in the tumor, albeit with a slightly lower SUVmean of 0.79 ± 0.25, and a reduced uptake in the contralateral normal brain tissue, respectively. This resulted in a markedly higher tumor-to-normal brain ratio (TNR) of 18.22 ± 1.91. The time-activity curve (TACs) showed a significant increase in radioactive uptake in tumor tissue, followed by a plateau phase up to 60 min for [18F]Alfatide II (time to peak:255 s) and 40 min for [11C]MET (time to peak:135 s) post injection. PKM confirmed significantly higher K1 (0.23/0.07) and K3 (0.26/0.09) in the tumor region compared to the normal brain with [18F]Alfatide II. Compared to [11C]MET imaging, PKM confirmed both significantly higher K1/K2 (1.24 ± 0.79/1.05 ± 0.39) and K3/K4 (11.93 ± 4.28/3.89 ± 1.29) in the tumor region with [18F]Alfatide II. IFS confirmed significant expression of integrin and tumor vascularization in tumor region. CONCLUSION: [18F]Alfatide II demonstrates potential in imaging tumor-associated neovascularization in the context of glioblastoma multiforme (GBM), suggesting its utility as a tool for further exploration in neovascular characterization.


Brain Neoplasms , Glioblastoma , Methionine , Positron-Emission Tomography , Animals , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Glioblastoma/metabolism , Rats , Methionine/pharmacokinetics , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Positron-Emission Tomography/methods , Peptides, Cyclic/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Carbon Radioisotopes , Male , Fluorine Radioisotopes , Disease Models, Animal , Cell Line, Tumor , Humans
19.
Cell Mol Life Sci ; 81(1): 190, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649521

The high-protein diet (HPD) has emerged as a potent dietary approach to curb obesity. Peroxisome, a highly malleable organelle, adapts to nutritional changes to maintain homeostasis by remodeling its structure, composition, and quantity. However, the impact of HPD on peroxisomes and the underlying mechanism remains elusive. Using Drosophila melanogaster as a model system, we discovered that HPD specifically increases peroxisome levels within the adipose tissues. This HPD-induced peroxisome elevation is attributed to cysteine and methionine by triggering the expression of CG33474, a fly homolog of mammalian PEX11G. Both the overexpression of Drosophila CG33474 and human PEX11G result in increased peroxisome size. In addition, cysteine and methionine diets both reduce lipid contents, a process that depends on the presence of CG33474. Furthermore, CG33474 stimulates the breakdown of neutral lipids in a cell-autonomous manner. Moreover, the expression of CG33474 triggered by cysteine and methionine requires TOR signaling. Finally, we found that CG33474 promotes inter-organelle contacts between peroxisomes and lipid droplets (LDs), which might be a potential mechanism for CG33474-induced fat loss. In summary, our findings demonstrate that CG33474/PEX11G may serve as an essential molecular bridge linking HPD to peroxisome dynamics and lipid metabolism.


Adipose Tissue , Cysteine , Drosophila Proteins , Drosophila melanogaster , Methionine , Peroxisomes , Animals , Methionine/metabolism , Peroxisomes/metabolism , Drosophila Proteins/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/metabolism , Drosophila melanogaster/genetics , Cysteine/metabolism , Adipose Tissue/metabolism , Humans , Lipid Metabolism , Lipid Droplets/metabolism , Signal Transduction , Diet
20.
Nat Commun ; 15(1): 2931, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575566

Cystathionine beta-synthase (CBS) is an essential metabolic enzyme across all domains of life for the production of glutathione, cysteine, and hydrogen sulfide. Appended to the conserved catalytic domain of human CBS is a regulatory domain that modulates activity by S-adenosyl-L-methionine (SAM) and promotes oligomerisation. Here we show using cryo-electron microscopy that full-length human CBS in the basal and SAM-bound activated states polymerises as filaments mediated by a conserved regulatory domain loop. In the basal state, CBS regulatory domains sterically block the catalytic domain active site, resulting in a low-activity filament with three CBS dimers per turn. This steric block is removed when in the activated state, one SAM molecule binds to the regulatory domain, forming a high-activity filament with two CBS dimers per turn. These large conformational changes result in a central filament of SAM-stabilised regulatory domains at the core, decorated with highly flexible catalytic domains. Polymerisation stabilises CBS and reduces thermal denaturation. In PC-3 cells, we observed nutrient-responsive CBS filamentation that disassembles when methionine is depleted and reversed in the presence of SAM. Together our findings extend our understanding of CBS enzyme regulation, and open new avenues for investigating the pathogenic mechanism and therapeutic opportunities for CBS-associated disorders.


Cystathionine beta-Synthase , Methionine , Humans , Cystathionine beta-Synthase/metabolism , Cryoelectron Microscopy , S-Adenosylmethionine/metabolism , Catalytic Domain
...