Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 627
Filtrar
1.
J Am Chem Soc ; 146(27): 18722-18729, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38943667

RESUMEN

Methylation, a widely occurring natural modification serving diverse regulatory and structural functions, is carried out by a myriad of S-adenosyl-l-methionine (AdoMet)-dependent methyltransferases (MTases). The AdoMet cofactor is produced from l-methionine (Met) and ATP by a family of multimeric methionine adenosyltransferases (MAT). To advance mechanistic and functional studies, strategies for repurposing the MAT and MTase reactions to accept extended versions of the transferable group from the corresponding precursors have been exploited. Here, we used structure-guided engineering of mouse MAT2A to enable biocatalytic production of an extended AdoMet analogue, Ado-6-azide, from a synthetic methionine analogue, S-(6-azidohex-2-ynyl)-l-homocysteine (N3-Met). Three engineered MAT2A variants showed catalytic proficiency with the extended analogues and supported DNA derivatization in cascade reactions with M.TaqI and an engineered variant of mouse DNMT1 both in the absence and presence of competing Met. We then installed two of the engineered variants as MAT2A-DNMT1 cascades in mouse embryonic stem cells by using CRISPR-Cas genome editing. The resulting cell lines maintained normal viability and DNA methylation levels and showed Dnmt1-dependent DNA modification with extended azide tags upon exposure to N3-Met in the presence of physiological levels of Met. This for the first time demonstrates a genetically stable system for biosynthetic production of an extended AdoMet analogue, which enables mild metabolic labeling of a DNMT-specific methylome in live mammalian cells.


Asunto(s)
Metilación de ADN , Metionina Adenosiltransferasa , Metionina Adenosiltransferasa/metabolismo , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/química , Animales , Ratones , Ingeniería de Proteínas , Epigenoma , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/química , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/genética , Humanos
2.
J Med Chem ; 67(11): 9431-9446, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38818879

RESUMEN

Synthetic lethality has recently emerged as a new approach for the treatment of mutated genes that were previously considered undruggable. Targeting methionine adenosyltransferase 2A (MAT2A) in cancers with deletion of the methylthioadenosine phosphorylase (MTAP) gene leads to synthetic lethality and thus has attracted significant interest in the field of precise anticancer drug development. Herein, we report the discovery of a series of novel MAT2A inhibitors featuring a pyrazolo[3,4-c]quinolin-4-one skeleton based on structure-based drug design. Further optimization led to compound 39, which has a high potency for inhibiting MAT2A and a remarkable selectivity for MTAP-deleted cancer cell lines. Compound 39 has a favorable pharmacokinetic profile with high plasma exposure and oral bioavailability, and it exhibits significant efficacy in xenograft MTAP-depleted models. Moreover, 39 demonstrates excellent brain exposure with a Kpuu of 0.64 in rats.


Asunto(s)
Encéfalo , Diseño de Fármacos , Inhibidores Enzimáticos , Metionina Adenosiltransferasa , Metionina Adenosiltransferasa/antagonistas & inhibidores , Metionina Adenosiltransferasa/metabolismo , Humanos , Animales , Relación Estructura-Actividad , Ratas , Encéfalo/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Inhibidores Enzimáticos/síntesis química , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Antineoplásicos/química , Antineoplásicos/síntesis química , Ratones , Masculino , Ratas Sprague-Dawley , Ensayos Antitumor por Modelo de Xenoinjerto
3.
Plant Physiol Biochem ; 211: 108708, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38733938

RESUMEN

S-Adenosyl-L-methionine (SAM) is widely involved in plant growth, development, and abiotic stress response. SAM synthetase (SAMS) is the key enzyme that catalyzes the synthesis of SAM from methionine and ATP. However, the SAMS gene family has not been identified and their functions have not been characterized in most Cucurbitaceae plants. Here, a total of 30 SAMS genes were identified in nine Cucurbitaceae species and they were categorized into 3 subfamilies. Physicochemical properties and gene structure analysis showed that the SAMS protein members are tightly conserved. Further analysis of the cis-regulatory elements (CREs) of SAMS genes' promoter implied their potential roles in stress tolerance. To further understand the molecular functions of SAMS genes, watermelon SAMSs (ClSAMSs) were chosen to analyze the expression patterns in different tissues and under various abiotic stress and hormone responses. Among the investigated genes, ClSAMS1 expression was observed in all tissues and found to be up-regulated by abiotic stresses including salt, cold and drought treatments as well as exogenous hormone treatments including ETH, SA, MeJA and ABA. Furthermore, knockdown of ClSAMS1 via virus-induced gene silencing (VIGS) decreased SAM contents in watermelon seedings. The pTRSV2-ClSAMS1 plants showed reduced susceptibility to drought, cold and NaCl stress, indicating a positive role of ClSAMS1 in abiotic stresses tolerance. Those results provided candidate SAMS genes to regulate plant resistance against abiotic stresses in Cucurbitaceae plants.


Asunto(s)
Citrullus , Cucurbitaceae , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Estrés Fisiológico , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Citrullus/genética , Citrullus/metabolismo , Citrullus/enzimología , Cucurbitaceae/genética , Cucurbitaceae/metabolismo , Familia de Multigenes , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Filogenia , Genes de Plantas , Genoma de Planta/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética
4.
Biochem Biophys Res Commun ; 716: 150011, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38704890

RESUMEN

Methionine adenosyltransferase 2 A (MAT2A) mediates the synthesis of methyl donor S-Adenosylmethionine (SAM), providing raw materials for methylation reactions in cells. MAT2A inhibitors are currently used for the treatment of tumors with methylthioadenosine phosphorylase (MTAP) deficiency in clinical research. Methyltransferase like 3 (METTL3) catalyzes N6-methyladenosine (m6A) modification of mRNA in mammalian cells using SAM as the substrate which has been shown to affect the tumorigenesis of non-small cell lung cancer (NSCLC) from multiple perspectives. MAT2A-induced SAM depletion may have the potential to inhibit the methyl transfer function of METTL3. Therefore, in order to expand the applicability of inhibitors, improve anti-tumor effects and reduce toxicity, the combinational effect of MAT2A inhibitor AG-270 and METTL3 inhibitor STM2457 was evaluated in NSCLC. The results showed that this combination induced cell apoptosis rather than cell cycle arrest, which was non-tissue-specific and was independent of MTAP expression status, resulting in a significant synergistic anti-tumor effect. We further elucidated that the combination-induced enhanced apoptosis was associated with the decreased m6A level, leading to downregulation of PI3K/AKT protein, ultimately activating the apoptosis-related proteins. Unexpectedly, although combination therapy resulted in metabolic recombination, no significant change in methionine metabolic metabolites was found. More importantly, the combination also exerted synergistic effects in vivo. In summary, the combination of MAT2A inhibitor and METTL3 inhibitor showed synergistic effects both in vivo and in vitro, which laid a theoretical foundation for expanding the clinical application research of the two types of drugs.


Asunto(s)
Apoptosis , Carcinoma de Pulmón de Células no Pequeñas , Sinergismo Farmacológico , Neoplasias Pulmonares , Metionina Adenosiltransferasa , Metiltransferasas , Metionina Adenosiltransferasa/metabolismo , Metionina Adenosiltransferasa/antagonistas & inhibidores , Metionina Adenosiltransferasa/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Humanos , Apoptosis/efectos de los fármacos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Animales , Metiltransferasas/metabolismo , Metiltransferasas/antagonistas & inhibidores , Línea Celular Tumoral , Antineoplásicos/farmacología , Inhibidores Enzimáticos/farmacología , Ratones , Ratones Desnudos , Ratones Endogámicos BALB C , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Leukemia ; 38(6): 1236-1245, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643304

RESUMEN

Targeting the metabolic dependencies of acute myeloid leukemia (AML) cells is a promising therapeutical strategy. In particular, the cysteine and methionine metabolism pathway (C/M) is significantly altered in AML cells compared to healthy blood cells. Moreover, methionine has been identified as one of the dominant amino acid dependencies of AML cells. Through RNA-seq, we found that the two nucleoside analogs 8-chloro-adenosine (8CA) and 8-amino-adenosine (8AA) significantly suppress the C/M pathway in AML cells, and methionine-adenosyltransferase-2A (MAT2A) is one of most significantly downregulated genes. Additionally, mass spectrometry analysis revealed that Venetoclax (VEN), a BCL-2 inhibitor recently approved by the FDA for AML treatment, significantly decreases the intracellular level of methionine in AML cells. Based on these findings, we hypothesized that combining 8CA or 8AA with VEN can efficiently target the Methionine-MAT2A-S-adenosyl-methionine (SAM) axis in AML. Our results demonstrate that VEN and 8CA/8AA synergistically decrease the SAM biosynthesis and effectively target AML cells both in vivo and in vitro. These findings suggest the promising potential of combining 8CA/8AA and VEN for AML treatment by inhibiting Methionine-MAT2A-SAM axis and provide a strong rationale for our recently activated clinical trial.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes , Sinergismo Farmacológico , Leucemia Mieloide Aguda , Metionina Adenosiltransferasa , Metionina , S-Adenosilmetionina , Sulfonamidas , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Humanos , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Sulfonamidas/farmacología , Metionina/metabolismo , Metionina/análogos & derivados , Metionina Adenosiltransferasa/metabolismo , Metionina Adenosiltransferasa/antagonistas & inhibidores , Metionina Adenosiltransferasa/genética , Animales , Ratones , S-Adenosilmetionina/farmacología , S-Adenosilmetionina/metabolismo , Adenosina/análogos & derivados , Adenosina/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto , Línea Celular Tumoral
6.
Plant Physiol Biochem ; 210: 108618, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631157

RESUMEN

The Acacia koa S-adenosylmethionine (SAM) synthetase was identified from transcriptome data and cloned into the T7-expression vector pEt14b. Assays indicate a thermoalkaliphic enzyme which tolerates conditions up to pH 10.5, 55 °C and 3 M KCl. In vitro examples of plant SAM-synthetase activity are scarce, however this study provides supporting evidence that these extremophilic properties may actually be typical for this plant enzyme. Enzyme kinetic constants (Km = 1.44 mM, Kcat = 1.29 s-1, Vmax 170 µM. min-1) are comparable to nonplant SAM-synthetases except that substrate inhibition was not apparent at 10 mM ATP/L-methionine. Methods were explored in this study to reduce feedback inhibition, which is known to limit SAM-synthetase activity in vitro. Four single-point mutation variants of the Acacia koa SAM-synthetase were produced, each with varying degrees of reduced reaction rate, greater sensitivity to product inhibition and loss of thermophilic properties. Although an enhanced mutant was not produced, this study describes the first mutagenesis of a plant SAM-synthetase. Overcoming feedback inhibition was accomplished by the addition of organic solvent to enzyme assays. Acetonitrile, methanol or dimethylformamide, when included as 25% of the assay volume, improved total SAM production by 30-65%.


Asunto(s)
Acacia , Metionina Adenosiltransferasa , Acacia/genética , Acacia/metabolismo , Acacia/enzimología , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Cinética , S-Adenosilmetionina/metabolismo , Concentración de Iones de Hidrógeno
7.
Trends Genet ; 40(5): 381-382, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503578

RESUMEN

Recently, Pham et al. used an array of model systems to uncover a role for the enzyme methionine adenosyltransferase (MAT)-1A, which is mainly expressed in liver, in both sensing formaldehyde and regulating transcriptional responses that protect against it. This provides a new lens for understanding the effects of formaldehyde on gene regulation.


Asunto(s)
Epigénesis Genética , Formaldehído , Metionina Adenosiltransferasa , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Humanos , Carbono/metabolismo , Animales , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética
8.
J Med Chem ; 67(6): 4541-4559, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38466661

RESUMEN

The optimization of an allosteric fragment, discovered by differential scanning fluorimetry, to an in vivo MAT2a tool inhibitor is discussed. The structure-based drug discovery approach, aided by relative binding free energy calculations, resulted in AZ'9567 (21), a potent inhibitor in vitro with excellent preclinical pharmacokinetic properties. This tool showed a selective antiproliferative effect on methylthioadenosine phosphorylase (MTAP) KO cells, both in vitro and in vivo, providing further evidence to support the utility of MAT2a inhibitors as potential anticancer therapies for MTAP-deficient tumors.


Asunto(s)
Neoplasias , Humanos , Entropía , Metionina Adenosiltransferasa/metabolismo
9.
Plant Physiol ; 195(2): 940-957, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38417836

RESUMEN

Long noncoding RNAs (lncRNAs) play important roles in various biological processes. However, the regulatory roles of lncRNAs underlying fruit development have not been extensively studied. The pumpkin (Cucurbita spp.) is a preferred model for understanding the molecular mechanisms regulating fruit development because of its variable shape and size and large inferior ovary. Here, we performed strand-specific transcriptome sequencing on pumpkin (Cucurbita maxima "Rimu") fruits at 6 developmental stages and identified 5,425 reliably expressed lncRNAs. Among the 332 lncRNAs that were differentially expressed during fruit development, the lncRNA MSTRG.44863.1 was identified as a negative regulator of pumpkin fruit development. MSTRG.44863.1 showed a relatively high expression level and an obvious period-specific expression pattern. Transient overexpression and silencing of MSTRG.44863.1 significantly increased and decreased the content of 1-aminocyclopropane carboxylic acid (a precursor of ethylene) and ethylene production, respectively. RNA pull-down and microscale thermophoresis assays further revealed that MSTRG.44863.1 can interact with S-adenosyl-L-methionine synthetase (SAMS), an enzyme in the ethylene synthesis pathway. Considering that ethylene negatively regulates fruit development, these results indicate that MSTRG.44863.1 plays an important role in the regulation of pumpkin fruit development, possibly through interacting with SAMS and affecting ethylene synthesis. Overall, our findings provide a rich resource for further study of fruit-related lncRNAs while offering insights into the regulation of fruit development in plants.


Asunto(s)
Cucurbita , Frutas , Regulación de la Expresión Génica de las Plantas , Metionina Adenosiltransferasa , ARN Largo no Codificante , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Cucurbita/genética , Cucurbita/crecimiento & desarrollo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , ARN de Planta/genética , ARN de Planta/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo
10.
Bioorg Med Chem ; 100: 117633, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38342078

RESUMEN

The methionine adenosyltransferase MAT2A catalyzes the synthesis ofthe methyl donor S-adenosylmethionine (SAM) and thereby regulates critical aspects of metabolism and transcription. Aberrant MAT2A function can lead to metabolic and transcriptional reprogramming of cancer cells, and MAT2A has been shown to promote survival of MTAP-deficient tumors, a genetic alteration that occurs in âˆ¼ 13 % of all tumors. Thus, MAT2A holds great promise as a novel anticancer target. Here, we report a novel series of MAT2A inhibitors generated by a fragment growing approach from AZ-28, a low-molecular weight MAT2A inhibitor with promising pre-clinical properties. X-ray co-crystal structure revealed that compound 7 fully occupies the allosteric pocket of MAT2A as a single molecule mimicking MAT2B. By introducing additional backbone interactions and rigidifying the requisite linker extensions, we generated compound 8, which exhibited single digit nanomolar enzymatic and sub-micromolar cellular inhibitory potency for MAT2A.


Asunto(s)
Metionina Adenosiltransferasa , Neoplasias , Humanos , Sitio Alostérico , Metionina Adenosiltransferasa/antagonistas & inhibidores , Metionina Adenosiltransferasa/metabolismo , Mutación , S-Adenosilmetionina/metabolismo
11.
J Med Chem ; 67(1): 543-554, 2024 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-38166392

RESUMEN

Small molecules capable of modulating methionine adenosyltransferase 2A (MAT2A) are of significant interest in precise cancer therapeutics. Herein, we raised the hole-electron Coulombic attraction as a reliable molecular descriptor for predicting the reactive oxygen generation capacity of MAT2A inhibitors, based on which we discovered compound H3 as a sonically activated degrader of MAT2A. Upon sonication, H3 can generate reactive oxygen species to specifically degrade cellular MAT2A via rapid oxidative reactions. Combination of H3 and sonication induced 87% MAT2A depletion in human colon cancer cells, thus elevating its antiproliferation effects by 8-folds. In vivo, H3 had a favorable pharmacokinetic profile (bioavailability = 77%) and ADME properties. Owing to the MAT2A degradation merits, H3 at a dosage of 10 mg/kg induced 31% tumor regression in xenograft colon tumor models. The significantly boosted antitumor potency can potentially alleviate the toxicity of high-dose MAT2A inhibitors to normal cells and tissues, especially to the liver.


Asunto(s)
Neoplasias Hepáticas , Metionina Adenosiltransferasa , Humanos , Metionina Adenosiltransferasa/metabolismo , Electrones , Neoplasias Hepáticas/metabolismo , S-Adenosilmetionina/metabolismo , Metionina
12.
G3 (Bethesda) ; 14(4)2024 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-38184845

RESUMEN

The SAM1 and SAM2 genes encode for S-Adenosylmethionine (AdoMet) synthetase enzymes, with AdoMet serving as the main cellular methyl donor. We have previously shown that independent deletion of these genes alters chromosome stability and AdoMet concentrations in opposite ways in Saccharomyces cerevisiae. To characterize other changes occurring in these mutants, we grew wildtype, sam1Δ/sam1Δ, and sam2Δ/sam2Δ strains in 15 different Phenotypic Microarray plates with different components and measured growth variations. RNA-Sequencing was also carried out on these strains and differential gene expression determined for each mutant. We explored how the phenotypic growth differences are linked to the altered gene expression, and hypothesize mechanisms by which loss of the SAM genes and subsequent AdoMet level changes, impact pathways and processes. We present 6 stories, discussing changes in sensitivity or resistance to azoles, cisplatin, oxidative stress, arginine biosynthesis perturbations, DNA synthesis inhibitors, and tamoxifen, to demonstrate the power of this novel methodology to broadly profile changes due to gene mutations. The large number of conditions that result in altered growth, as well as the large number of differentially expressed genes with wide-ranging functionality, speaks to the broad array of impacts that altering methyl donor abundance can impart. Our findings demonstrate that some cellular changes are directly related to AdoMet-dependent methyltransferases and AdoMet availability, some are directly linked to the methyl cycle and its role in production of several important cellular components, and others reveal impacts of SAM gene mutations on previously unconnected pathways.


Asunto(s)
S-Adenosilmetionina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , S-Adenosilmetionina/metabolismo , Mutación , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Secuencia de Bases
13.
Nat Cancer ; 5(1): 131-146, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38168934

RESUMEN

Availability of the essential amino acid methionine affects cellular metabolism and growth, and dietary methionine restriction has been implicated as a cancer therapeutic strategy. Nevertheless, how liver cancer cells respond to methionine deprivation and underlying mechanisms remain unclear. Here we find that human liver cancer cells undergo irreversible cell cycle arrest upon methionine deprivation in vitro. Blocking methionine adenosyl transferase 2A (MAT2A)-dependent methionine catabolism induces cell cycle arrest and DNA damage in liver cancer cells, resulting in cellular senescence. A pharmacological screen further identified GSK3 inhibitors as senolytics that selectively kill MAT2A-inhibited senescent liver cancer cells. Importantly, combined treatment with MAT2A and GSK3 inhibitors therapeutically blunts liver tumor growth in vitro and in vivo across multiple models. Together, methionine catabolism is essential for liver tumor growth, and its inhibition can be exploited as an improved pro-senescence strategy for combination with senolytic agents to treat liver cancer.


Asunto(s)
Glucógeno Sintasa Quinasa 3 , Neoplasias Hepáticas , Humanos , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Metionina/farmacología , Metionina Adenosiltransferasa/metabolismo
14.
Haematologica ; 109(1): 256-271, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37470139

RESUMEN

Multiple myeloma (MM) is the second most prevalent hematologic malignancy and is incurable because of the inevitable development of drug resistance. Methionine adenosyltransferase 2α (MAT2A) is the primary producer of the methyl donor S-adenosylmethionine (SAM) and several studies have documented MAT2A deregulation in different solid cancers. As the role of MAT2A in MM has not been investigated yet, the aim of this study was to clarify the potential role and underlying molecular mechanisms of MAT2A in MM, exploring new therapeutic options to overcome drug resistance. By analyzing publicly available gene expression profiling data, MAT2A was found to be more highly expressed in patient-derived myeloma cells than in normal bone marrow plasma cells. The expression of MAT2A correlated with an unfavorable prognosis in relapsed patients. MAT2A inhibition in MM cells led to a reduction in intracellular SAM levels, which resulted in impaired cell viability and proliferation, and induction of apoptosis. Further mechanistic investigation demonstrated that MAT2A inhibition inactivated the mTOR-4EBP1 pathway, accompanied by a decrease in protein synthesis. MAT2A targeting in vivo with the small molecule compound FIDAS-5 was able to significantly reduce tumor burden in the 5TGM1 model. Finally, we found that MAT2A inhibition can synergistically enhance the anti-MM effect of the standard-of-care agent bortezomib on both MM cell lines and primary human CD138+ MM cells. In summary, we demonstrate that MAT2A inhibition reduces MM cell proliferation and survival by inhibiting mTOR-mediated protein synthesis. Moreover, our findings suggest that the MAT2A inhibitor FIDAS-5 could be a novel compound to improve bortezomib-based treatment of MM.


Asunto(s)
Mieloma Múltiple , S-Adenosilmetionina , Humanos , S-Adenosilmetionina/metabolismo , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Bortezomib/farmacología , Pronóstico , Serina-Treonina Quinasas TOR , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo
15.
J Hepatol ; 80(3): 443-453, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38086446

RESUMEN

BACKGROUND & AIMS: The liver is a common site of cancer metastasis, most commonly from colorectal cancer, and primary liver cancers that have metastasized are associated with poor outcomes. The underlying mechanisms by which the liver defends against these processes are largely unknown. Prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) are highly expressed in the liver. They positively regulate each other and their deletion results in primary liver cancer. Here we investigated their roles in primary and secondary liver cancer metastasis. METHODS: We identified common target genes of PHB1 and MAT1A using a metastasis array, and measured promoter activity and transcription factor binding using luciferase reporter assays and chromatin immunoprecipitation, respectively. We examined how PHB1 or MAT1A loss promotes liver cancer metastasis and whether their loss sensitizes to colorectal liver metastasis (CRLM). RESULTS: Matrix metalloproteinase-7 (MMP-7) is a common target of MAT1A and PHB1 and its induction is responsible for increased migration and invasion when MAT1A or PHB1 is silenced. Mechanistically, PHB1 and MAT1A negatively regulate MMP7 promoter activity via an AP-1 site by repressing the MAFG-FOSB complex. Loss of MAT1A or PHB1 also increased MMP-7 in extracellular vesicles, which were internalized by colon and pancreatic cancer cells to enhance their oncogenicity. Low hepatic MAT1A or PHB1 expression sensitized to CRLM, but not if endogenous hepatic MMP-7 was knocked down first, which lowered CD4+ T cells while increasing CD8+ T cells in the tumor microenvironment. Hepatocytes co-cultured with colorectal cancer cells express less MAT1A/PHB1 but more MMP-7. Consistently, CRLM raised distant hepatocytes' MMP-7 expression in mice and humans. CONCLUSION: We have identified a PHB1/MAT1A-MAFG/FOSB-MMP-7 axis that controls primary liver cancer metastasis and sensitization to CRLM. IMPACT AND IMPLICATIONS: Primary and secondary liver cancer metastasis is associated with poor outcomes but whether the liver has underlying defense mechanism(s) against metastasis is unknown. Here we examined the hypothesis that hepatic prohibitin 1 (PHB1) and methionine adenosyltransferase 1A (MAT1A) cooperate to defend the liver against metastasis. Our studies found PHB1 and MAT1A form a complex that suppresses matrix metalloproteinase-7 (MMP-7) at the transcriptional level and loss of either PHB1 or MAT1A sensitizes the liver to metastasis via MMP-7 induction. Strategies that target the PHB1/MAT1A-MMP-7 axis may be a promising approach for the treatment of primary and secondary liver cancer metastasis.


Asunto(s)
Neoplasias Colorrectales , Neoplasias Hepáticas , Animales , Humanos , Ratones , Linfocitos T CD8-positivos/metabolismo , Neoplasias Colorrectales/genética , Neoplasias Hepáticas/patología , Metaloproteinasa 7 de la Matriz/genética , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Prohibitinas , Microambiente Tumoral
16.
Drug Dev Res ; 85(1): e22122, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37819020

RESUMEN

The use of cell growth-based assays to identify inhibitory compounds is straightforward and inexpensive, but is also inherently insensitive and somewhat nonspecific. To overcome these limitations and develop a sensitive, specific cell-based assay, two different approaches were combined. To address the sensitivity limitation, different fluorescent proteins have been introduced into a bacterial expression system to serve as growth reporters. To overcome the lack of specificity, these protein reporters have been incorporated into a plasmid in which they are paired with different orthologs of an essential target enzyme, in this case l-methionine S-adenosyltransferase (MAT, AdoMet synthetase). Screening compounds that serve as specific inhibitors will reduce the growth of only a subset of strains, because these strains are identical, except for which target ortholog they carry. Screening several such strains in parallel not only reveals potential inhibitors but the strains also serve as specificity controls for one another. The present study makes use of an existing Escherichia coli strain that carries a deletion of metK, the gene for MAT. Transformation with these plasmids leads to a complemented strain that no longer requires externally supplied S-adenosylmethionine for growth, but its growth is now dependent on the activity of the introduced MAT ortholog. The resulting fluorescent strains provide a platform to screen chemical compound libraries and identify species-selective inhibitors of AdoMet synthetases. A pilot study of several chemical libraries using this platform identified new lead compounds that are ortholog-selective inhibitors of this enzyme family, some of which target the protozoal human pathogen Cryptosporidium parvum.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Humanos , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/química , Metionina Adenosiltransferasa/metabolismo , S-Adenosilmetionina/metabolismo , Proyectos Piloto , Cryptosporidium/metabolismo , Escherichia coli/genética
17.
J Biol Chem ; 300(1): 105492, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38000655

RESUMEN

Homozygous 5'-methylthioadenosine phosphorylase (MTAP) deletions occur in approximately 15% of human cancers. Co-deletion of MTAP and methionine adenosyltransferase 2 alpha (MAT2a) induces a synthetic lethal phenotype involving protein arginine methyltransferase 5 (PRMT5) inhibition. MAT2a inhibitors are now in clinical trials for genotypic MTAP-/- cancers, however the MTAP-/- genotype represents fewer than 2% of human colorectal cancers (CRCs), limiting the utility of MAT2a inhibitors in these and other MTAP+/+ cancers. Methylthio-DADMe-immucillin-A (MTDIA) is a picomolar transition state analog inhibitor of MTAP that renders cells enzymatically MTAP-deficient to induce the MTAP-/- phenotype. Here, we demonstrate that MTDIA and MAT2a inhibitor AG-270 combination therapy mimics synthetic lethality in MTAP+/+ CRC cell lines with similar effects in mouse xenografts and without adverse histology on normal tissues. Combination treatment is synergistic with a 104-fold increase in drug potency for inhibition of CRC cell growth in culture. Combined MTDIA and AG-270 decreases S-adenosyl-L-methionine and increases 5'-methylthioadenosine in cells. The increased intracellular methylthioadenosine:S-adenosyl-L-methionine ratio inhibits PRMT5 activity, leading to cellular arrest and apoptotic cell death by causing MDM4 alternative splicing and p53 activation. Combination MTDIA and AG-270 treatment differs from direct inhibition of PRMT5 by GSK3326595 by avoiding toxicity caused by cell death in the normal gut epithelium induced by the PRMT5 inhibitor. The combination of MTAP and MAT2a inhibitors expands this synthetic lethal approach to include MTAP+/+ cancers, especially the remaining 98% of CRCs without the MTAP-/- genotype.


Asunto(s)
Desoxiadenosinas , Metionina Adenosiltransferasa , Neoplasias , Proteína-Arginina N-Metiltransferasas , Purina-Nucleósido Fosforilasa , S-Adenosilmetionina , Animales , Humanos , Ratones , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Desoxiadenosinas/antagonistas & inhibidores , Desoxiadenosinas/genética , Desoxiadenosinas/metabolismo , Sinergismo Farmacológico , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Metionina Adenosiltransferasa/antagonistas & inhibidores , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Neoplasias/genética , Neoplasias/fisiopatología , Neoplasias/terapia , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Purina-Nucleósido Fosforilasa/genética , Purina-Nucleósido Fosforilasa/metabolismo , Pirrolidinas/farmacología , Pirrolidinas/uso terapéutico , S-Adenosilmetionina/metabolismo
18.
Hepatology ; 80(1): 102-118, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38100286

RESUMEN

BACKGROUND AND AIMS: Methionine adenosyltransferase alpha1 (MATα1) is responsible for the biosynthesis of S-adenosylmethionine in normal liver. Alcohol consumption enhances MATα1 interaction with peptidyl-prolyl cis-trans isomerase NIMA-interacting 1 (PIN1), which blocks MATα1 mitochondrial targeting, resulting in lower mitochondrial MATα1 content and mitochondrial dysfunction in alcohol-associated liver disease (ALD) in part through upregulation of cytochrome P450 2E1. Conversely, alcohol intake enhances SUMOylation, which enhances cytochrome P450 2E1 expression. MATα1 has potential SUMOylation sites, but whether MATα1 is regulated by SUMOylation in ALD is unknown. Here, we investigated if MATα1 is regulated by SUMOylation and, if so, how it impacts mitochondrial function in ALD. APPROACH AND RESULTS: Proteomics profiling revealed hyper-SUMOylation of MATα1, and prediction software identified lysine 48 (K48) as the potential SUMOylation site in mice (K47 in humans). Experiments with primary hepatocytes, mouse, and human livers revealed that SUMOylation of MAT1α by SUMO2 depleted mitochondrial MATα1. Furthermore, mutation of MATα1 K48 prevented ethanol-induced mitochondrial membrane depolarization, MATα1 depletion, and triglyceride accumulation. Additionally, CRISPR/CRISPR associated protein 9 gene editing of MATα1 at K48 hindered ethanol-induced MATα1-PIN1 interaction, degradation, and phosphorylation of MATα1 in vitro. In vivo, CRISPR/CRISPR associated protein 9 MATα1 K48 gene-edited mice were protected from ethanol-induced fat accumulation, liver injury, MATα1-PIN1 interaction, mitochondrial MATα1 depletion, mitochondrial dysfunction, and low S-adenosylmethionine levels. CONCLUSIONS: Taken together, our findings demonstrate an essential role for SUMOylation of MATα1 K48 for interaction with PIN1 in ALD. Preventing MATα1 K48 SUMOylation may represent a potential treatment strategy for ALD.


Asunto(s)
Hepatopatías Alcohólicas , Metionina Adenosiltransferasa , Sumoilación , Metionina Adenosiltransferasa/metabolismo , Metionina Adenosiltransferasa/genética , Animales , Ratones , Hepatopatías Alcohólicas/metabolismo , Hepatopatías Alcohólicas/etiología , Hepatopatías Alcohólicas/genética , Humanos , Mitocondrias Hepáticas/metabolismo , Masculino , Hepatocitos/metabolismo , Hígado/metabolismo
19.
Cell Commun Signal ; 21(1): 345, 2023 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-38037054

RESUMEN

Chronic rhinosinusitis with nasal polyps (CRSwNP) is a heterogeneous and common upper airway disease divided into various inflammatory endotypes. Recent epidemiological findings showed a T helper 2 (Th2)-skewed dominance in CRSwNP patients. Histone modification alterations can regulate transcriptional and translational expression, resulting in abnormal pathogenic changes and the occurrence of diseases. Trimethylation of histone H3 lysine 4 (H3K4me3) is considered an activator of gene expression through modulation of accessibility for transcription, which is closely related to CRSwNP. H3K4me3 levels in the human nasal epithelium may change under Th2-biased inflammatory conditions, resulting in exaggerated local nasal Th2 responses via the regulation of naïve CD4+ T-cell differentiation. Here, we revealed that the level of SET and MYND domain-containing protein 3 (SMYD3)-mediated H3K4me3 was increased in NPs from Th2 CRSwNP patients compared with those from healthy controls. We demonstrated that SMYD3-mediated H3K4me3 is increased in human nasal epithelial cells under Th2-biased inflammatory conditions via S-adenosyl-L-methionine (SAM) production and further found that the H3K4me3high status of insulin-like growth factor 2 (IGF2) produced in primary human nasal epithelial cells could promote naïve CD4+ T-cell differentiation into Th2 cells. Moreover, we found that SAM production was dependent on the c-Myc/methionine adenosyltransferase 2A (MAT2A) axis in the nasal epithelium. Understanding histone modifications in the nasal epithelium has immense potential utility in the development of novel classes of therapeutics targeting Th2 polarization in Th2 CRSwNP. Video Abstract.


Asunto(s)
Pólipos Nasales , Rinitis , Sinusitis , Humanos , Histonas , Rinitis/metabolismo , Rinitis/patología , Pólipos Nasales/metabolismo , Retroalimentación , Sinusitis/complicaciones , Sinusitis/metabolismo , Diferenciación Celular , N-Metiltransferasa de Histona-Lisina/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Metionina Adenosiltransferasa/metabolismo
20.
PLoS One ; 18(12): e0294933, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38117832

RESUMEN

INTRODUCTION: Angiogenic behaviour has been shown as highly versatile among Endothelial cells (ECs) causing problems of in vitro assays of angiogenesis considering their reproducibility. It is indispensable to investigate influencing factors of the angiogenic potency of ECs. OBJECTIVE: The present study aimed to analyse the impact of knocking down triosephosphate isomerase (TPI) on in vitro angiogenesis and simultaneously on vimentin (VIM) and adenosylmethionine synthetase isoform type 2 (MAT2A) expression. Furthermore, native expression profiles of TPI, VIM and MAT2A in the course of angiogenesis in vitro were examined. METHODS: Two batches of human dermal microvascular ECs were cultivated over 50 days and stimulated to undergo angiogenesis. A shRNA-mediated knockdown of TPI was performed. During cultivation, time-dependant morphological changes were detected and applied for EC-staging as prerequisite for quantifying in vitro angiogenesis. Additionally, mRNA and protein levels of all proteins were monitored. RESULTS: Opposed to native cells, knockdown cells were not able to enter late stages of angiogenesis and primarily displayed a downregulation of VIM and an uprise in MAT2A expression. Native cells increased their TPI expression and decreased their VIM expression during the course of angiogenesis in vitro. For MAT2A, highest expression was observed to be in the beginning and at the end of angiogenesis. CONCLUSION: Knocking down TPI provoked expressional changes in VIM and MAT2A and a deceleration of in vitro angiogenesis, indicating that TPI represents an angiogenic protein. Native expression profiles lead to the assumption of VIM being predominantly relevant in beginning stages, MAT2A in beginning and late stages and TPI during the whole course of angiogenesis in vitro.


Asunto(s)
Células Endoteliales , Triosa-Fosfato Isomerasa , Humanos , Triosa-Fosfato Isomerasa/genética , Células Endoteliales/metabolismo , Reproducibilidad de los Resultados , Angiogénesis , Regulación hacia Abajo , Metionina Adenosiltransferasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...