Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 728
1.
Ecotoxicol Environ Saf ; 278: 116441, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38733805

Oxybenzone (OBZ; benzophenone-3, CAS# 131-57-7), as a new pollutant and ultraviolet absorbent, shows a significant threat to the survival of phytoplankton. This study aims to explore the acute toxic effects of OBZ on the growth of the microalga Selenastrum capricornutum, as well as the mechanisms for its damage to the primary metabolic pathways of photosynthesis and respiration. The results demonstrated that the concentrations for 50 % of maximal effect (EC50) of OBZ for S. capricornutum were 9.07 mg L-1 and 8.54 mg L-1 at 72 h and 96 h, respectively. A dosage of 4.56 mg L-1 OBZ significantly lowered the photosynthetic oxygen evolution rate of S. capricornutum in both light and dark conditions for a duration of 2 h, while it had no effect on the respiratory oxygen consumption rate under darkness. OBZ caused a significant decline in the efficiency of photosynthetic electron transport due to its damage to photosystem II (PSII), thereby decreasing the photosynthetic oxygen evolution rate. Over-accumulated H2O2 was produced under light due to the damage caused by OBZ to the donor and acceptor sides of PSII, resulting in increased peroxidation of cytomembranes and inhibition of algal respiration. OBZ's damage to photosynthesis and respiration will hinder the conversion and reuse of energy in algal cells, which is an important reason that OBZ has toxic effects on S. capricornutum. The present study indicated that OBZ has an acute toxic effect on the microalga S. capricornutum. In the two most important primary metabolic pathways in algae, photosynthesis is more sensitive to the toxicity of OBZ than respiration, especially in the dark.


Benzophenones , Microalgae , Photosynthesis , Sunscreening Agents , Photosynthesis/drug effects , Benzophenones/toxicity , Microalgae/drug effects , Sunscreening Agents/toxicity , Water Pollutants, Chemical/toxicity , Hydrogen Peroxide/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/drug effects , Ultraviolet Rays , Electron Transport/drug effects
2.
Sci Total Environ ; 932: 172856, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38697534

Antibiotics are frequently detected in surface water and pose potential threats to organisms in aquatic ecosystem such as microalgae. The occurrence of biphasic dose responses raised the possibility of stimulation of microalgal biomass by antibiotics at environmental-relevant concentration and caused potential ecological risk such as algal bloom. However, the underlying mechanisms of low concentration-induced hormetic effects are not well understood. In this study, we evaluated the hormesis of ofloxacin on Chlorella pyrenoidosa under environmental-relevant concentration and long-term exposure. Results showed the hormetic effects of ofloxacin on cell density and carbon fixation rate (RC). The predicted maximum promotion was 17.45 % by 16.84 µg/L and 20.08 % by 15.78 µg/L at 21 d, respectively. The predicted maximum concentration of non-effect on cell density and RC at 21 d was 3.24 mg/L and 1.44 mg/L, respectively. Ofloxacin induced the mobilization of pigments and antioxidant enzymes to deal with oxidative stress. PCA analysis revealed Chl-a/Chl-b could act as a more sensitive biomarker under acute exposure while chlorophyll fluorescence parameters were in favor of monitoring long-term implication. The hormesis in increased secretion of extracellular organic matters was regarded as a defensive mechanism and accelerated indirect photodegradation of ofloxacin. Bioremoval was dominant and related to biomass accumulation in the total dissipation while abiotic removal appeared slight contributions. This study provided new insights into the understanding of hormesis of microalgae induced by antibiotics.


Anti-Bacterial Agents , Chlorella , Hormesis , Ofloxacin , Water Pollutants, Chemical , Chlorella/drug effects , Ofloxacin/toxicity , Water Pollutants, Chemical/toxicity , Anti-Bacterial Agents/toxicity , Microalgae/drug effects , Oxidative Stress/drug effects
3.
Aquat Toxicol ; 271: 106937, 2024 Jun.
Article En | MEDLINE | ID: mdl-38728928

In aquaculture around the world, sulfamonomethoxine (SMM), a long-acting antibiotic that harms microalgae, is widely employed in combination with trimethoprim (TMP), a synergist. However, their combined toxicity to microalgae under long-term exposures at environmentally relevant concentrations remains poorly understood. Therefore, we studied the effects of SMM single-exposures and co-exposures (SMM:TMP=5:1) at concentrations of 5 µg/L and 500 µg/L on Chlorella pyrenoidosa within one aquacultural drainage cycle (15 days). Photosynthetic activity and N assimilating enzyme activities were employed to evaluate microalgal nutrient assimilation. Oxidative stress and flow cytometry analysis for microalgal proliferation and death jointly revealed mechanisms of inhibition and subsequent self-adaptation. Results showed that exposures at 5 µg/L significantly inhibited microalgal nutrient assimilation and induced oxidative stress on day 7, with a recovery to levels comparable to the control by day 15. This self-adaptation and over 95 % removal of antibiotics jointly contributed to promoting microalgal growth and proliferation while reducing membrane-damaged cells. Under 500 µg/L SMM single-exposure, microalgae self-adapted to interferences on nutrient assimilation, maintaining unaffected growth and proliferation. However, over 60 % of SMM remained, leading to sustained oxidative stress and apoptosis. Remarkably, under 500 µg/L SMM-TMP co-exposure, the synergistic toxicity of SMM and TMP significantly impaired microalgal nutrient assimilation, reducing the degradation efficiency of SMM to about 20 %. Consequently, microalgal growth and proliferation were markedly inhibited, with rates of 9.15 % and 17.7 %, respectively, and a 1.36-fold increase in the proportion of cells with damaged membranes was observed. Sustained and severe oxidative stress was identified as the primary cause of these adverse effects. These findings shed light on the potential impacts of antibiotic mixtures at environmental concentrations on microalgae, facilitating responsible evaluation of the ecological risks of antibiotics in aquaculture ponds.


Microalgae , Oxidative Stress , Sulfamonomethoxine , Trimethoprim , Water Pollutants, Chemical , Trimethoprim/toxicity , Water Pollutants, Chemical/toxicity , Microalgae/drug effects , Oxidative Stress/drug effects , Sulfamonomethoxine/toxicity , Chlorella/drug effects , Chlorella/metabolism , Chlorella/growth & development , Nutrients/metabolism , Photosynthesis/drug effects , Anti-Bacterial Agents/toxicity
4.
Chemosphere ; 358: 142220, 2024 Jun.
Article En | MEDLINE | ID: mdl-38710410

Microplastics have become a prevalent environmental pollutant due to widespread release and production. Algae, as primary producers, play a crucial role in maintaining the ecological balance of freshwater environments. Despite reports on the inhibition of microalgae by microplastics, the size-dependent effects on microalgae and associated molecular mechanism remain poorly understood. This study investigates the impacts of three polystyrene micro/nano-plastics (PS-MNPs) with different sizes (100 nm, 350 nm, and 6 µm) and concentrations (25-200 mg/L) on Chlamydomonas reinhardtii (C. reinhardtii) throughout its growth period. Results reveal size- and concentration-dependent growth inhibition and induction of oxidative stress by PS-MNPs, with microalgae exhibiting increased vulnerability to smaller-sized and higher-concentration PS-MNPs. Proteomics analysis elucidates the size-dependent suppression of proteins involved in the photosynthesis process by PS-MNPs. Photosynthetic activity assays demonstrate that smaller PS-MNPs more significantly reduce chlorophyll content and the maximal photochemical efficiency of photosystem II. Finally, electron microscope and Western blot assays collectively confirm the size effect of PS-MNPs on microalgae growth is attributable to suppressed protein expression rather than shading effects. This study contributes to advancing our understanding of the intricate interactions between micro/nano-plastics and algae at the molecular level, emphasizing the efficacy of proteomics in dissecting the mechanistic aspects of microplastics-induced biological effects on environmental indicator organisms.


Chlamydomonas reinhardtii , Microplastics , Photosynthesis , Polystyrenes , Proteomics , Chlamydomonas reinhardtii/drug effects , Chlamydomonas reinhardtii/metabolism , Chlamydomonas reinhardtii/growth & development , Polystyrenes/toxicity , Polystyrenes/chemistry , Microplastics/toxicity , Photosynthesis/drug effects , Oxidative Stress/drug effects , Chlorophyll/metabolism , Water Pollutants, Chemical/toxicity , Microalgae/drug effects , Plastics/toxicity , Particle Size , Photosystem II Protein Complex/metabolism
5.
Mar Drugs ; 22(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38786599

The purpose of this study was to examine the influence of 10 and 20 nm nanoparticles (AgNPs) on the growth and biochemical composition of microalga Porphyridium purpureum CNMN-AR-02 in two media which differ by the total amount of mineral salts (MM1 with 33.02 g/L and MM2 with 21.65 g/L). Spectrophotometric methods were used to estimate the amount of biomass and its biochemical composition. This study provides evidence of both stimulatory and inhibitory effects of AgNPs on different parameters depending on the concentration, size, and composition of the nutrient medium. In relation to the mineral medium, AgNPs exhibited various effects on the content of proteins (an increase up to 20.5% in MM2 and a decrease up to 36.8% in MM1), carbohydrates (a decrease up to 35.8% in MM1 and 39.6% in MM2), phycobiliproteins (an increase up to 15.7% in MM2 and 56.8% in MM1), lipids (an increase up to 197% in MM1 and no changes found in MM2), antioxidant activity (a decrease in both media). The composition of the cultivation medium has been revealed as one of the factors influencing the involvement of nanoparticles in the biosynthetic activity of microalgae.


Antioxidants , Culture Media , Metal Nanoparticles , Microalgae , Porphyridium , Silver , Porphyridium/drug effects , Porphyridium/metabolism , Metal Nanoparticles/chemistry , Culture Media/chemistry , Silver/chemistry , Silver/pharmacology , Microalgae/drug effects , Antioxidants/pharmacology , Antioxidants/chemistry , Biomass
6.
Water Res ; 256: 121653, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38678723

The toxic effects of tire wear particles (TWPs) on organisms have attracted widespread concerns over the past decade. However, the underlying toxicity mechanism of TWPs, especially aged TWPs to marine microalgae remains poorly understood. This study investigated the physiological and metabolic responses of Phaeodactylum tricornutum to different concentrations of TWPs (Experiment 1), virgin and differently aged TWPs (Experiment 2) as well as their leachates and leached particles (Experiment 3). Results demonstrated that TWPs promoted the growth of microalgae at low concentrations (0.6 and 3 mg L-1) and inhibited their growth at high concentrations (15 and 75 mg L-1). Moreover, aged TWPs induced more profound physiological effects on microalgae than virgin TWPs, including inhibiting microalgae growth, decreasing the content of Chla, promoting photosynthetic efficiency, and causing oxidative damage to algal cells. Untargeted metabolomics analysis confirmed that aged TWPs induced more pronounced metabolic changes than virgin TWPs. This study represented the first to demonstrate that both particulate- and leachate-induced toxicity of TWPs was increased after aging processes, which was confirmed by the changes in the surface morphology of TWPs and enhanced release of additives. Through the significant correlations between the additives and the microalgal metabolites, key additives responsible for the shift of microalgal metabolites were identified. These results broaden the understanding of the toxicity mechanism of aged TWPs to microalgae at the physiological and metabolic levels and appeal for considering the effects of long-term aging on TWP toxicity in risk assessment of TWPs.


Microalgae , Microalgae/drug effects , Diatoms/drug effects , Water Pollutants, Chemical/toxicity , Photosynthesis/drug effects
7.
Bioresour Technol ; 400: 130668, 2024 May.
Article En | MEDLINE | ID: mdl-38583677

This study examined the removal of typical antibiotics from simulated swine wastewater. Microalgae-bacteria/fungi symbioses were constructed using Chlorella ellipsoidea, endophytic bacteria (S395-2), and Clonostachys rosea as biomaterials. The growth, photosynthetic performance, and removal of three types of antibiotics (tetracyclines, sulfonamides, and quinolones) induced by four phytohormones were analyzed in each system. The results showed that all four phytohormones effectively improved the tolerance of symbiotic strains against antibiotic stress; strigolactones (GR24) achieved the best performance. At 10-9 M, GR24 achieved the best removal of antibiotics by C. elliptica + S395-2 + C. rosea symbiosis. The average removals of tetracycline, sulfonamide, and quinolone by this system reached 96.2-99.4 %, 75.2-81.1 %, and 66.8-69.9 %, respectively. The results of this study help to develop appropriate bio enhancement strategies as well as design and operate algal-bacterial-fungal symbiotic processes for the treatment of antibiotics-containing wastewater.


Anti-Bacterial Agents , Microalgae , Plant Growth Regulators , Wastewater , Water Purification , Animals , Microalgae/drug effects , Wastewater/chemistry , Anti-Bacterial Agents/pharmacology , Swine , Water Purification/methods , Plant Growth Regulators/pharmacology , Water Pollutants, Chemical , Symbiosis/drug effects , Biodegradation, Environmental , Photosynthesis/drug effects , Chlorella/drug effects
8.
Funct Plant Biol ; 512024 04.
Article En | MEDLINE | ID: mdl-38669460

We evaluated changes in growth, chlorophyll fluorescence and basic physiological and biochemical parameters of the microalgae Thalassiosira weissflogii cells under the influence of the herbicide glyphosate in concentrations 0, 25, 95 and 150µgL-1 . The toxic effect of glyphosate on algae is weakly dependent on the level of cell mineral nutrition. High concentrations of the herbicide do not lead to the death of microalgae but block the process of algae cell division. An increase in the glyphosate concentration in the medium leads to a slowdown or stop of algal growth, a decrease in their final biomass, an increase in the production of reactive oxygen species (ROS), depolarisation of mitochondrial membranes and metabolic activity of algae. Glyphosate inhibits the photosynthetic activity of cells and inhibits the relative rate of electron transport in the photosynthetic apparatus. Glyphosate at the studied concentrations does not affect the size characteristics of cells and the intracellular content of chlorophyll in T. weissflogii . The studied herbicide or products of its decay retain their toxic properties in the environment for at least 9days. This result shows the need for further in-depth studies to assess the physiological response and possible acclimation changes in the functional state of oxygenic phototrophs in response to the herbicide action. The species specificity of microalgae to the effects of glyphosate in natural conditions is potentially dangerous due to a possible change in the species structure of biocoenoses, in particular, a decrease in the contribution of diatoms.


Chlorophyll , Diatoms , Glycine , Glyphosate , Herbicides , Microalgae , Photosynthesis , Reactive Oxygen Species , Glycine/analogs & derivatives , Glycine/toxicity , Herbicides/toxicity , Microalgae/drug effects , Microalgae/metabolism , Diatoms/drug effects , Diatoms/metabolism , Diatoms/growth & development , Chlorophyll/metabolism , Photosynthesis/drug effects , Reactive Oxygen Species/metabolism , Membrane Potential, Mitochondrial/drug effects , Biomass
9.
Aquat Toxicol ; 271: 106918, 2024 Jun.
Article En | MEDLINE | ID: mdl-38598945

Antibiotics are commonly found in the aquatic environment, which can affect microbial community compositions and activities, and even have potential adverse impacts on human and ecosystem health. The current understanding of the effects of antibiotics on microalgae growth and algal dissolved organic matter (DOM) remains indistinct. To understand the toxic effects of antibiotics on the microalgae, Microcystis aeruginosa was exposed to clarithromycin (CLA) in this study. Cell density determination, chlorophyll content determination, and organic spectrum analysis were conducted to show the effect of CLA exposure on the growth, photosynthetic activity, and organic metabolic processes of Microcystis aeruginosa. The findings revealed that the physiological status of algae could be significantly influenced by CLA exposure in aquatic environments. Specifically, exposure to 1 µg/L CLA stimulated the growth and photosynthetic activity of algal cells. Conversely, CLA above 10 µg/L led to the inhibition of algal cell growth and photosynthesis. Notably, the inhibitory effects intensified with the increasing concentration of CLA. The molecular weight of DOM produced by Microcystis aeruginosa increased when exposed to CLA. Under the exposure of 60 µg/L CLA, a large number of algal cells ruptured and died, and the intracellular organic matter was released into the algal liquid. This resulted in an increase in high molecular weight substances and soluble microbial-like products in the DOM. Exposure to 1 and 10 µg/L CLA stimulated Microcystis aeruginosa to produce more humic acid-like substances, which may be a defense mechanism against CLA. The results were useful for assessing the effects of antibiotic pollution on the stability of the microalgae population and endogenous DOM characteristics in aquatic ecosystems.


Clarithromycin , Microcystis , Photosynthesis , Water Pollutants, Chemical , Microcystis/drug effects , Microcystis/growth & development , Water Pollutants, Chemical/toxicity , Photosynthesis/drug effects , Clarithromycin/toxicity , Clarithromycin/pharmacology , Microalgae/drug effects , Chlorophyll/metabolism , Anti-Bacterial Agents/toxicity
10.
Aquat Toxicol ; 271: 106922, 2024 Jun.
Article En | MEDLINE | ID: mdl-38615581

The photodegradation products (PDPs) of antibiotics in the aquatic environment received increasing concern, but their chronic effects on microalgae remain unclear. This study initially focused on examining the acute effects of erythromycin (ERY), then explored the chronic impacts of ERY PDPs on Chlorella pyrenoidosa. ERY of 4.0 - 32 mg/L ERY notably inhibited the cell growth and chlorophyll synthesis. The determined 96 h median effective concentration of ERY to C. pyrenoidosa was 11.78 mg/L. Higher concentrations of ERY induced more serious oxidative damage, antioxidant enzymes alleviated the oxidative stress. 6 PDPs (PDP749, PDP747, PDP719, PDP715, PDP701 and PDP557) were identified in the photodegradation process of ERY. The predicted combined toxicity of PDPs increased in the first 3 h, then decreased. Chronic exposure showed a gradual decreasing inhibition on microalgae growth and chlorophyll content. The acute effect of ERY PDPs manifested as growth stimulation, but the chronic effect manifested as growth inhibition. The malonaldehyde contents decreased with the degradation time of ERY at 7, 14 and 21 d. However, the malonaldehyde contents of ERY PDPs treatments were elevated compared to those in the control group after 21 d. Risk assessment still need to consider the potential toxicity of degradation products under long-term exposure.


Chlorella , Chlorophyll , Erythromycin , Microalgae , Photolysis , Water Pollutants, Chemical , Chlorella/drug effects , Chlorella/radiation effects , Erythromycin/toxicity , Erythromycin/pharmacology , Water Pollutants, Chemical/toxicity , Microalgae/drug effects , Chlorophyll/metabolism , Oxidative Stress/drug effects , Oxidative Stress/radiation effects , Anti-Bacterial Agents/toxicity , Anti-Bacterial Agents/pharmacology , Malondialdehyde/metabolism
11.
Environ Sci Pollut Res Int ; 31(20): 30256-30268, 2024 Apr.
Article En | MEDLINE | ID: mdl-38602639

There are many studies on the toxic effects of single nanoparticles on microalgae; however, many types of nanoparticles are present in the ocean, and more studies on the combined toxic effects of multiple nanoparticles on microalgae are needed. The single and combined toxic effects of nCu and nSiO2 on Dunaliella salina were investigated through changes in instantaneous fluorescence rate (Ft) and antioxidant parameters during 96-h growth inhibition tests. It was found that the toxic effect of nCu on D. salina was greater than that of nSiO2, and both showed time and were dose-dependent with the greatest growth inhibition at 96 h. A total of 0.5 mg/L nCu somewhat promoted the growth of microalgae, but 4.5 and 5.5 mg/L nCu showed negative growth effects on microalgae. The Ft of D. salina was also inhibited by increasing concentrations of nanoparticles and exposure time. nCu suppressed the synthesis of TP and elevated the MDA content of D. salina, which indicated the lipid peroxidation of algal cells. The activities of SOD and CAT showed a trend of increasing and then decreasing with the increase of nCu concentration, suggesting that the enzyme activity first increased and then decreased. The toxic effect of a high concentration of nCu was reduced after the addition of nSiO2. SEM and EDS images showed that nSiO2 could adsorb nCu in seawater. nSiO2 also adsorbed Cu2+ in the cultures, thus reducing the toxic effect of nCu on D. salina to a certain extent. TEM image was used to observe the morphology of algal cells exposed to nCu.


Microalgae , Microalgae/drug effects , Chlorophyceae/drug effects , Nanoparticles/toxicity
12.
Bioresour Technol ; 401: 130701, 2024 Jun.
Article En | MEDLINE | ID: mdl-38621609

Microalgae, owing to their efficacy and eco-friendliness, have emerged as a promising solution for mitigating the toxicity of Bisphenol A (BPA), a hazardous environmental pollutant. This current study was focused on the degradation of BPA by Coelastrella sp. M60 at various concentrations (10-50 mg/L). Further, the metabolic profiling of Coelastrella sp. M60 was performed using GC-MS analysis, and the results were revealed that BPA exposure modulated the metabolites profile with the presence of intermediates of BPA. In addition, highest lipid (43%) and pigment content (40%) at 20 and 10 mg/L of BPA respectively exposed to Coelastrella sp. M60 was achieved and enhanced fatty acid methyl esters recovery was facilitated by Cuprous oxide nanoparticles synthesised using Spatoglossum asperum. Thus, this study persuades thepotential of Coelastrella sp. M60 for BPA degradation and suggesting new avenues to remove the emerging contaminants in polluted water bodies and targeted metabolite expression in microalgae.


Benzhydryl Compounds , Biodegradation, Environmental , Metabolomics , Phenols , Benzhydryl Compounds/metabolism , Phenols/metabolism , Microalgae/metabolism , Microalgae/drug effects , Gas Chromatography-Mass Spectrometry , Metabolome , Water Pollutants, Chemical/metabolism
13.
Chemosphere ; 357: 142061, 2024 Jun.
Article En | MEDLINE | ID: mdl-38642775

Increasing amounts of amino-functionalized polystyrene nanoplastics (PS-NH2) are entering aquatic ecosystems, raising concerns. Hence, this study investigated 96-h acute toxicity of PS-NH2 and its combination with the pesticide atrazine (ATZ) in the absence/presence of humic acid (HA) on the microalgae Chlorella vulgaris (C. vulgaris). Results showed that both PS-NH2 and PS-NH2+ATZ reduced algal growth, photosynthetic pigments, protein content, and antioxidant capacity, while increasing enzymatic activities. Gene expression related to oxidative stress was altered in C. vulgaris exposed to these treatments. Morphological and intracellular changes were also observed. The combined toxicity of PS-NH2+ATZ demonstrated a synergistic effect, but the addition of environmentally relevant concentration of HA significantly alleviated its toxicity to C. vulgaris, indicating an antagonistic effect due to the emergence of an eco-corona, and entrapment and sedimentation of PS-NH2+ATZ particles by HA. This study firstly highlights the role of HA in mitigating the toxicity of PS-NH2 when combined with other harmful compounds, enhancing our understanding of HA's presence in the environment.


Atrazine , Chlorella vulgaris , Herbicides , Humic Substances , Microplastics , Polystyrenes , Water Pollutants, Chemical , Chlorella vulgaris/drug effects , Atrazine/toxicity , Herbicides/toxicity , Polystyrenes/toxicity , Polystyrenes/chemistry , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Oxidative Stress/drug effects , Microalgae/drug effects , Antioxidants/metabolism , Toxicity Tests, Acute , Photosynthesis/drug effects
14.
Chemosphere ; 358: 142111, 2024 Jun.
Article En | MEDLINE | ID: mdl-38663677

In this study, microalgae Chlorella vulgaris (C. vulgaris) were simultaneously exposed to environmental concentrations of amino-functionalized polystyrene nanoplastics (PS-NH2; 0.05, 0.1, 0.2, 0.3 and 0.4 mg/L) and the world's second most used pesticide, the herbicide atrazine (ATZ; 10 µg/L), in the absence and presence of humic acid (HA; 1 mg/L) for 21 days. Due to the low concentrations of PS-NH2, the majority of them could not cause a significant difference in the end-points of biomass, chlorophylls a and b, total antioxidant, total protein, and superoxide dismutase and malondialdehyde compared to the control group (p > 0.05). On the other hand, by adding ATZ to the PS-NH2, all the mentioned end-point values showed a considerable difference from the control (p < 0.05). The exposure of PS-NH2+ATZ treatments to the HA could remarkably reduce their toxicity, additionally, HA was able to decrease the changes in the expression of genes related to oxidative stress (e.g., superoxide dismutase, glutathione reductase, and catalase) in the C. vulgaris in the most toxic treatment group (e.g., PS-NH2+ATZ). The synergistic toxicity of the PS-NH2+ATZ group could be due to their enhanced bioavailability for algal cells. Nevertheless, the toxicity alleviation in the PS-NH2+ATZ treatment group after the addition of HA could be due to the eco-corona formation, and changes in their zeta potential from positive to negative value, which would increase their electrostatic repulsion with the C. vulgaris cells, in such a way that HA also caused a decrease in the formation of C. vulgaris-NPs hetero-aggregates. This research underscores the complex interplay between PS-NH2, ATZ, and HA in aquatic environments and their collective impact on microalgal communities.


Atrazine , Chlorella vulgaris , Herbicides , Humic Substances , Microplastics , Oxidative Stress , Polystyrenes , Superoxide Dismutase , Water Pollutants, Chemical , Chlorella vulgaris/drug effects , Atrazine/toxicity , Polystyrenes/toxicity , Polystyrenes/chemistry , Superoxide Dismutase/metabolism , Herbicides/toxicity , Herbicides/chemistry , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Oxidative Stress/drug effects , Microalgae/drug effects , Chlorophyll/metabolism , Malondialdehyde/metabolism , Antioxidants/metabolism , Biomass , Chlorophyll A/metabolism
15.
Chemosphere ; 356: 141869, 2024 May.
Article En | MEDLINE | ID: mdl-38575081

This study evaluates the repurposing of expired isopropanol (IPA) COVID-19 disinfectant (64% w/w) to pretreat algal biomass for enhancing methane (CH4) yield. The impact of harvesting methods (centrifugation and polymer flocculation) and microwave pretreatment on CH4 production from Scenedesmus sp. microalgal biomass were also investigated. Results show minimal impact of harvesting methods on the CH4 yield, with wet centrifuged and polymer-harvested biomass exhibiting comparable and low CH4 production at 66 and 74 L/kgvolatile solid, respectively. However, microalgae drying significantly increased CH4 yield compared to wet biomass, attributed to cell shrinkage and enhanced digestibility. Consequently, microwave and IPA pretreatment significantly enhanced CH4 production when applied to dried microalgae, yielding a 135% and 212% increase, respectively, compared to non-pretreated wet biomass. These findings underscore the advantage of using dried Scenedesmus sp. over wet biomass and highlight the synergistic effect of combining oven drying with IPA treatment to boost CH4 production whilst reducing COVID-19 waste.


Biomass , COVID-19 , Disinfectants , Methane , Scenedesmus , Scenedesmus/drug effects , Disinfectants/pharmacology , Methane/metabolism , COVID-19/prevention & control , Microalgae/drug effects , Polymers/chemistry , Polymers/pharmacology , 2-Propanol/pharmacology , 2-Propanol/chemistry , SARS-CoV-2/drug effects
16.
J Hazard Mater ; 470: 134304, 2024 May 15.
Article En | MEDLINE | ID: mdl-38615650

In lightly polluted water containing heavy metals, organic matter, and green microalgae, the molecular weight of organic matter may influence both the growth of green microalgae and the concentration of heavy metals. This study elucidates the effects and mechanisms by which different molecular weight fractions of fulvic acid (FA), a model dissolved organic matter component, facilitate the bioaccumulation of hexavalent chromium (Cr(VI)) in a typical green alga, Chlorella vulgaris. Findings show that the addition of FA fractions with molecular weights greater than 10 kDa significantly enhances the enrichment of total chromium and Cr(VI) in algal cells, reaching 21.58%-31.09 % and 16.17 %-22.63 %, respectively. Conversely, the efficiency of chromium enrichment in algal cells was found to decrease with decreasing molecular weight of FA. FA molecular weight within the range of 0.22 µm-30 kDa facilitated chromium enrichment primarily through the algal organic matter (AOM) pathway, with minor contributions from the algal cell proliferation and extracellular polymeric substances (EPS) pathways. However, with decreasing FA molecular weight, the AOM and EPS pathways become less prominent, whereas the algal cell proliferation pathway becomes dominant. These findings provide new insights into the mechanism of chromium enrichment in green algae enhanced by medium molecular weight FA.


Benzopyrans , Chlorella vulgaris , Chromium , Microalgae , Molecular Weight , Water Pollutants, Chemical , Chromium/metabolism , Chromium/chemistry , Chlorella vulgaris/metabolism , Chlorella vulgaris/growth & development , Chlorella vulgaris/drug effects , Water Pollutants, Chemical/metabolism , Microalgae/metabolism , Microalgae/drug effects , Microalgae/growth & development , Benzopyrans/chemistry , Benzopyrans/metabolism
17.
Environ Int ; 186: 108633, 2024 Apr.
Article En | MEDLINE | ID: mdl-38603814

In the severe pollution area of nanoplastics (NPs) and cadmium ions (Cd2+), the joint effects of their high environmental concentrations on primary producers may differ from those of low environmental doses. Thus, we investigated the physiological changes, cell morphology, molecular dynamic simulation, phenotypic interactions, and metabolomics responses of C. pyrenoidosa to high environmental concentrations of NPs and Cd2+ after 12-d acclimation. After 12-d cultivation, mono-NPs and mono-Cd2+ reduced cell density and triggered antioxidant enzymes, extracellular polymeric substances (EPS) production, and cell aggregation to defend their unfavorable effects. Based on the molecular dynamic simulation, the chlorine atoms of the NPs and Cd2+ had charge attraction with the nitrogen and phosphorus atoms in the choline and phosphate groups in the cell membrane, thereby NPs and Cd2+ could adsorb on the cells to destroy them. In the joint exposure, NPs dominated the variations of ultrastructure and metabolomics and alleviated the toxicity of NPs and Cd2+. Due to its high environmental concentration, more NPs could compete with the microalgae for Cd2+ and thicken cell walls, diminishing the Cd2+ content and antioxidant enzymes of microalgae. NPs addition also decreased the EPS content, while the bound EPS with -CN bond was kept to detoxicate Cd2+. Metabolomics results showed that the NPs downregulated nucleotide, arachidonic acid, and tryptophan metabolisms, while the Cd2+ showed an opposite trend. Compared with their respective exposures, metabolomics results found the changes in metabolic molecules, suggesting the NPs_Cd2+ toxicity was mitigated by balancing nucleotide, arachidonic acid, tryptophan, and arginine and proline metabolisms. Consequently, this study provided new insights that simultaneous exposure to high environmental concentrations of NPs and Cd2+ mitigated microalgae cellular toxicity, which may change their fates and biogeochemical cycles in aquatic systems.


Cadmium , Metabolomics , Microalgae , Cadmium/toxicity , Microalgae/drug effects , Microalgae/metabolism , Molecular Dynamics Simulation , Water Pollutants, Chemical/toxicity , Microplastics/toxicity
18.
Environ Sci Process Impacts ; 26(4): 686-699, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38372577

An environmental toxicological assessment of fourteen furanic compounds serving as valuable building blocks produced from biomass was performed. The molecules selected included well studied compounds serving as control examples to compare the toxicity exerted against a variety of highly novel furans which have been additionally targeted as potential or current alternatives to biofuels, building blocks and polymer monomers. The impact of the furan platform chemicals targeted on widely applied ecotoxicity model organisms was determined employing the marine bioluminescent bacterium Aliivibrio fischeri and the freshwater green microalgae Raphidocelis subcapitata, while their ecotoxicity effects on plants were assessed using dicotyledonous plants Sinapis alba and Lepidium sativum. Regarding the specific endpoints evaluated, the furans tested were slightly toxic or practically nontoxic for A. fischeri following 5 and 15 min of exposure. Moreover, most of the building blocks did not affect the growth of L. sativum and S. alba at 150 mg L-1 for 72 h of exposure. Specifically, 9 and 11 out of the 14 furan platform chemicals tested were non-effective or stimulant for L. sativum and S. alba respectively. Given that furans comprise common inhibitors in biorefinery fermentations, the growth inhibition of the specific building blocks was studied using the industrial workhorse yeast Saccharomyces cerevisiae, demonstrating insignificant inhibition on eukaryotic cell growth following 6, 12 and 16 h of exposure at a concentration of 500 mg L-1. The study provides baseline information to unravel the ecotoxic effects and to confirm the green aspects of a range of versatile biobased platform molecules.


Aliivibrio fischeri , Biomass , Furans , Furans/toxicity , Aliivibrio fischeri/drug effects , Lepidium sativum/drug effects , Lepidium sativum/growth & development , Ecotoxicology/methods , Biological Assay/methods , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Toxicity Tests/methods , Sinapis/drug effects , Microalgae/drug effects
19.
Int J Mol Sci ; 23(2)2022 Jan 17.
Article En | MEDLINE | ID: mdl-35055175

The investigation of the combined toxic action of different types of nanoparticles (NPs) and their interaction between each other and with aquatic organisms is an important problem of modern ecotoxicology. In this study, we assessed the individual and mixture toxicities of cadmium and zinc sulfides (CdS and ZnS), titanium dioxide (TiO2), and two types of mesoporous silicon dioxide (with no inclusions (SMB3) and with metal inclusions (SMB24)) by a microalga growth inhibition bioassay. The counting and size measurement of microalga cells and NPs were performed by flow cytometry. The biochemical endpoints were measured by a UV-VIS microplate spectrophotometer. The highest toxicity was observed for SMB24 (EC50, 3.6 mg/L) and CdS (EC50, 21.3 mg/L). A combined toxicity bioassay demonstrated that TiO2 and the SMB3 NPs had a synergistic toxic effect in combinations with all the tested samples except SMB24, probably caused by a "Trojan horse effect". Sample SMB24 had antagonistic toxic action with CdS and ZnS, which was probably caused by metal ion scavenging.


Microalgae/growth & development , Oxides/toxicity , Sulfides/toxicity , Water Pollutants, Chemical/toxicity , Cadmium Compounds/toxicity , Drug Interactions , Microalgae/drug effects , Nanoparticles , Silicon Dioxide/toxicity , Titanium/toxicity , Zinc Compounds/toxicity
20.
Anal Bioanal Chem ; 414(4): 1469-1479, 2022 Feb.
Article En | MEDLINE | ID: mdl-34936008

Plastics undergo successive fragmentation and chemical leaching steps in the environment due to weathering processes such as photo-oxidation. Here, we report the effects of leachates from UV-irradiated microplastics towards the chlorophyte Scenedesmus vacuolatus. The microplastics tested were derived from an additive-containing electronic waste (EW) and a computer keyboard (KB) as well as commercial virgin polymers with low additive content, including polyethylene (PE), polyethylene terephthalate (PET), polypropylene (PP), and polystyrene (PS). Whereas leachates from additive-containing EW and KB induced severe effects, the leachates from virgin PET, PP, and PS did not show substantial adverse effects in our autotrophic test system. Leachates from PE reduced algae biomass, cell growth, and photosynthetic activity. Experimental data were consistent with predicted effect concentrations based on the ionization-corrected liposome/water distribution ratios (Dlip/w) of polymer degradation products of PE (mono- and dicarboxylic acids), indicating that leachates from weathering PE were mainly baseline toxic. This study provides insight into algae toxicity elicited by leachates from UV-weathered microplastics of different origin, complementing the current particle- vs. chemical-focused research towards the toxicity of plastics and their leachates.


Microalgae/drug effects , Microplastics/toxicity , Scenedesmus/drug effects , Water Pollutants, Chemical/toxicity , Electronic Waste , Microplastics/chemistry , Microplastics/radiation effects , Polyethylene/toxicity , Polypropylenes/toxicity , Polystyrenes/toxicity , Ultraviolet Rays
...