Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Atherosclerosis ; 391: 117431, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408412

RESUMEN

BACKGROUND AND AIMS: The gut microbe-derived metabolite trimethylamine-N-oxide (TMAO) has been implicated in the development of cardiovascular fibrosis. Endoplasmic reticulum (ER) stress occurs after the dysfunction of ER and its structure. The three signals PERK/ATF-4, IRE-1α/XBP-1s and ATF6 are activated upon ER stress. Recent reports have suggested that the activation of PERK/ATF-4 and IRE-1α/XBP-1s signaling contributes to cardiovascular fibrosis. However, whether TMAO mediates aortic valve fibrosis by activating PERK/ATF-4 and IRE-1α/XBP-1s signaling remains unclear. METHODS: Human aortic valve interstitial cells (AVICs) were isolated from aortic valve leaflets. PERK IRE-1α, ATF-4, XBP-1s and CHOP expression, and production of collagen Ⅰ and TGF-ß1 were analyzed following treatment with TMAO. The role of PERK/ATF-4 and IRE-1α/XBP-1s signaling pathways in TMAO-induced fibrotic formation was determined using inhibitors and small interfering RNA. RESULTS: Diseased valves produced greater levels of ATF-4, XBP-1, collagen Ⅰ and TGF-ß1. Interestingly, diseased cells exhibited augmented PERK/ATF-4 and IRE-1α/XBP-1s activation after TMAO stimulation. Inhibition and silencing of PERK/ATF-4 and IRE-1α/XBP-1s each resulted in enhanced suppression of TMAO-induced fibrogenic activity in diseased cells. Mice treated with dietary choline supplementation had substantially increased TMAO levels and aortic valve fibrosis, which were reduced by 3,3-dimethyl-1-butanol (DMB, an inhibitor of trimethylamine formation) treatment. Moreover, a high-choline and high-fat diet remodeled the gut microbiota in mice. CONCLUSIONS: TMAO promoted aortic valve fibrosis through activation of PERK/ATF-4 and IRE-1α/XBP-1s signaling pathways in vitro and in vivo. Modulation of diet, gut microbiota, TMAO, PERK/ATF-4 and IRE1-α/XBP-1s may be a promising approach to prevent aortic valve fibrosis.


Asunto(s)
Microbioma Gastrointestinal , Factor de Crecimiento Transformador beta1 , Ratones , Humanos , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Válvula Aórtica/metabolismo , Metilaminas/toxicidad , Metilaminas/metabolismo , Fibrosis , Colágeno , Colina , Óxidos
2.
Cardiovasc Res ; 118(10): 2367-2384, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34352109

RESUMEN

AIMS: Gut microbiota and their generated metabolites impact the host vascular phenotype. The metaorganismal metabolite trimethylamine N-oxide (TMAO) is both associated with adverse clinical thromboembolic events, and enhances platelet responsiveness in subjects. The impact of TMAO on vascular Tissue Factor (TF) in vivo is unknown. Here, we explore whether TMAO-enhanced thrombosis potential extends beyond TMAO effects on platelets, and is linked to TF. We also further explore the links between gut microbiota and vascular endothelial TF expression in vivo. METHODS AND RESULTS: In initial exploratory clinical studies, we observed that among sequential stable subjects (n = 2989) on anti-platelet therapy undergoing elective diagnostic cardiovascular evaluation at a single-site referral centre, TMAO levels were associated with an increased incident (3 years) risk for major adverse cardiovascular events (MACE) (myocardial infarction, stroke, or death) [4th quartile (Q4) vs. Q1 adjusted hazard ratio (HR) 95% confidence interval (95% CI), 1.73 (1.25-2.38)]. Similar results were observed within subjects on aspirin mono-therapy during follow-up [adjusted HR (95% CI) 1.75 (1.25-2.44), n = 2793]. Leveraging access to a second higher risk cohort with previously reported TMAO data and monitoring of anti-platelet medication use, we also observed a strong association between TMAO and incident (1 year) MACE risk in the multi-site Swiss Acute Coronary Syndromes Cohort, focusing on the subset (n = 1469) on chronic dual anti-platelet therapy during follow-up [adjusted HR (95% CI) 1.70 (1.08-2.69)]. These collective clinical data suggest that the thrombosis-associated effects of TMAO may be mediated by cells/factors that are not inhibited by anti-platelet therapy. To test this, we first observed in human microvascular endothelial cells that TMAO dose-dependently induced expression of TF and vascular cell adhesion molecule (VCAM)1. In mouse studies, we observed that TMAO-enhanced aortic TF and VCAM1 mRNA and protein expression, which upon immunolocalization studies, was shown to co-localize with vascular endothelial cells. Finally, in arterial injury mouse models, TMAO-dependent enhancement of in vivo TF expression and thrombogenicity were abrogated by either a TF-inhibitory antibody or a mechanism-based microbial choline TMA-lyase inhibitor (fluoromethylcholine). CONCLUSION: Endothelial TF contributes to TMAO-related arterial thrombosis potential, and can be specifically blocked by targeted non-lethal inhibition of gut microbial choline TMA-lyase.


Asunto(s)
Liasas , Trombosis , Animales , Colina , Células Endoteliales/metabolismo , Humanos , Liasas/metabolismo , Metilaminas/metabolismo , Metilaminas/toxicidad , Ratones , Tromboplastina
3.
Int J Mol Sci ; 22(21)2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34769294

RESUMEN

Trimethylamine N-oxide (TMAO), a product of gut microbiota metabolism, has previously been shown to be implicated in chronic kidney disease. A high TMAO-containing diet has been found to cause tubulointerstitial renal fibrosis in mice. However, today there are no data linking specific molecular pathways with the effect of TMAO on human renal fibrosis. The aim of this study was to investigate the fibrotic effects of TMAO on renal fibroblasts and to elucidate the molecular pathways involved. We found that TMAO promoted renal fibroblast activation and fibroblast proliferation via the PERK/Akt/mTOR pathway, NLRP3, and caspase-1 signaling. We also found that TMAO increased the total collagen production from renal fibroblasts via the PERK/Akt/mTOR pathway. However, TMAO did not induce fibronectin or TGF-ß1 release from renal fibroblasts. We have unraveled that the PERK/Akt/mTOR pathway, NLRP3, and caspase-1 mediates TMAO's fibrotic effect on human renal fibroblasts. Our results can pave the way for future research to further clarify the molecular mechanism behind TMAO's effects and to identify novel therapeutic targets in the context of chronic kidney disease.


Asunto(s)
Caspasa 1/metabolismo , Riñón/patología , Metilaminas/toxicidad , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Transducción de Señal/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Colágeno/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibrosis , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Riñón/citología , Riñón/efectos de los fármacos , Riñón/metabolismo , Modelos Biológicos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , eIF-2 Quinasa/metabolismo
4.
Redox Biol ; 46: 102115, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34474396

RESUMEN

Gut microbiota produce Trimethylamine N-oxide (TMAO) by metabolizing dietary phosphatidylcholine, choline, l-carnitine and betaine. TMAO is implicated in the pathogenesis of chronic kidney disease (CKD), diabetes, obesity and atherosclerosis. We test, whether TMAO augments angiotensin II (Ang II)-induced vasoconstriction and hence promotes Ang II-induced hypertension. Plasma TMAO levels were indeed elevated in hypertensive patients, thus the potential pathways by which TMAO mediates these effects were explored. Ang II (400 ng/kg-1min-1) was chronically infused for 14 days via osmotic minipumps in C57Bl/6 mice. TMAO (1%) or antibiotics were given via drinking water. Vasoconstriction of renal afferent arterioles and mesenteric arteries were assessed by microperfusion and wire myograph, respectively. In Ang II-induced hypertensive mice, TMAO elevated systolic blood pressure and caused vasoconstriction, which was alleviated by antibiotics. TMAO enhanced the Ang II-induced acute pressor responses (12.2 ± 1.9 versus 20.6 ± 1.4 mmHg; P < 0.05) and vasoconstriction (32.3 ± 2.6 versus 55.9 ± 7.0%, P < 0.001). Ang II-induced intracellular Ca2+ release in afferent arterioles (147 ± 7 versus 234 ± 26%; P < 0.001) and mouse vascular smooth muscle cells (VSMC, 123 ± 3 versus 157 ± 9%; P < 0.001) increased by TMAO treatment. Preincubation of VSMC with TMAO activated the PERK/ROS/CaMKII/PLCß3 pathway. Pharmacological inhibition of PERK, ROS, CaMKII and PLCß3 impaired the effect of TMAO on Ca2+ release. Thus, TMAO facilitates Ang II-induced vasoconstriction, thereby promoting Ang II-induced hypertension, which involves the PERK/ROS/CaMKII/PLCß3 axis.


Asunto(s)
Microbioma Gastrointestinal , Hipertensión , Angiotensina II , Animales , Humanos , Hipertensión/inducido químicamente , Metilaminas/toxicidad , Ratones
5.
J Nutr Biochem ; 93: 108630, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33798707

RESUMEN

Resveratrol, a phytochemical, has shown antioxidant properties and potential benefits in hypertension. Asymmetric dimethylarginine (ADMA)-related nitric oxide deficiency and gut microbiota-derived metabolite trimethylamine-N-oxide (TMAO) have been linked to hypertension. We aimed to test whether maternal resveratrol therapy would protect adult offspring against hypertension programmed by prenatal exposure to ADMA and TMAO. Pregnant Sprague-Dawley rats received ADMA 10 mg/kg/day (A), TMAO 0.65 mg/hr (T), ADMA+TMAO (AT), or vesicle (CV). One group of ADMA+TMAO-exposed rats received 50 mg/L of resveratrol in drinking water during pregnancy and lactation periods (ATR). Male offspring (n = 8/group) were assigned to five groups: CV, A, T, AT, and ATR. Rats were killed at 12 weeks of age. ADMA exposure caused the elevation of blood pressure in 12-week-old male offspring, which was exacerbated by TMAO exposure. Treatment with resveratrol rescued hypertension programmed by combined ADMA and TMAO exposure. This was accompanied by alterations in the compositions of gut microbiota and increased fecal butyrate levels. Both the abundance of the butyrate-producing genera Lachnospiraceae and Ruminococcaceae were augmented by resveratrol. Meanwhile, resveratrol therapy significantly increased the abundance of the Cyanobiaceae and Erysipelotrichaceae families. Moreover, the protective effects of resveratrol were related to the mediation of the renin-angiotensin system . Our data provide new insights into the protective mechanisms of resveratrol against hypertension programmed by ADMA and TMAO, including regulation of gut microbiota and their metabolites, the renin-angiotensin system, and nitric oxide pathway. Resveratrol might be a potential reprogramming strategy to protect against the hypertension of developmental origins.


Asunto(s)
Arginina/análogos & derivados , Hipertensión/inducido químicamente , Hipertensión/prevención & control , Metilaminas/toxicidad , Resveratrol/farmacología , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacología , Arginina/toxicidad , Femenino , Microbioma Gastrointestinal/efectos de los fármacos , Embarazo , Efectos Tardíos de la Exposición Prenatal , Fenómenos Fisiologicos de la Nutrición Prenatal , Ratas , Sistema Renina-Angiotensina/efectos de los fármacos , Resveratrol/administración & dosificación
6.
Sci Total Environ ; 783: 146915, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-33872904

RESUMEN

The wide presence of volatile organic amines in atmosphere has been clarified to relate to adverse effects on human respiratory health. However, toxic effects of them on human respiratory tract and their metabiotic mechanism of in vivo transformation have not been elucidated yet. Herein, cell viability and production of reactive oxygen species (ROSs) were first investigated during acute exposure of trimethylamine (TMA) to bronchial epithelial cells (16HBE), along with identification of toxic metabolites and metabolic mechanisms of TMA from headspace atmosphere and cell culture. Results showed that cell activity decreased and ROS production increased with raising exposure TMA concentration. Toxic effects may be induced not only by TMA itself, but also more likely by its cellular metabolites. Increased dimethylamine identified in headspace atmosphere and cell solution was the main metabolite of TMA, and methylamine was also confirmed to be a further metabolite. In addition, TMA can also be oxygenated to generate N,N-dimethylformamide and N,N'-Bis(2-hydroxyethyl)-1,2-ethanediaminium by N-formylation or hydroxylation, which was considered to be the participation of cytochrome P450 (CYP) enzymes. Overall, we can conclude that respiratory tract cells may produce more toxic metabolites during exposure of toxic organic amines, which together further induce cellular oxidative stress and necrosis. Hence, the environment and health impact of metabolites as well as original parent atmospheric organic amines should be paid more attention in further researches and disease risk assessments.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Contaminantes Atmosféricos/toxicidad , Contaminantes Ambientales/toxicidad , Humanos , Metilaminas/toxicidad , Sistema Respiratorio
7.
Arch Toxicol ; 95(4): 1443-1462, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33550444

RESUMEN

Synthetic cathinones are among the most popular new psychoactive substances, being abused for their stimulant properties, which are similar to those of amphetamine and 3,4-methylenedioxymethamphetamine (MDMA). Considering that the liver is a likely target for cathinones-induced toxicity, and for their metabolic activation/detoxification, we aimed to determine the hepatotoxicity of three commonly abused synthetic cathinones: butylone, α-methylamino-butyrophenone (buphedrone) and 3,4-dimethylmethcathinone (3,4-DMMC). We characterized their cytotoxic profile in primary rat hepatocytes (PRH) and in the HepaRG and HepG2 cell lines. PRH was the most sensitive cell model, showing the lowest EC50 values for all three substances (0.158 mM for 3,4-DMMC; 1.21 mM for butylone; 1.57 mM for buphedrone). Co-exposure of PRH to the synthetic cathinones and CYP450 inhibitors (selective and non-selective) proved that hepatic metabolism reduced the toxicity of buphedrone but increased that of butylone and 3,4-DMMC. All compounds were able to increase oxidative stress, disrupting mitochondrial homeostasis and inducing apoptotic and necrotic features, while also increasing the occurrence of acidic vesicular organelles in PRH, compatible with autophagic activation. In conclusion, butylone, buphedrone and 3,4-DMMC have hepatotoxic potential, and their toxicity lies in the interference with a number of homeostatic processes, while being influenced by their metabolic fate.


Asunto(s)
3,4-Metilenodioxianfetamina/análogos & derivados , Butirofenonas/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/etiología , Metilaminas/toxicidad , Propiofenonas/toxicidad , 3,4-Metilenodioxianfetamina/administración & dosificación , 3,4-Metilenodioxianfetamina/toxicidad , Animales , Autofagia/efectos de los fármacos , Butirofenonas/administración & dosificación , Línea Celular Tumoral , Enfermedad Hepática Inducida por Sustancias y Drogas/patología , Drogas de Diseño/administración & dosificación , Drogas de Diseño/toxicidad , Relación Dosis-Respuesta a Droga , Células Hep G2 , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Humanos , Masculino , Metilaminas/administración & dosificación , Estrés Oxidativo/efectos de los fármacos , Propiofenonas/administración & dosificación , Ratas , Ratas Wistar
8.
Toxicol Appl Pharmacol ; 416: 115442, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33609514

RESUMEN

Cathinone derivatives are the most representative group within new drugs market, which have been described as neurotoxic. Since cathinones, as pentedrone and methylone, are available as racemates, it is our aim to study the neuronal cytotoxicity induced by each enantiomer. Therefore, a dopaminergic SH-SY5Y cell line was used to evaluate the hypothesis of enantioselectivity of pentedrone and methylone enantiomers on cytotoxicity, oxidative stress, and membrane efflux transport (confirmed by in silico studies). Our study demonstrated enantioselectivity of these cathinones, being the S-(+)-pentedrone and R-(+)-methylone the most oxidative enantiomers and also the most cytotoxic, suggesting the oxidative stress as main cytotoxic mechanism, as previously described in in vitro studies. Additionally, the efflux transporter multidrug resistance associated protein 1 (MRP1) seems to play, together with GSH, a selective protective role against the cytotoxicity induced by R-(-)-pentedrone enantiomer. It was also observed an enantioselectivity in the binding to P-glycoprotein (P-gp), another efflux protein, being the R-(-)-pentedrone and S-(-)-methylone the most transported enantiomeric compounds. These results were confirmed, in silico, by docking studies, revealing that R-(-)-pentedrone is the enantiomer with highest affinity to MRP1 and S-(-)-methylone and R-(-)-pentedrone are the enantiomers with highest affinity to P-gp. In conclusion, our data demonstrated that pentedrone and methylone present enantioselectivity in their cytotoxicity, which seems to involve different oxidative reactivity as well as different affinity to the P-gp and MRP1 that together with GSH play a protective role.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Alcaloides/toxicidad , Neuronas Dopaminérgicas/efectos de los fármacos , Metanfetamina/análogos & derivados , Metilaminas/toxicidad , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Pentanonas/toxicidad , Alcaloides/química , Alcaloides/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Humanos , Metanfetamina/química , Metanfetamina/metabolismo , Metanfetamina/toxicidad , Metilaminas/química , Metilaminas/metabolismo , Simulación del Acoplamiento Molecular , Pentanonas/química , Pentanonas/metabolismo , Unión Proteica , Estereoisomerismo
9.
Life Sci ; 271: 119173, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33556375

RESUMEN

AIMS: Cell cycle arrest plays critical roles in preventing renal tubular epithelial cell (RTEC) injury and maladaptation after the onset of chronic kidney disease (CKD), but the underlying mechanism governing this arrest has not been fully elucidated. This study was designed to determine the underlying role of YB-1 in promoting cell cycle progression and nuclear translocation in HK-2 cells induced by trimethylamine N-oxide (TMAO). MAIN METHODS: YB-1 primarily accumulated in the cytoplasm in HK-2 cells after they were treated with TMAO for 30 min and 6 h. Gene expression was analysed using RNA sequencing in HK-2 cells treated with TMAO. Cell cycle progression was analysed via flow cytometry. Luciferase assay and ChIP-PCR were performed to determine the relationship between transcription factor YB-1 and Gadd45a promoter region. Additionally, mice were fed with TMAO to test renal dysfunction and measure the expression of YB-1, GADD45a and CCNA2 in the kidney sections through immunohistochemistry. KEY FINDINGS: YB-1 primarily accumulated in the cytoplasm in HK-2 cells after they were treated with TMAO for 30 min and 6 h. RNA sequencing analysis showed that the cell cycle checkpoint genes growth arrest and DNA damage (Gadd)45a, Gadd45g, cyclin (Ccn)a2, Ccnb1, Ccne1 and Ccnf were differentially expressed in HK-2 cells after treated with 400 µM TMAO for 30 min. Flow cytometry results demonstrated that cell cycle progression was blocked at the G2/M checkpoint. In animal models, elevated dietary TMAO directly led to progressive renal tubulointerstitial dysfunction and inhibited the expression of YB-1 in kidney. Moreover, YB-1 was determined to regulate Gadd45a expression by directly binding to its promoter region. YB-1 expression was negatively correlated with the expression of Gadd45a and Gadd45g but positively correlated with Ccna2, Ccnb1, Ccne1 and Ccnf in CKD. SIGNIFICANCE: YB-1 may be a reliable molecular target and an effective prognostic biomarker for CKD.


Asunto(s)
Proteínas de Ciclo Celular/biosíntesis , Ciclo Celular/fisiología , Regulación hacia Abajo/fisiología , Metilaminas/toxicidad , Insuficiencia Renal Crónica/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/fisiología , Animales , Ciclo Celular/efectos de los fármacos , Proteínas de Ciclo Celular/antagonistas & inhibidores , Proteínas de Ciclo Celular/genética , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Expresión Génica , Humanos , Túbulos Renales/citología , Túbulos Renales/efectos de los fármacos , Túbulos Renales/metabolismo , Ratones Endogámicos C57BL , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/genética
10.
J Food Sci ; 86(2): 546-562, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33438268

RESUMEN

Previous research has shown that the extracts from the Ganoderma lucidum spore (GS) have potentially cardioprotective effects, but there is still abundant room for development in determining its mechanism. In this study, the rat model of cardiac dysfunction was established by intraperitoneal injection of trimethylamine-N-oxide (TMAO), and the extracts of GS (oil, lipophilic components, and polysaccharides) were given intragastrically at a dose of 50 mg/kg/day to screen the pharmacological active components of GS. After 50 days of treatments, we found that the extraction from GS reduced the levels of total cholesterol, triglyceride, and low-density lipoprotein; increased the levels of high-density lipoprotein; and reduced the levels of serum TMAO when compared to the model group (P < 0.05); especially the GS polysaccharides (DT) and GS lipophilic components (XF) exhibited decreases in serum TMAO compared to TMAO-induced control. The results of 16S rRNA sequencing showed that GS could change the gut microbiota, increasing the abundance of Firmicutes and Proteobacteria in the DT-treated group and XF-treated group, while reducing the abundance of Actinobacteria and Tenericutes. Quantitative proteomics analysis showed that GS extracts (DT and XF) could regulate the expression of some related proteins, such as Ucp1 (XF-TMAO/M-TMAO ratio is 2.76), Mpz (8.52), Fasn (2.39), Nefl (1.85), Mtnd5 (0.83), Mtnd2 (0.36), S100a8 (0.69), S100a9 (0.70), and Bdh1 (0.72). The results showed that XF can maintain the metabolic balance and function of the heart by regulating the expression of some proteins related to cardiovascular disease, and DT can reduce the risk of cardiovascular diseases by targeting gut microbiota.


Asunto(s)
Cardiopatías/inducido químicamente , Cardiopatías/prevención & control , Metilaminas/toxicidad , Reishi/química , Animales , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/genética , Microbioma Gastrointestinal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Masculino , Óxidos/farmacología , ARN Ribosómico 16S/genética , Ratas , Esporas
11.
Ecotoxicol Environ Saf ; 208: 111677, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396009

RESUMEN

CH3NH3PbI3 is one of the most widely studied and most promising photoelectric conversion materials for large-scale application. However, once it is discharged into the aquatic environment, it will release a variety of lethal substances to the aquatic organisms. Herein, two typical aquatic pollution indicators, Scenedesmus obliquus (a typical phytoplankton) and Daphnia magna (a typical zooplankton), were used to assess the acute effects of CH3NH3PbI3 perovskite on aquatic organisms. The results showed that, when the initial CH3NH3PbI3 perovskite level (CPL) was 40 mg L-1 or higher, the growth of S. obliquus would be remarkably inhibited with significant decreases of chlorophyll content and protein content. And when the CPL was over 5 mg L-1, the survival of D. magna would be notably threatened. Specifically, the 72 h EC-50 of CH3NH3PbI3 perovskite to S. obliquus was calculated as 37.21 mg L-1, and the 24 h LC-50 of this perovskite to D. magna adults and neonates were calculated as 37.53 mg L-1 and 18.55 mg L-1, respectively. Moreover, remarkably solution pH declination and large amounts of lead bio-accumulation was observed in the both acute experiments, which could be the main reasons causing the above acute effects. Considering the strong acute effects of these CH3NH3PbI3 perovskite materials and their attractive application prospect, more attentions should be paid on their harmness to the environment.


Asunto(s)
Compuestos de Calcio/toxicidad , Daphnia/efectos de los fármacos , Plomo/toxicidad , Metilaminas/toxicidad , Óxidos/toxicidad , Scenedesmus/efectos de los fármacos , Titanio/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Organismos Acuáticos/efectos de los fármacos , Compuestos de Calcio/química , Humanos , Plomo/química , Metilaminas/química , Óxidos/química , Propiedades de Superficie , Titanio/química , Pruebas de Toxicidad Aguda , Contaminantes Químicos del Agua/química
12.
Neurotox Res ; 39(2): 392-412, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32535718

RESUMEN

N-Ethylhexedrone (NEH) and buphedrone (Buph) are emerging synthetic cathinones (SC) with limited information about their detrimental effects within central nervous system. Objectives: To distinguish mice behavioural changes by NEH and Buph and validate their differential harmful impact on human neurons and microglia. In vivo safety data showed the typical induced behaviour of excitation and stereotypies with 4-64 mg/kg, described for other SC. Buph additionally produced jumping and aggressiveness signs, while NEH caused retropulsion and circling. Transient reduction in body-weight gain was obtained with NEH at 16 mg/kg and induced anxiolytic-like behaviour mainly with Buph. Both drugs generated place preference shift in mice at 4 and 16 mg/kg, suggestive of abuse potential. In addition, mice withdrawn NEH displayed behaviour suggestive of depression, not seen with Buph. When tested at 50-400 µM in human nerve cell lines, NEH and Buph caused neuronal viability loss at 100 µM, but only NEH produced similar results in microglia, indicating different cell susceptibilities. NEH mainly induced microglial late apoptosis/necrosis, while Buph caused early apoptosis. NEH was unique in triggering microglia shorter/thicker branches indicative of cell activation, and more effective in increasing microglial lysosomal biogenesis (100 µM vs. 400 µM Buph), though both produced the same effect on neurons at 400 µM. These findings indicate that NEH and Buph exert neuro-microglia toxicities by distinct mechanisms and highlight NEH as a specific inducer of microglia activation. Buph and NEH showed in vivo/in vitro neurotoxicities but enhanced specific NEH-induced behavioural and neuro-microglia dysfunctionalities pose safety concerns over that of Buph.


Asunto(s)
Alcaloides/toxicidad , Conducta Animal/efectos de los fármacos , Butirofenonas/toxicidad , Metilaminas/toxicidad , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Humanos , Masculino , Ratones , Microglía/efectos de los fármacos
13.
Hypertension ; 76(1): 101-112, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32520619

RESUMEN

Age-related vascular endothelial dysfunction is a major antecedent to cardiovascular diseases. We investigated whether increased circulating levels of the gut microbiome-generated metabolite trimethylamine-N-oxide induces endothelial dysfunction with aging. In healthy humans, plasma trimethylamine-N-oxide was higher in middle-aged/older (64±7 years) versus young (22±2 years) adults (6.5±0.7 versus 1.6±0.2 µmol/L) and inversely related to brachial artery flow-mediated dilation (r2=0.29, P<0.00001). In young mice, 6 months of dietary supplementation with trimethylamine-N-oxide induced an aging-like impairment in carotid artery endothelium-dependent dilation to acetylcholine versus control feeding (peak dilation: 79±3% versus 95±3%, P<0.01). This impairment was accompanied by increased vascular nitrotyrosine, a marker of oxidative stress, and reversed by the superoxide dismutase mimetic 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl. Trimethylamine-N-oxide supplementation also reduced activation of endothelial nitric oxide synthase and impaired nitric oxide-mediated dilation, as assessed with the nitric oxide synthase inhibitor L-NAME (NG-nitro-L-arginine methyl ester). Acute incubation of carotid arteries with trimethylamine-N-oxide recapitulated these events. Next, treatment with 3,3-dimethyl-1-butanol for 8 to 10 weeks to suppress trimethylamine-N-oxide selectively improved endothelium-dependent dilation in old mice to young levels (peak: 90±2%) by normalizing vascular superoxide production, restoring nitric oxide-mediated dilation, and ameliorating superoxide-related suppression of endothelium-dependent dilation. Lastly, among healthy middle-aged/older adults, higher plasma trimethylamine-N-oxide was associated with greater nitrotyrosine abundance in biopsied endothelial cells, and infusion of the antioxidant ascorbic acid restored flow-mediated dilation to young levels, indicating tonic oxidative stress-related suppression of endothelial function with higher circulating trimethylamine-N-oxide. Using multiple experimental approaches in mice and humans, we demonstrate a clear role of trimethylamine-N-oxide in promoting age-related endothelial dysfunction via oxidative stress, which may have implications for prevention of cardiovascular diseases.


Asunto(s)
Envejecimiento/fisiología , Endotelio Vascular/efectos de los fármacos , Metilaminas/toxicidad , Estrés Oxidativo/efectos de los fármacos , Acetilcolina/farmacología , Adolescente , Adulto , Anciano , Envejecimiento/sangre , Animales , Antioxidantes/farmacología , Ácido Ascórbico/farmacología , Arteria Braquial/efectos de los fármacos , Arteria Braquial/fisiología , Arterias Carótidas/efectos de los fármacos , Arterias Carótidas/fisiología , Óxidos N-Cíclicos/farmacología , Suplementos Dietéticos , Microbioma Gastrointestinal , Humanos , Metilaminas/administración & dosificación , Metilaminas/sangre , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Óxido Nítrico/sangre , Óxido Nítrico Sintasa de Tipo III/metabolismo , Marcadores de Spin , Superóxidos/metabolismo , Tirosina/análogos & derivados , Tirosina/sangre , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología , Adulto Joven
14.
Toxicol Lett ; 331: 42-52, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-32464236

RESUMEN

Synthetic cathinones abuse remains a serious public health problem. Kidney injury has been reported in intoxications associated with synthetic cathinones, but the molecular mechanisms involved have not been explored yet. In this study, the potential in vitro nephrotoxic effects of four commonly abused cathinone derivatives, namely pentedrone, 3,4-dimethylmethcatinone (3,4-DMMC), methylone and 3,4-methylenedioxypyrovalerone (MDPV), were assessed in the human kidney HK-2 cell line. All four derivatives elicited cell death in a concentration- and time-dependent manner, in the following order of potency: 3,4-DMMC >> MDPV > methylone ≈ pentedrone. 3,4-DMMC and methylone were selected to further elucidate the mechanisms behind synthetic cathinones-induced cell death. Both drugs elicited apoptotic cell death and prompted the formation of acidic vesicular organelles and autophagosomes in HK-2 cells. Moreover, the autophagy inhibitor 3-methyladenine significantly potentiated cell death, indicating that autophagy may serve as a cell survival mechanism that protects renal cells against synthetic cathinones toxicity. Both drugs triggered a rise in reactive oxygen and nitrogen species formation, which was completely prevented by antioxidant treatment with N­acetyl­L­cysteine or ascorbic acid. Importantly, these antioxidant agents significantly aggravated renal cell death induced by cathinone derivatives, most likely due to their autophagy-blocking properties. Taken together, our results support an intricate control of cell survival/death modulated by oxidative stress, apoptosis and autophagy in synthetic cathinones-induced renal injury.


Asunto(s)
Alcaloides/toxicidad , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Drogas Ilícitas/toxicidad , Riñón/efectos de los fármacos , Alcaloides/química , Benzodioxoles/química , Benzodioxoles/toxicidad , Técnicas de Cultivo de Célula , Línea Celular , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Riñón/metabolismo , Riñón/patología , Metanfetamina/análogos & derivados , Metanfetamina/química , Metanfetamina/toxicidad , Metilaminas/química , Metilaminas/toxicidad , Pentanonas/química , Pentanonas/toxicidad , Pirrolidinas/química , Pirrolidinas/toxicidad , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo , Cathinona Sintética
15.
Int J Mol Sci ; 21(8)2020 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-32325754

RESUMEN

Halogenation of amphetamines and methcathinones has become a common method to obtain novel psychoactive substances (NPS) also called "legal highs". The para-halogenated derivatives of amphetamine and methcathinone are available over the internet and have entered the illicit drug market but studies on their potential neurotoxic effects are rare. The primary aim of this study was to explore the neurotoxicity of amphetamine, methcathinone and their para-halogenated derivatives 4-fluoroamphetamine (4-FA), 4-chloroamphetamine (PCA), 4-fluoromethcathinone (4-FMC), and 4-chloromethcathinone (4-CMC) in undifferentiated and differentiated SH-SY5Y cells. We found that 4-FA, PCA, and 4-CMC were cytotoxic (decrease in cellular ATP and plasma membrane damage) for both cell types, whereby differentiated cells were less sensitive. IC50 values for cellular ATP depletion were in the range of 1.4 mM for 4-FA, 0.4 mM for PCA and 1.4 mM for 4-CMC. The rank of cytotoxicity observed for the para-substituents was chloride > fluoride > hydrogen for both amphetamines and cathinones. Each of 4-FA, PCA and 4-CMC decreased the mitochondrial membrane potential in both cell types, and PCA and 4-CMC impaired the function of the electron transport chain of mitochondria in SH-SY5Y cells. 4-FA, PCA, and 4-CMC increased the ROS level and PCA and 4-CMC induced apoptosis by the endogenous pathway. In conclusion, para-halogenation of amphetamine and methcathinone increases their neurotoxic properties due to the impairment of mitochondrial function and induction of apoptosis. Although the cytotoxic concentrations were higher than those needed for pharmacological activity, the current findings may be important regarding the uncontrolled recreational use of these compounds.


Asunto(s)
Anfetamina/toxicidad , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Neuroblastoma/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Anfetamina/química , Anfetamina/metabolismo , Anfetaminas/metabolismo , Anfetaminas/toxicidad , Línea Celular Tumoral , Transporte de Electrón/efectos de los fármacos , Halogenación , Humanos , Concentración 50 Inhibidora , Metilaminas/metabolismo , Metilaminas/toxicidad , Mitocondrias/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Propiofenonas/metabolismo , Propiofenonas/toxicidad , Especies Reactivas de Oxígeno/metabolismo , Superóxidos/metabolismo
16.
Am J Physiol Heart Circ Physiol ; 318(5): H1272-H1282, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32243768

RESUMEN

Cardiovascular disease is a major cause of morbidity and mortality among patients with chronic kidney disease (CKD). Trimethylamine-N-oxide (TMAO), a uremic metabolite that is elevated in the setting of CKD, has been implicated as a nontraditional risk factor for cardiovascular disease. While association studies have linked elevated plasma levels of TMAO to adverse cardiovascular outcomes, its direct effect on cardiac and smooth muscle function remains to be fully elucidated. We hypothesized that pathological concentrations of TMAO would acutely increase cardiac and smooth muscle contractility. These effects may ultimately contribute to cardiac dysfunction during CKD. High levels of TMAO significantly increased paced, ex vivo human cardiac muscle biopsy contractility (P < 0.05). Similarly, TMAO augmented contractility in isolated mouse hearts (P < 0.05). Reverse perfusion of TMAO through the coronary arteries via a Langendorff apparatus also enhanced cardiac contractility (P < 0.05). In contrast, the precursor molecule, trimethylamine (TMA), did not alter contractility (P > 0.05). Multiphoton microscopy, used to capture changes in intracellular calcium in paced, adult mouse hearts ex vivo, showed that TMAO significantly increased intracellular calcium fluorescence (P < 0.05). Interestingly, acute administration of TMAO did not have a statistically significant influence on isolated aortic ring contractility (P > 0.05). We conclude that TMAO directly increases the force of cardiac contractility, which corresponds with TMAO-induced increases in intracellular calcium but does not acutely affect vascular smooth muscle or endothelial function of the aorta. It remains to be determined if this acute inotropic action on cardiac muscle is ultimately beneficial or harmful in the setting of CKD.NEW & NOTEWORTHY We demonstrate for the first time that elevated concentrations of TMAO acutely augment myocardial contractile force ex vivo in both murine and human cardiac tissue. To gain mechanistic insight into the processes that led to this potentiation in cardiac contraction, we used two-photon microscopy to evaluate intracellular calcium in ex vivo whole hearts loaded with the calcium indicator dye Fluo-4. Acute treatment with TMAO resulted in increased Fluo-4 fluorescence, indicating that augmented cytosolic calcium plays a role in the effects of TMAO on force production. Lastly, TMAO did not show an effect on aortic smooth muscle contraction or relaxation properties. Our results demonstrate novel, acute, and direct actions of TMAO on cardiac function and help lay the groundwork for future translational studies investigating the complex multiorgan interplay involved in cardiovascular pathogenesis during CKD.


Asunto(s)
Corazón/efectos de los fármacos , Metilaminas/farmacología , Contracción Miocárdica , Anciano , Animales , Aorta/efectos de los fármacos , Aorta/fisiología , Femenino , Corazón/fisiología , Humanos , Masculino , Metilaminas/toxicidad , Ratones , Persona de Mediana Edad , Músculo Liso/efectos de los fármacos , Músculo Liso/fisiología , Ratas , Ratas Sprague-Dawley
17.
Int Heart J ; 61(2): 355-363, 2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-32173700

RESUMEN

Heart failure (HF) is a disease with high morbidity and mortality. In patients with HF, decreased cardiac output and blood redistribution results in decreased intestinal perfusion and destruction of intestinal barrier. Microorganisms and endotoxins can migrate into the blood circulation, aggravating systemic inflammation and HF. Trimethylamine N-oxide (TMAO) is highly closed to the occurrence of HF. However, the exact mechanism between TMAO and HF remains unclear.To investigate the role of TMAO in transverse-tubule (T-tubule) in the cultured cardiomyocytes.T-tubule imaging and analysis detected T-tubule network in cardiomyocytes. Ca2+ handling dysfunction was identified by confocal Ca2+ imaging. Tubulin densification and polymerization were assessed by western blot and immunofluorescent staining of cardiomyocytes.TMAO induced T-tubule network damage in cardiomyocytes and Ca2+ handling dysfunction in cardiomyocytes under the TMAO stress via promoting tubulin densification and polymerization and therefore Junctophilin-2 (JPH2) redistribution. Mice treated with TMAO represented cardiac dysfunction and T-tubule network disorganization.TMAO impairs cardiac function via the promotion of tubulin polymerization, subsequent translocation of JPH2, and T-tubule remodeling, which provides a novel mechanism for the relationship between HF and elevated TMAO.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Metilaminas/toxicidad , Microtúbulos/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Calcio/metabolismo , Células Cultivadas , Acoplamiento Excitación-Contracción , Insuficiencia Cardíaca/etiología , Masculino , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Microtúbulos/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Tubulina (Proteína)/metabolismo
19.
Arterioscler Thromb Vasc Biol ; 40(3): 751-765, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31941382

RESUMEN

OBJECTIVES: Vascular calcification is highly prevalent in patients with chronic kidney disease. Increased plasma trimethylamine N-oxide (TMAO), a gut microbiota-dependent product, concentrations are found in patients undergoing hemodialysis. However, a clear mechanistic link between TMAO and vascular calcification is not yet established. In this study, we investigate whether TMAO participates in the progression of vascular calcification using in vitro, ex vivo, and in vivo models. Approach and Results: Alizarin red staining revealed that TMAO promoted calcium/phosphate-induced calcification of rat and human vascular smooth muscle cells in a dose-dependent manner, and this was confirmed by calcium content assay. Similarly, TMAO upregulated the expression of bone-related molecules including Runx2 (Runt-related transcription factor 2) and BMP2 (bone morphogenetic protein-2), suggesting that TMAO promoted osteogenic differentiation of vascular smooth muscle cells. In addition, ex vivo study also showed the positive regulatory effect of TMAO on vascular calcification. Furthermore, we found that TMAO accelerated vascular calcification in rats with chronic kidney disease, as indicated by Mico-computed tomography analysis, alizarin red staining and calcium content assay. By contrast, reducing TMAO levels by antibiotics attenuated vascular calcification in chronic kidney disease rats. Interestingly, TMAO activated NLRP3 (nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3) inflammasome and NF-κB (nuclear factor κB) signals during vascular calcification. Inhibition of NLRP3 inflammasome and NF-κB signals attenuated TMAO-induced vascular smooth muscle cell calcification. CONCLUSIONS: This study for the first time demonstrates that TMAO promotes vascular calcification through activation of NLRP3 inflammasome and NF-κB signals, suggesting the potential link between gut microbial metabolism and vascular calcification. Reducing the levels of TMAO could become a potential treatment strategy for vascular calcification in chronic kidney disease.


Asunto(s)
Inflamasomas/efectos de los fármacos , Metilaminas/toxicidad , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Osteogénesis/efectos de los fármacos , Calcificación Vascular/inducido químicamente , Adulto , Anciano , Animales , Antibacterianos/farmacología , Aorta Torácica/efectos de los fármacos , Aorta Torácica/metabolismo , Aorta Torácica/patología , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Inflamasomas/metabolismo , Masculino , Metilaminas/metabolismo , Persona de Mediana Edad , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/metabolismo , Transducción de Señal , Arterias Tibiales/efectos de los fármacos , Arterias Tibiales/metabolismo , Arterias Tibiales/patología , Técnicas de Cultivo de Tejidos , Calcificación Vascular/metabolismo , Calcificación Vascular/patología , Calcificación Vascular/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...