Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.499
1.
Nat Commun ; 15(1): 3880, 2024 May 08.
Article En | MEDLINE | ID: mdl-38719804

Correlative evidence has suggested that the methyl-CpG-binding protein MeCP2 contributes to the formation of heterochromatin condensates via liquid-liquid phase separation. This interpretation has been reinforced by the observation that heterochromatin, DNA methylation and MeCP2 co-localise within prominent foci in mouse cells. The findings presented here revise this view. MeCP2 localisation is independent of heterochromatin as MeCP2 foci persist even when heterochromatin organisation is disrupted. Additionally, MeCP2 foci fail to show hallmarks of phase separation in live cells. Importantly, we find that mouse cellular models are highly atypical as MeCP2 distribution is diffuse in most mammalian species, including humans. Notably, MeCP2 foci are absent in Mus spretus which is a mouse subspecies lacking methylated satellite DNA repeats. We conclude that MeCP2 has no intrinsic tendency to form condensates and its localisation is independent of heterochromatin. Instead, the distribution of MeCP2 in the nucleus is primarily determined by global DNA methylation patterns.


DNA Methylation , Heterochromatin , Methyl-CpG-Binding Protein 2 , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Heterochromatin/metabolism , Animals , Mice , Humans , Cell Nucleus/metabolism , Protein Binding , DNA/metabolism , DNA, Satellite/metabolism , DNA, Satellite/genetics , Phase Separation
2.
Dis Model Mech ; 17(6)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38785269

Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in MECP2, which encodes methyl-CpG-binding protein 2, a transcriptional regulator of many genes, including brain-derived neurotrophic factor (BDNF). BDNF levels are lower in multiple brain regions of Mecp2-deficient mice, and experimentally increasing BDNF levels improve atypical phenotypes in Mecp2 mutant mice. Due to the low blood-brain barrier permeability of BDNF itself, we tested the effects of LM22A-4, a brain-penetrant, small-molecule ligand of the BDNF receptor TrkB (encoded by Ntrk2), on dendritic spine density and form in hippocampal pyramidal neurons and on behavioral phenotypes in female Mecp2 heterozygous (HET) mice. A 4-week systemic treatment of Mecp2 HET mice with LM22A-4 restored spine volume in MeCP2-expressing neurons to wild-type (WT) levels, whereas spine volume in MeCP2-lacking neurons remained comparable to that in neurons from female WT mice. Female Mecp2 HET mice engaged in aggressive behaviors more than WT mice, the levels of which were reduced to WT levels by the 4-week LM22A-4 treatment. These data provide additional support to the potential usefulness of novel therapies not only for RTT but also to other BDNF-related disorders.


Behavior, Animal , Dendritic Spines , Methyl-CpG-Binding Protein 2 , Phenotype , Receptor, trkB , Rett Syndrome , Animals , Rett Syndrome/pathology , Rett Syndrome/drug therapy , Dendritic Spines/drug effects , Dendritic Spines/metabolism , Dendritic Spines/pathology , Female , Receptor, trkB/metabolism , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Behavior, Animal/drug effects , Ligands , Pyramidal Cells/drug effects , Pyramidal Cells/metabolism , Pyramidal Cells/pathology , Mice , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/pathology , Hippocampus/metabolism , Hippocampus/drug effects , Heterozygote , Mice, Inbred C57BL , Disease Models, Animal , Benzamides
3.
Elife ; 122024 May 15.
Article En | MEDLINE | ID: mdl-38747706

Quiescence (G0) maintenance and exit are crucial for tissue homeostasis and regeneration in mammals. Here, we show that methyl-CpG binding protein 2 (Mecp2) expression is cell cycle-dependent and negatively regulates quiescence exit in cultured cells and in an injury-induced liver regeneration mouse model. Specifically, acute reduction of Mecp2 is required for efficient quiescence exit as deletion of Mecp2 accelerates, while overexpression of Mecp2 delays quiescence exit, and forced expression of Mecp2 after Mecp2 conditional knockout rescues cell cycle reentry. The E3 ligase Nedd4 mediates the ubiquitination and degradation of Mecp2, and thus facilitates quiescence exit. A genome-wide study uncovered the dual role of Mecp2 in preventing quiescence exit by transcriptionally activating metabolic genes while repressing proliferation-associated genes. Particularly disruption of two nuclear receptors, Rara or Nr1h3, accelerates quiescence exit, mimicking the Mecp2 depletion phenotype. Our studies unravel a previously unrecognized role for Mecp2 as an essential regulator of quiescence exit and tissue regeneration.


Methyl-CpG-Binding Protein 2 , Animals , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Mice , Mice, Knockout , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Cell Cycle , Liver Regeneration/genetics , Gene Expression Regulation
4.
Cell Mol Life Sci ; 81(1): 165, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38578457

The DNA methylation is gradually acquired during oogenesis, a process sustained by successful follicle development. However, the functional roles of methyl-CpG-binding protein 2 (MeCP2), an epigenetic regulator displaying specifical binding with methylated DNA, remains unknown in oogenesis. In this study, we found MeCP2 protein was highly expressed in primordial and primary follicle, but was almost undetectable in secondary follicles. However, in aged ovary, MeCP2 protein is significantly increased in both oocyte and granulosa cells. Overexpression of MeCP2 in growing oocyte caused transcription dysregulation, DNA hypermethylation, and genome instability, ultimately leading to follicle growth arrest and apoptosis. MeCP2 is targeted by DCAF13, a substrate recognition adaptor of the Cullin 4-RING (CRL4) E3 ligase, and polyubiquitinated for degradation in both cells and oocytes. Dcaf13-null oocyte exhibited an accumulation of MeCP2 protein, and the partial rescue of follicle growth arrest induced by Dcaf13 deletion was observed following MeCP2 knockdown. The RNA-seq results revealed that large amounts of genes were regulated by the DCAF13-MeCP2 axis in growing oocytes. Our study demonstrated that CRL4DCAF13 E3 ubiquitin ligase targets MeCP2 for degradation to ensure normal DNA methylome and transcription in growing oocytes. Moreover, in aged ovarian follicles, deceased DCAF13 and DDB1 protein were observed, indicating a potential novel mechanism that regulates ovary aging.


Methyl-CpG-Binding Protein 2 , Ubiquitin-Protein Ligases , Female , Humans , Cullin Proteins/genetics , Cullin Proteins/metabolism , DNA/metabolism , DNA Methylation , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Oocytes/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
5.
Neurosci Lett ; 830: 137770, 2024 May 01.
Article En | MEDLINE | ID: mdl-38616004

Women are disproportionately affected by stress-related disorders like depression. In our prior research, we discovered that females exhibit lower basal hypothalamic reelin levels, and these levels are differentially influenced by chronic stress induced through repeated corticosterone (CORT) injections. Although epigenetic mechanisms involving DNA methylation and the formation of repressor complexes by DNA methyl-transferases (DNMTs) and Methyl-CpG binding protein 2 (MeCP2) have been recognized as regulators of reelin expression in vitro, there is limited understanding of the impact of stress on the epigenetic regulation of reelin in vivo and whether sex differences exist in these mechanisms. To address these questions, we conducted various biochemical analyses on hypothalamic brain samples obtained from male and female rats previously treated with either 21 days of CORT (40 mg/kg) or vehicle (0.9 % saline) subcutaneous injections. Upon chronic CORT treatment, a reduction in reelin fragment NR2 was noted in males, while the full-length molecule remained unaffected. This decrease paralleled with an elevation in MeCP2 and a reduction in DNMT3a protein levels only in males. Importantly, sex differences in baseline and CORT-induced reelin protein levels were not associated with changes in the methylation status of the Reln promoter. These findings suggest that CORT-induced reelin decreases in the hypothalamus may be a combination of alterations in downstream processes beyond gene transcription. This research brings novel insights into the sexually distinct consequences of chronic stress, an essential aspect to understand, particularly concerning its role in the development of depression.


Cell Adhesion Molecules, Neuronal , Corticosterone , DNA Methyltransferase 3A , Extracellular Matrix Proteins , Hypothalamus , Methyl-CpG-Binding Protein 2 , Nerve Tissue Proteins , Reelin Protein , Serine Endopeptidases , Animals , Female , Male , Rats , Cell Adhesion Molecules, Neuronal/metabolism , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methyltransferase 3A/metabolism , Extracellular Matrix Proteins/metabolism , Hypothalamus/metabolism , Hypothalamus/drug effects , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , Serine Endopeptidases/metabolism , Sex Characteristics , Rats, Long-Evans
6.
Ecotoxicol Environ Saf ; 277: 116365, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38657452

Microglia, the resident immune cells of the central nervous system (CNS), play a dual role in neurotoxicity by releasing the NLR Family Pyrin Domain Containing 3 (NLRP3) inflammasome and brain-derived neurotrophic factor (BDNF) in response to environmental stress. Suppression of BDNF is implicated in learning and memory impairment induced by exposure to manganese (Mn) or lead (Pb) individually. Methyl CpG Binding Protein 2 (MeCp2) and its phosphorylation status are related to BDNF suppression. Protein phosphatase2A (PP2A), a member of the serine/threonine phosphatases family, dephosphorylates substrates based on the methylation state of its catalytic C subunit (PP2Ac). However, the specific impairment patterns and molecular mechanisms resulting from co-exposure to Mn and Pb remain unclear. Therefore, the purpose of this study was to explore the effects of Mn and Pb exposure, alone and in combination, on inducing neurotoxicity in the hippocampus of mice and BV2 cells, and to determine whether simultaneous exposure to both metals exacerbate their toxicity. Our findings reveal that co-exposure to Mn and Pb leads to severe learning and memory impairment in mice, which correlates with the accumulation of metals in the hippocampus and synergistic suppression of BDNF. This suppression is accompanied by up-regulation of the epigenetic repressor MeCp2 and its phosphorylation status, as well as demethylation of PP2Ac. Furthermore, inhibition of PP2Ac demethylation using ABL127, an inhibitor for its protein phosphatase methylesterase1 (PME1), or knockdown of MeCp2 via siRNA transfection in vitro effectively increases BDNF expression and mitigates BV2 cell damage induced by Mn and Pb co-exposure. We also observe abnormal activation of microglia characterized by enhanced release of the NLRP3 inflammasome, Casepase-1 and pro-inflammatory cytokines IL-1ß, in the hippocampus of mice and BV2 cells. In summary, our experiments demonstrate that simultaneous exposure to Mn and Pb results in more severe hippocampus-dependent learning and memory impairment, which is attributed to epigenetic suppression of BDNF mediated by PP2A regulation.


Brain-Derived Neurotrophic Factor , Epigenesis, Genetic , Hippocampus , Lead , Manganese , Memory Disorders , Animals , Brain-Derived Neurotrophic Factor/metabolism , Mice , Epigenesis, Genetic/drug effects , Manganese/toxicity , Lead/toxicity , Hippocampus/drug effects , Hippocampus/metabolism , Memory Disorders/chemically induced , Male , Mice, Inbred C57BL , Microglia/drug effects , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Protein Phosphatase 2/metabolism , Learning/drug effects
7.
Biomolecules ; 14(4)2024 Apr 21.
Article En | MEDLINE | ID: mdl-38672521

Rett Syndrome (RTT) is a progressive X-linked neurodevelopmental disorder with no cure. RTT patients show disease-associated symptoms within 18 months of age that include developmental regression, progressive loss of useful hand movements, and breathing difficulties, along with neurological impairments, seizures, tremor, and mental disability. Rett Syndrome is also associated with metabolic abnormalities, and the anti-diabetic drug metformin is suggested to be a potential drug of choice with low or no side-effects. Previously, we showed that in vitro exposure of metformin in a human brain cell line induces MECP2E1 transcripts, the dominant isoform of the MECP2 gene in the brain, mutations in which causes RTT. Here, we report the molecular impact of metformin in mice. Protein analysis of specific brain regions in the male and female mice by immunoblotting indicated that metformin induces MeCP2 in the hippocampus, in a sex-dependent manner. Additional experiments confirm that the regulatory role of metformin on the MeCP2 target "BDNF" is brain region-dependent and sex-specific. Measurement of the ribosomal protein S6 (in both phosphorylated and unphosphorylated forms) confirms the sex-dependent role of metformin in the liver. Our results can help foster a better understanding of the molecular impact of metformin in different brain regions of male and female adult mice, while providing some insight towards its potential in therapeutic strategies for the treatment of Rett Syndrome.


Hippocampus , Metformin , Methyl-CpG-Binding Protein 2 , Rett Syndrome , Animals , Female , Male , Mice , Brain/metabolism , Brain/drug effects , Brain-Derived Neurotrophic Factor/drug effects , Brain-Derived Neurotrophic Factor/genetics , Brain-Derived Neurotrophic Factor/metabolism , Hippocampus/metabolism , Hippocampus/drug effects , Metformin/pharmacology , Methyl-CpG-Binding Protein 2/drug effects , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mice, Inbred C57BL , Phosphorylation/drug effects , Rett Syndrome/metabolism , Rett Syndrome/drug therapy , Rett Syndrome/genetics , Ribosomal Protein S6/metabolism , Sex Characteristics , Sex Factors
8.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 526-532, 2024 May 10.
Article Zh | MEDLINE | ID: mdl-38684295

OBJECTIVE: To carry out preimplantation genetic testing (PGT) for a Chinese pedigree affected with Rett syndrome (RTT). METHODS: A pedigree affected with RTT who had presented at the First Hospital of Jilin University on June 4, 2021 was selected as the study subject. Variant of the MECP2 gene was analyzed by next generation sequencing (NGS) and Sanger sequencing. Direct sequencing was also used to determine the carrier status for the c.925C>T variant of the MECP2 gene in the blastocysts, and Sanger sequencing was used to validate the results. The MECP2 gene and 168 effective single nucleotide polymorphism (SNP) loci within 2 Mb ranges up- and downstream of the gene were used to construct a haplotype for analyzing the variant site in the embryos, and embryos without the variant were subjected to the analysis for chromosomal aneuploidies. RESULTS: PGT analysis revealed that five out of seven blastocysts did not harbor the pathogenic variant. The results of aneuploidy analysis indicated that two out of five blastocysts without the variant were euploid. Following genetic counselling, the couple had opted to transplant the optimal blastocyst. Following clinical pregnancy, prenatal diagnosis showed that the fetus has a normal chromosomal karyotype, and the c.925C>T variant was not detected in the amniotic fluid sample. A healthy girl was born by Cesarean section at full term. CONCLUSION: NGS can attain efficient PGT detection and reduce the risk of disease recurrence in families affected with RTT.


Genetic Testing , Pedigree , Preimplantation Diagnosis , Rett Syndrome , Adult , Female , Humans , Pregnancy , East Asian People/genetics , Genetic Testing/methods , High-Throughput Nucleotide Sequencing , Methyl-CpG-Binding Protein 2/genetics , Polymorphism, Single Nucleotide , Rett Syndrome/genetics
9.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 533-539, 2024 May 10.
Article Zh | MEDLINE | ID: mdl-38684296

OBJECTIVE: To analyze the clinical features and genetic etiology of 17 Chinese pedigrees affected with X-linked intellectual disability (XLID). METHODS: Seventeen pedigrees affected with unexplained intellectual disability which had presented at Henan Provincial People's Hospital from May 2021 to May 2023 were selected as the study subjects. Clinical data of the probands and their pedigree members were collected. Trio-whole exome sequencing (Trio-WES), Sanger sequencing and X chromosome inactivation (XCI) analysis were carried out. Pathogenicity of candidate variants was predicted based on the guidelines from the American College of Medical Genetics and Genomics and co-segregation analysis. RESULTS: The 17 probands, including 9 males and 8 females with an age ranging from 0.6 to 8 years old, had all shown mental retardation and developmental delay. Fourteen variants were detected by genetic testing, which included 4 pathogenic variants (MECP2: c.502C>T, MECP2: c.916C>T/c.806delG, IQSEC2: c.1417G>T), 4 likely pathogenic variants (MECP2: c.1157_1197del/c.925C>T, KDM5C: c.2128A>T, SLC6A8: c.1631C>T) and 6 variants of uncertain significance (KLHL15: c.26G>C, PAK3: c.970A>G/c.1520G>A, GRIA3: c.2153C>G, TAF1: c.2233T>G, HUWE1: c.10301T>A). The PAK3: c.970A>G, GRIA3: c.2153C>G and TAF1: c.2233T>G variants were considered as the genetic etiology for pedigrees 12, 14 and 15 by co-segregation analysis, respectively. The proband of pedigree 13 was found to have non-random XCI (81:19). Therefore, the PAK3: c.1520G>A variant may underlie its pathogenesis. CONCLUSION: Trio-WES has attained genetic diagnosis for the 17 XLID pedigrees. Sanger sequencing and XCI assay can provide auxiliary tests for the diagnosis of XLID.


Mental Retardation, X-Linked , Pedigree , Child , Child, Preschool , Female , Humans , Infant , Male , China , East Asian People/genetics , Exome Sequencing , Genetic Testing/methods , Guanine Nucleotide Exchange Factors/genetics , Histone Acetyltransferases , Intellectual Disability/genetics , Mental Retardation, X-Linked/genetics , Methyl-CpG-Binding Protein 2/genetics , Mutation , TATA-Binding Protein Associated Factors/genetics , Transcription Factor TFIID/genetics , X Chromosome Inactivation
10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 612-616, 2024 May 10.
Article Zh | MEDLINE | ID: mdl-38684311

OBJECTIVE: To explore the genetic characteristics of a child with comorbid 16p11.2 microdeletion syndrome and Rett syndrome (RTT). METHODS: A male infant who was admitted to Gansu Provincial Maternity and Child Health Care Hospital in May 2020 was selected as the study subject. Clinical data of the infant was collected. Genomic DNA was extracted from peripheral blood samples from the infant and his parents, and subjected to whole exome sequencing (WES). Candidate variant was verified by Sanger sequencing. RESULTS: The patient, a 4-day-old male infant, had presented with poor response, poor intake, feeding difficulties, and deceased at 8 months after birth. WES revealed that he has harbored a 0.643 Mb deletion in the 16p11.2 region, which encompassed key genes of the 16p11.2 microdeletion syndrome such as ALDOA, CORO1A, KIFF22, PRRT2 and TBX6. His father has carried the same deletion, but was phenotypically normal. The deletion was predicted to be pathogenic. The child was also found to harbor a maternally derived c.763C>T (p.R255X) hemizygous variant of the MECP2 gene, which was also predicted to be pathogenic (PVS1+PS4+PM2_Supporting). CONCLUSION: The 16p11.2 deletion and the MECP2: c.763C>T (p.R255X) variant probably underlay the pathogenesis in this infant.


Autistic Disorder , Chromosome Deletion , Chromosome Disorders , Chromosomes, Human, Pair 16 , Exome Sequencing , Intellectual Disability , Rett Syndrome , Humans , Rett Syndrome/genetics , Chromosomes, Human, Pair 16/genetics , Male , Chromosome Disorders/genetics , Infant, Newborn , Intellectual Disability/genetics , Methyl-CpG-Binding Protein 2/genetics , Infant
11.
J Mol Med (Berl) ; 102(5): 641-653, 2024 05.
Article En | MEDLINE | ID: mdl-38430393

Rett syndrome (RTT) is a neurodevelopmental disorder resulting from genetic mutations in the methyl CpG binding protein 2 (MeCP2) gene. Specifically, around 35% of RTT patients harbor premature termination codons (PTCs) within the MeCP2 gene due to nonsense mutations. A promising therapeutic avenue for these individuals involves the use of aminoglycosides, which stimulate translational readthrough (TR) by causing stop codons to be interpreted as sense codons. However, the effectiveness of this treatment depends on several factors, including the type of stop codon and the surrounding nucleotides, collectively referred to as the stop codon context (SCC). Here, we develop a high-content reporter system to precisely measure TR efficiency at different SCCs, assess the recovery of the full-length MeCP2 protein, and evaluate its subcellular localization. We have conducted a comprehensive investigation into the intricate relationship between SCC characteristics and TR induction, examining a total of 14 pathogenic MeCP2 nonsense mutations with the aim to advance the prospects of personalized therapy for individuals with RTT. Our results demonstrate that TR induction can successfully restore full-length MeCP2 protein, albeit to varying degrees, contingent upon the SCC and the specific position of the PTC within the MeCP2 mRNA. TR induction can lead to the re-establishment of nuclear localization of MeCP2, indicating the potential restoration of protein functionality. In summary, our findings underscore the significance of SCC-specific approaches in the development of tailored therapies for RTT. By unraveling the relationship between SCC and TR therapy, we pave the way for personalized, individualized treatment strategies that hold promise for improving the lives of individuals affected by this debilitating neurodevelopmental disorder. KEY MESSAGES: The efficiency of readthrough induction at MeCP2 premature termination codons strongly depends on the stop codon context. The position of the premature termination codon on the transcript influences the readthrough inducibility. A new high-content dual reporter assay facilitates the measurement and prediction of readthrough efficiency of specific nucleotide stop contexts. Readthrough induction results in the recovery of full-length MeCP2 and its re-localization to the nucleus. MeCP2 requires only one of its annotated nuclear localization signals.


Codon, Nonsense , Codon, Terminator , Methyl-CpG-Binding Protein 2 , Rett Syndrome , Rett Syndrome/genetics , Rett Syndrome/metabolism , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Humans , Protein Biosynthesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , HEK293 Cells
12.
Front Immunol ; 15: 1370254, 2024.
Article En | MEDLINE | ID: mdl-38524134

Introduction: Systemic Lupus Erythematosus (SLE) impacts the central nervous system (CNS), leading to severe neurological and psychiatric manifestations known as neuropsychiatric lupus (NPSLE). The complexity and heterogeneity of clinical presentations of NPSLE impede direct investigation of disease etiology in patients. The limitations of existing mouse models developed for NPSLE obstruct a comprehensive understanding of this disease. Hence, the identification of a robust mouse model of NPSLE is desirable. Methods: C57BL/6 mice transgenic for human MeCP2 (B6.Mecp2Tg1) were phenotyped, including autoantibody profiling through antigen array, analysis of cellularity and activation of splenic immune cells through flow cytometry, and measurement of proteinuria. Behavioral tests were conducted to explore their neuropsychiatric functions. Immunofluorescence analyses were used to reveal altered neurogenesis and brain inflammation. Various signaling molecules implicated in lupus pathogenesis were examined using western blotting. Results: B6.Mecp2Tg1 exhibits elevated proteinuria and an overall increase in autoantibodies, particularly in female B6.Mecp2Tg1 mice. An increase in CD3+CD4+ T cells in the transgenic mice was observed, along with activated germinal center cells and activated CD11b+F4/80+ macrophages. Moreover, the transgenic mice displayed reduced locomotor activity, heightened anxiety and depression, and impaired short-term memory. Immunofluorescence analysis revealed IgG deposition and immune cell infiltration in the kidneys and brains of transgenic mice, as well as altered neurogenesis, activated microglia, and compromised blood-brain barrier (BBB). Additionally, protein levels of various key signaling molecules were found to be differentially modulated upon MeCP2 overexpression, including GFAP, BDNF, Albumin, NCoR1, mTOR, and NLRP3. Discussion: Collectively, this work demonstrates that B6.Mecp2Tg1 mice exhibit lupus-like phenotypes as well as robust CNS dysfunctions, suggesting its utility as a new animal model for NPSLE.


Lupus Vasculitis, Central Nervous System , Humans , Animals , Mice , Female , Mice, Transgenic , Mice, Inbred C57BL , Autoantibodies , Phenotype , Proteinuria , Methyl-CpG-Binding Protein 2/genetics
13.
Autism Res ; 17(4): 775-784, 2024 Apr.
Article En | MEDLINE | ID: mdl-38433353

The methyl CpG-binding protein-2 (MECP2) gene is located on the Xq28 region. Loss of function mutations or increased copies of MECP2 result in Rett syndrome (RTT) and MECP2 duplication syndrome (MDS), respectively. Individuals with both disorders exhibit overlapping autism symptoms, yet few studies have dissected the differences between these gene dosage sensitive disorders. Further, research examining sensory processing patterns in persons with RTT and MDS is largely absent. Thus, the goal of this study was to analyze and compare sensory processing patterns in persons with RTT and MDS. Towards this goal, caregivers of 50 female individuals with RTT and 122 male individuals with MDS, between 1 and 46 years of age, completed a standardized measure of sensory processing, the Sensory Experiences Questionnaire. Patterns detected in both disorders were compared against each other and against normative values. We found sensory processing abnormalities for both hyper- and hypo-sensitivity in both groups. Interestingly, abnormalities in MDS were more pronounced compared with in RTT, particularly with items concerning hypersensitivity and sensory seeking, but not hyposensitivity. Individuals with MDS also exhibited greater sensory symptoms compared with RTT in the areas of tactile and vestibular sensory processing and for both social and nonsocial stimuli. This study provides a first description of sensory symptoms in individuals with RTT and individuals with MDS. Similar to other neurodevelopmental disorders, a variety of sensory processing abnormalities was found. These findings reveal a first insight into sensory processing abnormalities caused by a dosage sensitive gene and may ultimately help guide therapeutic approaches for these disorders.


Rett Syndrome , Female , Humans , Male , Methyl-CpG-Binding Protein 2/genetics , Mutation , Rett Syndrome/genetics , Rett Syndrome/physiopathology , Surveys and Questionnaires , Sensation Disorders/etiology , Sensation Disorders/genetics , Sensation Disorders/physiopathology
14.
Nucleic Acids Res ; 52(7): 3636-3653, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38321951

MeCP2 is a general regulator of transcription involved in the repression/activation of genes depending on the local epigenetic context. It acts as a chromatin regulator and binds with exquisite specificity to gene promoters. The set of epigenetic marks recognized by MeCP2 has been already established (mainly, cytosine modifications in CpG and CpA), as well as many of the constituents of its interactome. We unveil a new set of interactions for MeCP2 with the four canonical nucleosomal histones. MeCP2 interacts with high affinity with H2A, H2B, H3 and H4. In addition, Rett syndrome associated mutations in MeCP2 and histone epigenetic marks modulate these interactions. Given the abundance and the structural/functional relevance of histones and their involvement in epigenetic regulation, this new set of interactions and its modulating elements provide a new addition to the 'alphabet' for this epigenetic reader.


Epigenesis, Genetic , Histones , Methyl-CpG-Binding Protein 2 , Nucleosomes , Methyl-CpG-Binding Protein 2/metabolism , Methyl-CpG-Binding Protein 2/genetics , Nucleosomes/metabolism , Histones/metabolism , Humans , Protein Binding , Rett Syndrome/genetics , Rett Syndrome/metabolism , Mutation , Animals
15.
BMC Med Genomics ; 17(1): 54, 2024 Feb 19.
Article En | MEDLINE | ID: mdl-38373942

BACKGROUND: MECP2 duplication syndrome (MDS) is a rare X-linked genomic disorder that primarily affects males. It is characterized by delayed or absent speech development, severe motor and cognitive impairment, and recurrent respiratory infections. MDS is caused by the duplication of a chromosomal region located on chromosome Xq28, which contains the methyl CpG binding protein-2 (MECP2) gene. MECP2 functions as a transcriptional repressor or activator, regulating genes associated with nervous system development. The objective of this study is to provide a clinical description of MDS, including imaging changes observed from the fetal period to the neonatal period. METHODS: Conventional G-banding was employed to analyze the chromosome karyotypes of all pedigrees under investigation. Subsequently, whole exome sequencing (WES), advanced biological information analysis, and pedigree validation were conducted, which were further confirmed by copy number variation sequencing (CNV-seq). RESULTS: Chromosome karyotype analysis revealed that a male patient had a chromosome karyotype of 46,Y,dup(X)(q27.2q28). Whole-exon duplication in the MECP2 gene was revealed through WES results. CNV-seq validation confirmed the presence of Xq27.1q28 duplicates spanning 14.45 Mb, which was inherited from a mild phenotype mother. Neither the father nor the mother's younger brother carried this duplication. CONCLUSION: In this study, we examined a male child in a family who exhibited developmental delay and recurrent respiratory tract infections as the main symptoms. We conducted thorough family investigations and genetic testing to determine the underlying causes of the disease. Our findings will aid in early diagnosis, genetic counseling for male patients in this family, as well as providing prenatal diagnosis and reproductive guidance for female carriers.


DNA Copy Number Variations , Gene Duplication , Mental Retardation, X-Linked , Child , Female , Humans , Infant, Newborn , Male , China , Mental Retardation, X-Linked/genetics , Pedigree , Methyl-CpG-Binding Protein 2/genetics
16.
J Neurosci ; 44(12)2024 Mar 20.
Article En | MEDLINE | ID: mdl-38199865

Regression is a key feature of neurodevelopmental disorders such as autism spectrum disorder, Fragile X syndrome, and Rett syndrome (RTT). RTT is caused by mutations in the X-linked gene methyl-CpG-binding protein 2 (MECP2). It is characterized by an early period of typical development with subsequent regression of previously acquired motor and speech skills in girls. The syndromic phenotypes are individualistic and dynamic over time. Thus far, it has been difficult to capture these dynamics and syndromic heterogeneity in the preclinical Mecp2-heterozygous female mouse model (Het). The emergence of computational neuroethology tools allows for robust analysis of complex and dynamic behaviors to model endophenotypes in preclinical models. Toward this first step, we utilized DeepLabCut, a marker-less pose estimation software to quantify trajectory kinematics and multidimensional analysis to characterize behavioral heterogeneity in Het in the previously benchmarked, ethologically relevant social cognition task of pup retrieval. We report the identification of two distinct phenotypes of adult Het: Het that display a delay in efficiency in early days and then improve over days like wild-type mice and Het that regress and perform worse in later days. Furthermore, regression is dependent on age and behavioral context and can be detected in the initial days of retrieval. Together, the novel identification of two populations of Het suggests differential effects on neural circuitry, opens new avenues to investigate the underlying molecular and cellular mechanisms of heterogeneity, and designs better studies for stratifying therapeutics.


Autism Spectrum Disorder , Rett Syndrome , Humans , Female , Animals , Mice , Rett Syndrome/genetics , Rett Syndrome/metabolism , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Phenotype , Mutation/genetics , Social Behavior , Disease Models, Animal
17.
J Mol Neurosci ; 74(1): 14, 2024 Jan 26.
Article En | MEDLINE | ID: mdl-38277073

The epigenetic factor Methyl-CpG-Binding Protein 2 (MeCP2) is a nuclear protein that binds methylated DNA molecules (both 5-methylcytosine and 5-hydroxymethylcytosine) and controls gene transcription. MeCP2 is an important transcription factor that acts in a dose-dependent manner in the brain; thus, its optimal expression level in brain cells is important. As such, its deregulated expression, as well as gain- or loss-of-function mutation, lead to impaired neurodevelopment, and compromised structure and function of brain cells, particularly in neurons. Studies from others and us have characterized two well-recognized MeCP2 isoforms: MeCP2E1 and MeCP2E2. We have reported that in Daoy medulloblastoma brain cells, MeCP2E2 overexpression leads to MeCP2E1 protein degradation. Whether MeCP2 isoforms regulate the Mecp2 promoter regulatory elements remains unexplored. We previously showed that in Daoy cells, metformin (an anti-diabetic drug) induces MECP2E1 transcripts. However, possible impact of metformin on the Mecp2 promoter activity was not studied. Here, we generated stably transduced Daoy cell reporters to express EGFP driven by the Mecp2 promoter. Transduced cells were sorted into four EGFP-expressing groups (R4-to-R7) with different intensities of EGFP expression. Our results confirm that the Mecp2 promoter is active in Daoy cells, and that overexpression of either isoform inhibits the Mecp2 promoter activity, as detected by flow cytometry and luciferase reporter assays. Interestingly, metformin partially relieved the inhibitory effect of MeCP2E1 on the Mecp2 promoter, detected by flow cytometry. Taken together, our data provide important insight towards the regulation of MeCP2 isoforms at the promoter level, which might have biological relevance to the neurobiology of the brain.


Cerebellar Neoplasms , Metformin , Humans , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Feedback , Metformin/pharmacology , Protein Isoforms/genetics , Protein Isoforms/metabolism
18.
Orphanet J Rare Dis ; 19(1): 34, 2024 Jan 31.
Article En | MEDLINE | ID: mdl-38291497

BACKGROUND: Rett syndrome (RTT) is a rare neurodevelopmental condition associated with mutations in the gene coding for the methyl-CpG-binding protein 2 (MECP2). It is primarily observed in girls and affects individuals globally. The understanding of the neurobiology of RTT and patient management has been improved by studies that describe the demographic and clinical presentation of individuals with RTT. However, in Ireland, there is a scarcity of data regarding individuals with RTT, which impedes the ability to fully characterize the Irish RTT population. Together with the Rett Syndrome Association of Ireland (RSAI), we prepared a questionnaire to determine the characteristics of RTT individuals in Ireland. Twenty-five families have participated in the study to date, providing information about demographics, genetics, familial history, clinical features, and regression. RESULTS: The results show that Irish individuals with RTT have comparable presentation with respect to individuals in other countries; however, they had a better response to anti-epileptic drugs, and fewer skeletal deformities were reported. Nonetheless, seizures, involuntary movements and regression were more frequently observed in Irish individuals. One of the main findings of this study is the limited genetic information available to individuals to support the clinical diagnosis of RTT. CONCLUSIONS: Despite the limited sample size, this study is the first to characterize the RTT population in Ireland and highlights the importance of having a swift access to genetic testing to sharpen the characterization of the phenotype and increase the visibility of Irish individuals in the international RTT community.


Rett Syndrome , Female , Humans , Rett Syndrome/epidemiology , Rett Syndrome/genetics , Ireland/epidemiology , Methyl-CpG-Binding Protein 2/genetics , Mutation/genetics , Phenotype , Demography
19.
Proc Natl Acad Sci U S A ; 121(6): e2320383121, 2024 Feb 06.
Article En | MEDLINE | ID: mdl-38289948

Rett syndrome (RTT) is a devastating neurodevelopmental disorder primarily caused by mutations in the methyl-CpG binding protein 2 (Mecp2) gene. Here, we found that inhibition of Receptor-Interacting Serine/Threonine-Protein Kinase 1 (RIPK1) kinase ameliorated progression of motor dysfunction after onset and prolonged the survival of Mecp2-null mice. Microglia were activated early in myeloid Mecp2-deficient mice, which was inhibited upon inactivation of RIPK1 kinase. RIPK1 inhibition in Mecp2-deficient microglia reduced oxidative stress, cytokines production and induction of SLC7A11, SLC38A1, and GLS, which mediate the release of glutamate. Mecp2-deficient microglia release high levels of glutamate to impair glutamate-mediated excitatory neurotransmission and promote increased levels of GluA1 and GluA2/3 proteins in vivo, which was reduced upon RIPK1 inhibition. Thus, activation of RIPK1 kinase in Mecp2-deficient microglia may be involved both in the onset and progression of RTT.


Rett Syndrome , Animals , Mice , Glutamic Acid/metabolism , Inflammation/genetics , Inflammation/metabolism , Methyl-CpG-Binding Protein 2/metabolism , Mice, Knockout , Microglia/metabolism , Rett Syndrome/metabolism
20.
Brain ; 147(1): 122-134, 2024 01 04.
Article En | MEDLINE | ID: mdl-37633263

Rett syndrome is a rare genetic neurodevelopmental disease, affecting 1 in over 10 000 females born worldwide, caused by de novo mutations in the X-chromosome-located methyl-CpG-binding protein 2 (MeCP2) gene. Despite the great effort put forth by the scientific community, a therapy for this devastating disease is still needed. Here, we tested the therapeutic effects of a painless mutein of the nerve growth factor (NGF), called human NGF painless (hNGFp), via a non-invasive intranasal delivery in female MeCP2+/- mice. Of note, previous work had demonstrated a broad biodistribution of hNGFp in the mouse brain by the nasal delivery route. We report that (i) the long-term lifelong treatment of MeCP2+/- mice with hNGFp, starting at 2 months of age, increased the chance of survival while also greatly improving behavioural parameters. Furthermore, when we assessed the phenotypic changes brought forth by (ii) a short-term 1-month-long hNGFp-treatment, starting at 3 months of age (right after the initial presentation of symptoms), we observed the rescue of a well known neuronal target population of NGF, cholinergic neurons in the medial septum. Moreover, we reveal a deficit in microglial morphology in MeCP2+/- mice, completely reversed in treated animals. This effect on microglia is in line with reports showing microglia to be a TrkA-dependent non-neuronal target cell population of NGF in the brain. To understand the immunomodulatory activity of hNGFp, we analysed the cytokine profile after hNGFp treatment in MeCP2+/- mice, to discover that the treatment recovered the altered expression of key neuroimmune-communication molecules, such as fractalkine. The overall conclusion is that hNGFp delivered intranasally can ameliorate symptoms in the MeCP2+/- model of Rett syndrome, by exerting strong neuroprotection with a dual mechanism of action: directly on target neurons and indirectly via microglia.


Rett Syndrome , Humans , Female , Mice , Animals , Rett Syndrome/therapy , Nerve Growth Factor/metabolism , Tissue Distribution , Methyl-CpG-Binding Protein 2/genetics , Brain/metabolism , Neurons/metabolism , Disease Models, Animal
...