Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 273
1.
Cell Host Microbe ; 32(1): 63-78.e7, 2024 Jan 10.
Article En | MEDLINE | ID: mdl-38056459

Propionate is a short-chain fatty acid that is generated upon microbiome-mediated fiber fermentation in the intestine. By modulating immune and metabolic pathways, propionate exerts many health benefits. Key bacterial species, such as Bacteroides thetaiotaomicron, generate propionate, but the biochemical pathways and specific functions remain undetermined. We identified a gene operon-encoding methylmalonyl-CoA mutase (MCM) that contributes to propionate biosynthesis in B. thetaiotaomicron. Colonization of germ-free mice with wild-type or MCM-deficient strains as well as in vitro examination demonstrated that MCM-mediated propionate production promotes goblet cell differentiation and mucus-related gene expression. Intestinal organoids lacking the propionate receptor, GPR41, showed reduced goblet cell differentiation upon MCM-mediated propionate production. Furthermore, although wild-type B. thetaiotaomicron alleviated DSS-induced intestinal inflammation, this effect was abolished in mice receiving the MCM-deficient strain but restored upon propionate supplementation. These data emphasize the critical role of MCM-mediated propionate biosynthesis in goblet cell differentiation, offering potential pathways to ameliorate colitis.


Methylmalonyl-CoA Mutase , Propionates , Mice , Animals , Methylmalonyl-CoA Mutase/genetics , Methylmalonyl-CoA Mutase/metabolism , Propionates/pharmacology , Propionates/metabolism , Bacteroides/metabolism , Cell Differentiation , Homeostasis
2.
Nat Commun ; 14(1): 4332, 2023 07 19.
Article En | MEDLINE | ID: mdl-37468522

G-proteins function as molecular switches to power cofactor translocation and confer fidelity in metal trafficking. The G-protein, MMAA, together with MMAB, an adenosyltransferase, orchestrate cofactor delivery and repair of B12-dependent human methylmalonyl-CoA mutase (MMUT). The mechanism by which the complex assembles and moves a >1300 Da cargo, or fails in disease, are poorly understood. Herein, we report the crystal structure of the human MMUT-MMAA nano-assembly, which reveals a dramatic 180° rotation of the B12 domain, exposing it to solvent. The complex, stabilized by MMAA wedging between two MMUT domains, leads to ordering of the switch I and III loops, revealing the molecular basis of mutase-dependent GTPase activation. The structure explains the biochemical penalties incurred by methylmalonic aciduria-causing mutations that reside at the MMAA-MMUT interfaces we identify here.


Amino Acid Metabolism, Inborn Errors , Intramolecular Transferases , Humans , Methylmalonyl-CoA Mutase/genetics , Methylmalonyl-CoA Mutase/metabolism , Mutation , Amino Acid Metabolism, Inborn Errors/genetics , GTP-Binding Proteins/genetics , GTP Phosphohydrolases/metabolism , Intramolecular Transferases/genetics
3.
J Biol Chem ; 299(9): 105109, 2023 09.
Article En | MEDLINE | ID: mdl-37517695

G-protein metallochaperones are essential for the proper maturation of numerous metalloenzymes. The G-protein chaperone MMAA in humans (MeaB in bacteria) uses GTP hydrolysis to facilitate the delivery of adenosylcobalamin (AdoCbl) to AdoCbl-dependent methylmalonyl-CoA mutase, an essential metabolic enzyme. This G-protein chaperone also facilitates the removal of damaged cobalamin (Cbl) for repair. Although most chaperones are standalone proteins, isobutyryl-CoA mutase fused (IcmF) has a G-protein domain covalently attached to its target mutase. We previously showed that dimeric MeaB undergoes a 180° rotation to reach a state capable of GTP hydrolysis (an active G-protein state), in which so-called switch III residues of one protomer contact the G-nucleotide of the other protomer. However, it was unclear whether other G-protein chaperones also adopted this conformation. Here, we show that the G-protein domain in a fused system forms a similar active conformation, requiring IcmF oligomerization. IcmF oligomerizes both upon Cbl damage and in the presence of the nonhydrolyzable GTP analog, guanosine-5'-[(ß,γ)-methyleno]triphosphate, forming supramolecular complexes observable by mass photometry and EM. Cryo-EM structural analysis reveals that the second protomer of the G-protein intermolecular dimer props open the mutase active site using residues of switch III as a wedge, allowing for AdoCbl insertion or damaged Cbl removal. With the series of structural snapshots now available, we now describe here the molecular basis of G-protein-assisted AdoCbl-dependent mutase maturation, explaining how GTP binding prepares a mutase for cofactor delivery and how GTP hydrolysis allows the mutase to capture the cofactor.


Cobamides , Methylmalonyl-CoA Mutase , Models, Molecular , Molecular Chaperones , Cobamides/metabolism , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/metabolism , Guanosine Triphosphate/metabolism , Isomerases/chemistry , Isomerases/metabolism , Methylmalonyl-CoA Mutase/chemistry , Methylmalonyl-CoA Mutase/metabolism , Molecular Chaperones/metabolism , Protein Subunits/chemistry , Protein Subunits/metabolism , Cupriavidus/chemistry , Cupriavidus/enzymology , Protein Structure, Quaternary , Catalytic Domain , Coenzymes/metabolism
4.
J Inherit Metab Dis ; 46(4): 554-572, 2023 07.
Article En | MEDLINE | ID: mdl-37243446

Methylmalonic Acidemia (MMA) is a heterogenous group of inborn errors of metabolism caused by a defect in the methylmalonyl-CoA mutase (MMUT) enzyme or the synthesis and transport of its cofactor, 5'-deoxy-adenosylcobalamin. It is characterized by life-threatening episodes of ketoacidosis, chronic kidney disease, and other multiorgan complications. Liver transplantation can improve patient stability and survival and thus provides clinical and biochemical benchmarks for the development of hepatocyte-targeted genomic therapies. Data are presented from a US natural history protocol that evaluated subjects with different types of MMA including mut-type (N = 91), cblB-type (15), and cblA-type MMA (17), as well as from an Italian cohort of mut-type (N = 19) and cblB-type MMA (N = 2) subjects, including data before and after organ transplantation in both cohorts. Canonical metabolic markers, such as serum methylmalonic acid and propionylcarnitine, are variable and affected by dietary intake and renal function. We have therefore explored the use of the 1-13 C-propionate oxidation breath test (POBT) to measure metabolic capacity and the changes in circulating proteins to assess mitochondrial dysfunction (fibroblast growth factor 21 [FGF21] and growth differentiation factor 15 [GDF15]) and kidney injury (lipocalin-2 [LCN2]). Biomarker concentrations are higher in patients with the severe mut0 -type and cblB-type MMA, correlate with a decreased POBT, and show a significant response postliver transplant. Additional circulating and imaging markers to assess disease burden are necessary to monitor disease progression. A combination of biomarkers reflecting disease severity and multisystem involvement will be needed to help stratify patients for clinical trials and assess the efficacy of new therapies for MMA.


Amino Acid Metabolism, Inborn Errors , Humans , Mutation , Amino Acid Metabolism, Inborn Errors/diagnosis , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/complications , Biomarkers , Disease Progression , Methylmalonic Acid , Methylmalonyl-CoA Mutase/genetics , Methylmalonyl-CoA Mutase/metabolism
5.
Sci Rep ; 13(1): 7677, 2023 05 11.
Article En | MEDLINE | ID: mdl-37169781

Methylmalonic aciduria (MMA-uria) is caused by deficiency of the mitochondrial enzyme methylmalonyl-CoA mutase (MUT). MUT deficiency hampers energy generation from specific amino acids, odd-chain fatty acids and cholesterol. Chronic kidney disease (CKD) is a well-known long-term complication. We exposed human renal epithelial cells from healthy controls and MMA-uria patients to different culture conditions (normal treatment (NT), high protein (HP) and isoleucine/valine (I/V)) to test the effect of metabolic stressors on renal mitochondrial energy metabolism. Creatinine levels were increased and antioxidant stress defense was severely comprised in MMA-uria cells. Alterations in mitochondrial homeostasis were observed. Changes in tricarboxylic acid cycle metabolites and impaired energy generation from fatty acid oxidation were detected. Methylcitrate as potentially toxic, disease-specific metabolite was increased by HP and I/V load. Mitophagy was disabled in MMA-uria cells, while autophagy was highly active particularly under HP and I/V conditions. Mitochondrial dynamics were shifted towards fission. Sirtuin1, a stress-resistance protein, was down-regulated by HP and I/V exposure in MMA-uria cells. Taken together, both interventions aggravated metabolic fingerprints observed in MMA-uria cells at baseline. The results point to protein toxicity in MMA-uria and lead to a better understanding, how the accumulating, potentially toxic organic acids might trigger CKD.


Amino Acid Metabolism, Inborn Errors , Renal Insufficiency, Chronic , Humans , Homeostasis , Methylmalonyl-CoA Mutase/metabolism , Epithelial Cells/metabolism
6.
J Inherit Metab Dis ; 46(3): 436-449, 2023 05.
Article En | MEDLINE | ID: mdl-37078237

Methylmalonic acidemia (MMA) is a severe inborn error of metabolism that is characterized by pleiotropic metabolic perturbations and multiorgan pathology. Treatment options are limited and non-curative as the underlying causative molecular mechanisms remain unknown. While earlier studies have focused on the potential direct toxicity of metabolites such as methylmalonic and propionic acid as a mechanism to explain disease pathophysiology, new observations have revealed that aberrant acylation, specifically methylmalonylation, is a characteristic feature of MMA. The mitochondrial sirtuin enzyme SIRT5 is capable of recognizing and removing this PTM, however, reduced protein levels of SIRT5 along with other mitochondrial SIRTs 3 and 4 in MMA and potentially reduced function of all three indicates aberrant acylation may require clinical intervention. Therefore, targeting posttranslational modifications may represent a new therapeutic approach to treat MMA and related organic acidemias.


Amino Acid Metabolism, Inborn Errors , Propionic Acidemia , Humans , Amino Acid Metabolism, Inborn Errors/therapy , Mitochondria/metabolism , Methylmalonyl-CoA Mutase/metabolism , Methylmalonic Acid
7.
Proc Natl Acad Sci U S A ; 120(11): e2220677120, 2023 03 14.
Article En | MEDLINE | ID: mdl-36888659

Control over transition metal redox state is essential for metalloprotein function and can be achieved via coordination chemistry and/or sequestration from bulk solvent. Human methylmalonyl-Coenzyme A (CoA) mutase (MCM) catalyzes the isomerization of methylmalonyl-CoA to succinyl-CoA using 5'-deoxyadenosylcobalamin (AdoCbl) as a metallocofactor. During catalysis, the occasional escape of the 5'-deoxyadenosine (dAdo) moiety leaves the cob(II)alamin intermediate stranded and prone to hyperoxidation to hydroxocobalamin, which is recalcitrant to repair. In this study, we have identified the use of bivalent molecular mimicry by ADP, coopting the 5'-deoxyadenosine and diphosphate moieties in the cofactor and substrate, respectively, to protect against cob(II)alamin overoxidation on MCM. Crystallographic and electron paramagnetic resonance (EPR) data reveal that ADP exerts control over the metal oxidation state by inducing a conformational change that seals off solvent access, rather than by switching five-coordinate cob(II)alamin to the more air stable four-coordinate state. Subsequent binding of methylmalonyl-CoA (or CoA) promotes cob(II)alamin off-loading from MCM to adenosyltransferase for repair. This study identifies an unconventional strategy for controlling metal redox state by an abundant metabolite to plug active site access, which is key to preserving and recycling a rare, but essential, metal cofactor.


Molecular Mimicry , Vitamin B 12 , Humans , Oxidation-Reduction , Adenosine Diphosphate/metabolism , Vitamin B 12/metabolism , Methylmalonyl-CoA Mutase/chemistry , Methylmalonyl-CoA Mutase/metabolism
8.
Proc Natl Acad Sci U S A ; 120(8): e2214085120, 2023 02 21.
Article En | MEDLINE | ID: mdl-36787360

G-protein metallochaperone MeaB in bacteria [methylmalonic aciduria type A (MMAA) in humans] is responsible for facilitating the delivery of adenosylcobalamin (AdoCbl) to methylmalonyl-CoA mutase (MCM), the only AdoCbl-dependent enzyme in humans. Genetic defects in the switch III region of MMAA lead to the genetic disorder methylmalonic aciduria in which the body is unable to process certain lipids. Here, we present a crystal structure of Methylobacterium extorquens MeaB bound to a nonhydrolyzable guanosine triphosphate (GTP) analog guanosine-5'-[(ß,γ)-methyleno]triphosphate (GMPPCP) with the Cbl-binding domain of its target mutase enzyme (MeMCMcbl). This structure provides an explanation for the stimulation of the GTP hydrolyase activity of MeaB afforded by target protein binding. We find that upon MCMcbl association, one protomer of the MeaB dimer rotates ~180°, such that the inactive state of MeaB is converted to an active state in which the nucleotide substrate is now surrounded by catalytic residues. Importantly, it is the switch III region that undergoes the largest change, rearranging to make direct contacts with the terminal phosphate of GMPPCP. These structural data additionally provide insights into the molecular basis by which this metallochaperone contributes to AdoCbl delivery without directly binding the cofactor. Our data suggest a model in which GTP-bound MeaB stabilizes a conformation of MCM that is open for AdoCbl insertion, and GTP hydrolysis, as signaled by switch III residues, allows MCM to close and trap its cofactor. Substitutions of switch III residues destabilize the active state of MeaB through loss of protein:nucleotide and protein:protein interactions at the dimer interface, thus uncoupling GTP hydrolysis from AdoCbl delivery.


Metallochaperones , Molecular Chaperones , Humans , Molecular Chaperones/metabolism , Methylmalonyl-CoA Mutase/chemistry , Methylmalonyl-CoA Mutase/genetics , Methylmalonyl-CoA Mutase/metabolism , Nucleotides , Guanosine Triphosphate/metabolism
9.
Nat Metab ; 5(1): 80-95, 2023 01.
Article En | MEDLINE | ID: mdl-36717752

Methylmalonic aciduria (MMA) is an inborn error of metabolism with multiple monogenic causes and a poorly understood pathogenesis, leading to the absence of effective causal treatments. Here we employ multi-layered omics profiling combined with biochemical and clinical features of individuals with MMA to reveal a molecular diagnosis for 177 out of 210 (84%) cases, the majority (148) of whom display pathogenic variants in methylmalonyl-CoA mutase (MMUT). Stratification of these data layers by disease severity shows dysregulation of the tricarboxylic acid cycle and its replenishment (anaplerosis) by glutamine. The relevance of these disturbances is evidenced by multi-organ metabolomics of a hemizygous Mmut mouse model as well as through identification of physical interactions between MMUT and glutamine anaplerotic enzymes. Using stable-isotope tracing, we find that treatment with dimethyl-oxoglutarate restores deficient tricarboxylic acid cycling. Our work highlights glutamine anaplerosis as a potential therapeutic intervention point in MMA.


Metabolism, Inborn Errors , Methylmalonyl-CoA Mutase , Mice , Animals , Methylmalonyl-CoA Mutase/genetics , Methylmalonyl-CoA Mutase/metabolism , Glutamine , Multiomics , Metabolism, Inborn Errors/genetics
10.
J Inherit Metab Dis ; 46(3): 406-420, 2023 05.
Article En | MEDLINE | ID: mdl-36680553

Vitamin B12 (cobalamin, Cbl) is required as a cofactor by two human enzymes, 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) and methylmalonyl-CoA mutase (MMUT). Within the body, a vast array of transporters, enzymes and chaperones are required for the generation and delivery of these cofactor forms. How they perform these functions is dictated by the structure and interactions of the proteins involved, the molecular bases of which are only now being elucidated. In this review, we highlight recent insights into human Cbl metabolism and address open questions in the field by employing a protein structure and interactome based perspective. We discuss how three very similar proteins-haptocorrin, intrinsic factor and transcobalamin-exploit slight structural differences and unique ligand receptor interactions to effect selective Cbl absorption and internalisation. We describe recent advances in the understanding of how endocytosed Cbl is transported across the lysosomal membrane and the implications of the recently solved ABCD4 structure. We detail how MMACHC and MMADHC cooperate to modify and target cytosolic Cbl to the client enzymes MTR and MMUT using ingenious modifications to an ancient nitroreductase fold, and how MTR and MMUT link with their accessory enzymes to sustainably harness the supernucleophilic potential of Cbl. Finally, we provide an outlook on how future studies may combine structural and interactome based approaches and incorporate knowledge of post-translational modifications to bring further insights.


Methylmalonyl-CoA Mutase , Vitamin B 12 , Humans , Vitamin B 12/metabolism , Methylmalonyl-CoA Mutase/metabolism , Biological Transport , Molecular Chaperones , ATP-Binding Cassette Transporters/metabolism , Oxidoreductases/metabolism
11.
Cell Metab ; 35(1): 212-226.e4, 2023 01 03.
Article En | MEDLINE | ID: mdl-36516861

The mammalian succinate dehydrogenase (SDH) complex has recently been shown as capable of operating bidirectionally. Here, we develop a method (Q-Flux) capable of measuring absolute rates of both forward (VSDH(F)) and reverse (VSDH(R)) flux through SDH in vivo while also deconvoluting the amount of glucose derived from four discreet carbon sources in the liver. In validation studies, a mitochondrial uncoupler increased net SDH flux by >100% in awake rodents but also increased SDH cycling. During hyperglucagonemia, attenuated pyruvate cycling enhances phosphoenolpyruvate carboxykinase efficiency to drive increased gluconeogenesis, which is complemented by increased glutaminase (GLS) flux, methylmalonyl-CoA mutase (MUT) flux, and glycerol conversion to glucose. During hyperinsulinemic-euglycemic clamp, both pyruvate carboxylase and GLS are suppressed, while VSDH(R) is increased. Unstimulated MUT is a minor anaplerotic reaction but is readily induced by small amounts of propionate, which elicits glucagon-like metabolic rewiring. Taken together, Q-Flux yields a comprehensive picture of hepatic mitochondrial metabolism and should be broadly useful to researchers.


Methylmalonyl-CoA Mutase , Succinate Dehydrogenase , Animals , Glucose/metabolism , Glutaminase/metabolism , Liver/metabolism , Methylmalonyl-CoA Mutase/metabolism , Proteins/metabolism , Pyruvic Acid/metabolism , Succinate Dehydrogenase/metabolism , Rodentia
12.
PLoS One ; 17(9): e0274774, 2022.
Article En | MEDLINE | ID: mdl-36126056

Methylmalonic acidemia (MMA) is an inborn error of metabolism mostly caused by mutations in the mitochondrial methylmalonyl-CoA mutase gene (MMUT). MMA patients suffer from frequent episodes of metabolic decompensation, which can be life threatening. To mimic both the dietary restrictions and metabolic decompensation seen in MMA patients, we developed a novel protein-controlled diet regimen in a Mmut deficient mouse model of MMA and demonstrated the therapeutic benefit of mLB-001, a nuclease-free, promoterless recombinant AAV GeneRideTM vector designed to insert the mouse Mmut into the endogenous albumin locus via homologous recombination. A single intravenous administration of mLB-001 to neonatal or adult MMA mice prevented body weight loss and mortality when challenged with a high protein diet. The edited hepatocytes expressed functional MMUT protein and expanded over time in the Mmut deficient mice, suggesting a selective growth advantage over the diseased cells. In mice with a humanized liver, treatment with a human homolog of mLB-001 resulted in site-specific genome editing and transgene expression in the transplanted human hepatocytes. Taken together, these findings support the development of hLB-001 that is currently in clinical trials in pediatric patients with severe forms of MMA.


Amino Acid Metabolism, Inborn Errors , Methylmalonyl-CoA Mutase , Adult , Albumins/genetics , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Animals , Child , Disease Models, Animal , Gene Editing , Humans , Methylmalonyl-CoA Mutase/genetics , Methylmalonyl-CoA Mutase/metabolism , Mice
13.
Genet Res (Camb) ; 2022: 5611697, 2022.
Article En | MEDLINE | ID: mdl-35919035

Methylmalonic acidemia (MMA) is an autosomal recessive metabolic disorder mainly caused by mutations in the methylmalonyl coenzyme A mutase (MCM) gene (MMUT) and leads to the reduced activity of MCM. In this study, a 3-year-old girl was diagnosed with carnitine deficiency secondary to methylmalonic acidemia by tandem mass spectrometry (MS/MS) and gas chromatography/mass spectrometry (GS/MS). Whole-exome sequencing (WES) was performed on the patient and identified two compound heterozygous mutations in MMUT: c.554C>T (p. S185F) and c.729-730insTT (p. D244Lfs ∗ 39). Bioinformatics analysis predicted that the rare missense mutation of c.554C>T would be damaging. Moreover, this rare mutation resulted in the reduced levels of MMUT mRNA and MMUT protein. Collectively, our findings provide a greater understanding of the effects of MMUT variants and will facilitate the diagnosis and treatment of patients with MMA.


Methylmalonyl-CoA Mutase , Tandem Mass Spectrometry , Amino Acid Metabolism, Inborn Errors , Child, Preschool , China , Female , Humans , Methylmalonyl-CoA Mutase/genetics , Methylmalonyl-CoA Mutase/metabolism , Mutation
14.
J Biol Chem ; 298(9): 102301, 2022 09.
Article En | MEDLINE | ID: mdl-35931118

2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a persistent environmental contaminant that induces diverse biological and toxic effects, including reprogramming intermediate metabolism, mediated by the aryl hydrocarbon receptor. However, the specific reprogramming effects of TCDD are unclear. Here, we performed targeted LC-MS analysis of hepatic extracts from mice gavaged with TCDD. We detected an increase in S-(2-carboxyethyl)-L-cysteine, a conjugate from the spontaneous reaction between the cysteine sulfhydryl group and highly reactive acrylyl-CoA, an intermediate in the cobalamin (Cbl)-independent ß-oxidation-like metabolism of propionyl-CoA. TCDD repressed genes in both the canonical Cbl-dependent carboxylase and the alternate Cbl-independent ß-oxidation-like pathways as well as inhibited methylmalonyl-CoA mutase (MUT) at lower doses. Moreover, TCDD decreased serum Cbl levels and hepatic cobalt levels while eliciting negligible effects on gene expression associated with Cbl absorption, transport, trafficking, or derivatization to 5'-deoxy-adenosylcobalamin (AdoCbl), the required MUT cofactor. Additionally, TCDD induced the gene encoding aconitate decarboxylase 1 (Acod1), the enzyme responsible for decarboxylation of cis-aconitate to itaconate, and dose-dependently increased itaconate levels in hepatic extracts. Our results indicate MUT inhibition is consistent with itaconate activation to itaconyl-CoA, a MUT suicide inactivator that forms an adduct with adenosylcobalamin. This adduct in turn inhibits MUT activity and reduces Cbl levels. Collectively, these results suggest the decrease in MUT activity is due to Cbl depletion following TCDD treatment, which redirects propionyl-CoA metabolism to the alternate Cbl-independent ß-oxidation-like pathway. The resulting hepatic accumulation of acrylyl-CoA likely contributes to TCDD-elicited hepatotoxicity and the multihit progression of steatosis to steatohepatitis with fibrosis.


Acyl Coenzyme A , Environmental Pollutants , Fatty Liver , Liver , Polychlorinated Dibenzodioxins , Vitamin B 12 Deficiency , Vitamin B 12 , Aconitic Acid/metabolism , Acyl Coenzyme A/metabolism , Animals , Cobalt/metabolism , Cysteine/metabolism , Environmental Pollutants/toxicity , Fatty Liver/chemically induced , Fatty Liver/metabolism , Humans , Liver/drug effects , Liver/metabolism , Methylmalonyl-CoA Mutase/genetics , Methylmalonyl-CoA Mutase/metabolism , Mice , Polychlorinated Dibenzodioxins/toxicity , Receptors, Aryl Hydrocarbon/metabolism , Succinates/metabolism , Vitamin B 12/metabolism , Vitamin B 12 Deficiency/chemically induced , Vitamin B 12 Deficiency/complications
15.
Angew Chem Int Ed Engl ; 61(35): e202208295, 2022 08 26.
Article En | MEDLINE | ID: mdl-35793207

Catalysis by radical enzymes dependent on coenzyme B12 (AdoCbl) relies on the reactive primary 5'-deoxy-5'adenosyl radical, which originates from reversible Co-C bond homolysis of AdoCbl. This bond homolysis is accelerated roughly 1012 -fold upon binding the enzyme substrate. The structural basis for this activation is still strikingly enigmatic. As revealed here, a displaced firm adenosine binding cavity in substrate-loaded glutamate mutase (GM) causes a structural misfit for intact AdoCbl that is relieved by the homolytic Co-C bond cleavage. Strategically interacting adjacent adenosine- and substrate-binding protein cavities provide a tight caged radical reaction space, controlling the entire radical path. The GM active site is perfectly structured for promoting radical catalysis, including "negative catalysis", a paradigm for AdoCbl-dependent mutases.


Cobamides , Intramolecular Transferases , Adenosine , Catalysis , Cobamides/chemistry , Intramolecular Transferases/metabolism , Methylmalonyl-CoA Mutase/chemistry , Methylmalonyl-CoA Mutase/metabolism , Phosphothreonine/analogs & derivatives
16.
Mol Genet Metab ; 137(1-2): 1-8, 2022.
Article En | MEDLINE | ID: mdl-35868241

Methylmalonic acidemia (MMA) is a rare and severe inherited metabolic disease typically caused by mutations of the methylmalonyl-CoA mutase (MMUT) gene. Despite medical management, patients with MMA experience frequent episodes of metabolic instability, severe morbidity, and early mortality. In several preclinical studies, systemic gene therapy has demonstrated impressive improvement in biochemical and clinical phenotypes of MMA murine models. One approach uses a promoterless adeno-associated viral (AAV) vector that relies upon homologous recombination to achieve site-specific in vivo gene addition of MMUT into the last coding exon of albumin (Alb), generating a fused Alb-MMUT transcript after successful editing. We have previously demonstrated that nuclease-free AAV mediated Alb editing could effectively treat MMA mice in the neonatal period and noted that hepatocytes had a growth advantage after correction. Here, we use a transgenic knock-out mouse model of MMA that recapitulates severe clinical and biochemical symptoms to assess the benefits of Alb editing in juvenile animals. As was first noted in the neonatal gene therapy studies, we observe that gene edited hepatocytes in the MMA mice treated as juveniles exhibit a growth advantage, which allows them to repopulate the liver slowly but dramatically by 8-10 months post treatment, and subsequently manifest a biochemical and enzymatic response. In conclusion, our results suggest that the benefit of AAV mediated nuclease-free gene editing of the Alb locus to treat MMA could potentially be therapeutic for older patients.


Amino Acid Metabolism, Inborn Errors , Methylmalonyl-CoA Mutase , Mice , Animals , Methylmalonyl-CoA Mutase/genetics , Methylmalonyl-CoA Mutase/metabolism , Gene Editing , Dependovirus/genetics , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/therapy , Amino Acid Metabolism, Inborn Errors/metabolism , Mice, Knockout , Liver/metabolism , Hepatocytes/metabolism , Albumins/genetics , Albumins/metabolism , Methylmalonic Acid/metabolism
17.
Methods Enzymol ; 668: 309-326, 2022.
Article En | MEDLINE | ID: mdl-35589199

Humans have only two known cobalamin or B12-dependent enzymes: cytoplasmic methionine synthase and mitochondrial methylmalonyl-CoA mutase. A complex intracellular B12 trafficking pathway, comprising a multitude of chaperones, process and deliver cobalamin to the two target enzymes. Methionine synthase catalyzes the transfer of a methyl group from N5-methytetrahydrofolate to homocysteine, generating tetrahydrofolate and methionine. Cobalamin serves as an intermediate methyl group carrier and cycles between methylcobalamin and cob(I)alamin. Methylmalonyl-CoA mutase uses the 5'-deoxyadenosylcobalamin form of the cofactor and catalyzes the 1,2 rearrangement of methylmalonyl-CoA to succinyl-CoA. Two chaperones, CblA (or MMAA) and CblB (or MMAB, also known as adenosyltransferase), serve the mutase and ensure that the fidelity of the cofactor loading and unloading processes is maintained. This chapter focuses on assays for purifying and measuring the activities of methionine synthase and methylmalonyl-CoA mutase.


5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase , Methylmalonyl-CoA Mutase , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/metabolism , Humans , Methylmalonyl-CoA Mutase/genetics , Methylmalonyl-CoA Mutase/metabolism , Vitamin B 12/metabolism
18.
Sci Transl Med ; 14(646): eabn4772, 2022 05 25.
Article En | MEDLINE | ID: mdl-35613279

Organic acidemias such as methylmalonic acidemia (MMA) are a group of inborn errors of metabolism that typically arise from defects in the catabolism of amino and fatty acids. Accretion of acyl-CoA species is postulated to underlie disease pathophysiology, but the mechanism(s) remain unknown. Here, we surveyed hepatic explants from patients with MMA and unaffected donors, in parallel with samples from various mouse models of methylmalonyl-CoA mutase deficiency. We found a widespread posttranslational modification, methylmalonylation, that inhibited enzymes in the urea cycle and glycine cleavage pathway in MMA. Biochemical studies and mouse genetics established that sirtuin 5 (SIRT5) controlled the metabolism of MMA-related posttranslational modifications. SIRT5 was engineered to resist acylation-driven inhibition via lysine to arginine mutagenesis. The modified SIRT5 was used to create an adeno-associated viral 8 (AAV8) vector and systemically delivered to mutant and control mice. Gene therapy ameliorated hyperammonemia and reduced global methylmalonylation in the MMA mice.


Amino Acid Metabolism, Inborn Errors , Sirtuins , Amino Acid Metabolism, Inborn Errors/genetics , Amino Acid Metabolism, Inborn Errors/metabolism , Amino Acid Metabolism, Inborn Errors/therapy , Animals , Genetic Therapy , Humans , Methylmalonyl-CoA Mutase/genetics , Methylmalonyl-CoA Mutase/metabolism , Mice , Sirtuins/genetics
19.
Vitam Horm ; 119: 355-376, 2022.
Article En | MEDLINE | ID: mdl-35337626

Cobalamin (vitamin B12) is required for activity of the enzymes methylmalonyl-CoA mutase and methionine synthase in human cells. Inborn errors affecting cobalamin uptake or metabolism are characterized by accumulation of the substrates for these enzymes, methylmalonic acid and homocysteine, in blood and urine. Inborn errors affecting synthesis of the adenosylcobalamin coenzyme required by methylmalonyl-CoA mutase (cblA and cblB) result in isolated methylmalonic aciduria; inborn errors affecting synthesis of the methylcobalamin coenzyme required by methionine synthase (cblE and cblG) result in isolated homocystinuria. Combined methylmalonic aciduria and homocystinuria is seen in patients with impaired intestinal cobalamin absorption (intrinsic factor deficiency, Imerslund-Gräsbeck syndrome) and with defects affecting synthesis of both cobalamin coenzymes (cblC, cblD, cblF and cblJ). A series of disorders caused by pathogenic variant mutations affecting gene regulators (transcription factors) of the MMACHC gene have recently been described (HCFC1 [cblX disorder] and deficiencies of THAP11, and ZNF143 [the cblK disorder]).


5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase , Homocystinuria , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/genetics , Amino Acid Metabolism, Inborn Errors , Coenzymes , Homocystinuria/genetics , Humans , Male , Methylmalonyl-CoA Mutase/genetics , Methylmalonyl-CoA Mutase/metabolism , Oxidoreductases/genetics , Repressor Proteins , Trans-Activators , Vitamin B 12/metabolism
20.
Sheng Wu Gong Cheng Xue Bao ; 38(12): 4630-4643, 2022 Dec 25.
Article Zh | MEDLINE | ID: mdl-36593198

Natamycin is a safe and efficient antimycotics which is widely used in food and medicine industry. The polyene macrolide compound, produced by several bacterial species of the genus Streptomyces, is synthesized by type Ⅰ polyketide synthases using acetyl-CoA, malonyl-CoA, and methylmalonyl-CoA as substrates. In this study, four pathways potentially responsible for the supply of the three precursors were evaluated to identify the effective precursor supply pathway which can support the overproduction of natamycin in Streptomyces gilvosporeus, a natamycin-producing wild-type strain. The results showed that over-expressing acetyl-CoA synthetase and methylmalonyl-CoA mutase increased the yield of natamycin by 44.19% and 20.51%, respectively, compared with the wild type strain under shake flask fermentation. Moreover, the yield of natamycin was increased by 66.29% compared with the wild-type strain by co-overexpression of acetyl-CoA synthetase and methylmalonyl-CoA mutase. The above findings will facilitate natamycin strain improvement as well as development of strains for producing other polyketide compounds.


Natamycin , Streptomyces , Natamycin/metabolism , Methylmalonyl-CoA Mutase/metabolism , Acetyl Coenzyme A/metabolism , Streptomyces/genetics , Polyketide Synthases/metabolism
...