Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 63.026
1.
PLoS One ; 19(5): e0301200, 2024.
Article En | MEDLINE | ID: mdl-38753608

Bovine mastitis is a widespread and costly disease that affects dairy farming globally, characterized by mammary gland inflammation. Bovine intramammary gland infection has been associated with more than 135 different pathogens of which Staphylococcus aureus is the main etiology of sub-clinical mastitis (SCM). The current study was designed to investigate the prevalence, antibiotic resistance pattern, and the presence of antibiotic resistance genes (mecA, tetK, aacA-aphD and blaZ) in S. aureus isolated from the raw milk of cows with subclinical mastitis. A total of 543 milk samples were collected from lactating cows such as Holstein Friesian (n = 79), Sahiwal (n = 175), Cholistani (n = 107), and Red Sindhi (n = 182) from different dairy farms in Pakistan. From the milk samples microscopic slides were prepared and the somatic cell count was assessed to find SCM. To isolate and identify S. aureus, milk was streaked on mannitol salt agar (MSA) plates. Further confirmation was done based on biochemical assays, including gram staining (+ coccus), catalase test (+), and coagulase test (+). All the biochemically confirmed S. aureus isolates were molecularly identified using the thermonuclease (nuc) gene. The antibiotic resistance pattern of all the S. aureus isolates was evaluated through the disc diffusion method. Out of 543 milk samples, 310 (57.09%) were positive for SCM. Among the SCM-positive samples, S. aureus was detected in 30.32% (94/310) samples. Out of 94 isolates, 47 (50%) were determined to be multidrug resistant (MDR). Among these MDR isolates, 11 exhibited resistance to Cefoxitin, and hence were classified as methicillin-resistant Staphylococcus aureus (MRSA). The S. aureus isolates showed the highest resistance to Lincomycin (84.04%) followed by Ampicillin (45.74%), while the least resistance was shown to Sulfamethoxazole/Trimethoprim (3.19%) and Gentamycin (6.38%). Polymerase chain reaction (PCR) analysis revealed that 55.31% of the isolates carried blaZ gene, 46.80% carried tetK gene, 17.02% harbored the mecA gene, whereas, aacA-aphD gene was found in 13.82% samples. Our findings revealed a significant level of contamination of milk with S. aureus and half (50%) of the isolates were MDR. The isolated S. aureus harbored various antibiotic resistance genes responsible for the absorbed phenotypic resistance. The alarmingly high prevalence of MDR S. aureus isolates and MRSA strains in these cases possess a serious risk to public health, emphasizes the urgent need to address this issue to protect both human and animal health in Pakistan.


Anti-Bacterial Agents , Mastitis, Bovine , Milk , Staphylococcal Infections , Staphylococcus aureus , Animals , Cattle , Mastitis, Bovine/microbiology , Mastitis, Bovine/epidemiology , Milk/microbiology , Female , Staphylococcus aureus/genetics , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Anti-Bacterial Agents/pharmacology , Staphylococcal Infections/microbiology , Staphylococcal Infections/epidemiology , Staphylococcal Infections/veterinary , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics , Pakistan/epidemiology , Bacterial Proteins/genetics
2.
Food Res Int ; 183: 114175, 2024 May.
Article En | MEDLINE | ID: mdl-38760120

Lactose hydrolysed concentrated milk was prepared using ß-galactosidase enzyme (4.76U/mL) with a reaction period of 12 h at 4 °C. Addition of polysaccharides (5 % maltodextrin/ß-cyclodextrin) to concentrated milk either before or after lactose hydrolysis did not result in significant differences (p > 0.05) in degree of hydrolysis (% DH) of lactose and residual lactose content (%). Three different inlet temperatures (165 °C, 175 °C and 185 °C) were used for the preparation of powders which were later characterised based on physico-chemical and maillard browning characteristics. Moisture content, solubility and available lysine content of the powders decreased significantly, whereas, browning parameters i.e., browning index, 5-hydroxymethylfurfural, furosine content increased significantly (p < 0.05) with an increase in inlet air temperature. The powder was finally prepared with 5 % polysaccharide and an inlet air temperature of 185 °C which reduced maillard browning. Protein-polysaccharide interactions were identified using Fourier Transform infrared spectroscopy, fluorescence spectroscopy and determination of free amino groups in the powder samples. Maltodextrin and ß-cyclodextrin containing powder samples exhibited lower free amino groups and higher degree of graft value as compared to control sample which indicated protein-polysaccharide interactions. Results obtained from Fourier Transform infrared spectroscopy also confirmed strong protein-polysaccharide interactions, moreover a significant decrease in fluorescence intensity was also observed in the powder samples. These interactions between the proteins and polysaccharides reduced the maillard browning in powders.


Furaldehyde , Lactose , Maillard Reaction , Milk , Polysaccharides , Powders , Lactose/chemistry , Polysaccharides/chemistry , Milk/chemistry , Animals , Spectroscopy, Fourier Transform Infrared , Furaldehyde/analogs & derivatives , Furaldehyde/chemistry , beta-Galactosidase/metabolism , beta-Cyclodextrins/chemistry , Hydrolysis , Spray Drying , Temperature , Lysine/chemistry , Lysine/analogs & derivatives , Solubility , Spectrometry, Fluorescence , Milk Proteins/chemistry , Food Handling/methods
3.
Food Res Int ; 183: 114206, 2024 May.
Article En | MEDLINE | ID: mdl-38760137

Yerba mate is increasingly acknowledged for its bioactive properties and is currently being incorporated into various food and pharmaceutical products. When roasted, yerba mate transforms into mate tea, consumed as a hot aqueous infusion, and has gained popularity. This study investigated the bioaccessibility of phenolic compounds, protein-polyphenol interactions, antioxidant activity, and bioactive peptides in roasted yerba mate infusions, utilizing whole, semi-skimmed, and skimmed bovine milk models. The phytochemical profile of roasted yerba mate was analyzed in infusions with water and milk (whole, semi-skimmed, and skimmed), before and after in vitro digestion, identifying 18 compounds that exhibited variations in composition and presence among the samples. Bioavailability varied across different milk matrices, with milk being four times more efficient as a solvent for extraction. Gastric digestion significantly impacted (p < 0.05) the release of phenolic compounds, such as chlorogenic acid and rutin, with only chlorogenic acid remaining 100 % bioavailable in the infusion prepared with skimmed milk. Protein-polyphenol interaction did not influence protein digestion in different infusions, as there was a similarity in the hydrolysis pattern during the digestive process. Changes in antioxidant activity during digestion phases, especially after intestinal digestion in milk infusions, were related to alterations in protein structures and digestive interactions. The evaluation of total phenolic compounds highlighted that skimmed milk infusion notably preserved these compounds during digestion. Peptidomic analysis identified 253, 221, and 191 potentially bioactive peptides for whole, semi-skimmed, and skimmed milk-digested infusions, respectively, with a focus on anti-inflammatory and anticancer activities, presenting a synergistic approach to promote health benefits. The selection of milk type is crucial for comprehending the effects of digestion and interactions in bioactive compound-rich foods, highlighting the advantages of consuming plant infusions prepared with milk.


Antioxidants , Biological Availability , Digestion , Ilex paraguariensis , Milk , Peptides , Phenols , Polyphenols , Animals , Ilex paraguariensis/chemistry , Antioxidants/pharmacokinetics , Milk/chemistry , Cattle , Phenols/analysis , Peptides/chemistry , Polyphenols/pharmacokinetics , Plant Extracts/chemistry
4.
Food Res Int ; 183: 114225, 2024 May.
Article En | MEDLINE | ID: mdl-38760144

The aim of this study was to isolate and identify the main milk-clotting proteases from Prinsepia utilis Royle. Protein isolates obtained using precipitation with 20 %-50 % ammonium sulfate (AS) showed higher milk-clotting activity (MCA) at 154.34 + 0.35 SU. Two milk-clotting proteases, namely P191 and P1831, with molecular weight of 49.665 kDa and 68.737 kDa, respectively, were isolated and identified using liquid chromatography-mass spectrometry (LC-MS/MS). Bioinformatic analysis showed that the two identified milk-clotting proteases were primarily involved in hydrolase activity and catabolic processes. Moreover, secondary structure analysis showed that P191 structurally consisted of 40.85 % of alpha-helices, 15.96 % of beta-strands, and 43.19 % of coiled coil motifs, whereas P1831 consisted of 70 % of alpha-helices, 7.5 % of beta-strands, and 22.5 % of coiled coil motifs. P191 and P1831 were shown to belong to the aspartic protease and metalloproteinase types, and exhibited stability within the pH range of 4-6 and good thermal stability at 30-80 °C. The addition of CaCl2 (<200 mg/L) increased the MCA of P191 and P1831, while the addition of NaCl (>3 mg/mL) inhibited their MCA. Moreover, P191 and P1831 preferably hydrolyzed kappa-casein, followed by alpha-casein, and to a lesser extent beta-casein. Additionally, cheese processed with the simultaneous use of the two proteases isolated in the present study exhibited good sensory properties, higher protein content, and denser microstructure compared with cheese processed using papaya rennet or calf rennet. These findings unveil the characteristics of two proteases isolated from P. utilis, their milk-clotting properties, and potential application in the cheese-making industry.


Cheese , Food Handling , Peptide Hydrolases , Cheese/analysis , Food Handling/methods , Animals , Peptide Hydrolases/chemistry , Peptide Hydrolases/metabolism , Tandem Mass Spectrometry , Hydrogen-Ion Concentration , Milk/chemistry , Molecular Weight , Enzyme Stability , Chromatography, Liquid
5.
PLoS One ; 19(5): e0301477, 2024.
Article En | MEDLINE | ID: mdl-38768108

Food allergy is widely recognized as a significant health issue, having escalated into a global epidemic, subsequently giving rise to the development of numerous additional complications. Currently, the sole efficient method to curb the progression of allergy is through the implementation of an elimination diet. The increasing number of newly identified allergens makes it harder to completely remove or avoid them effectively. The immunoreactivity of proteins of bacterial origin remains an unexplored topic. Despite the substantial consumption of microbial proteins in our diets, the immunologic mechanisms they might induce require thorough validation. This stands as the primary objective of this study. The primary objective of this study was to evaluate the effects of bacterial proteins on the intestinal barrier and immune system parameters during hypersensitivity induction in both developing and mature organisms. The secondary objective was to evaluate the role of lipids in the immunoreactivity programming of these bacterial proteins. Notably, in this complex, comprehensively designed in vitro, in vivo, and ex vivo trial, the immunoreactivity of various bacterial proteins will be examined. In summary, the proposed study intends to address the knowledge gaps regarding the effects of Lactobacillus microbial proteins on inflammation, apoptosis, autophagy, and intestinal barrier integrity in a single study.


Bacterial Proteins , Animals , Bacterial Proteins/metabolism , Bacterial Proteins/immunology , Lipids , Milk/microbiology , Milk/immunology , Mice , Lactobacillales/metabolism , Lactobacillales/immunology , Food Hypersensitivity/immunology , Food Hypersensitivity/microbiology , Female , Humans , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/immunology
6.
Food Res Int ; 187: 114308, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763625

Antimicrobial resistance (AMR) is a significant public health threat, with the food production chain, and, specifically, fermented products, as a potential vehicle for dissemination. However, information about dairy products, especially raw ewe milk cheeses, is limited. The present study analysed, for the first time, the occurrence of AMRs related to lactic acid bacteria (LAB) along a raw ewe milk cheese production chain for the most common antimicrobial agents used on farms (dihydrostreptomycin, benzylpenicillin, amoxicillin and polymyxin B). More than 200 LAB isolates were obtained and identified by Sanger sequencing (V1-V3 16S rRNA regions); these isolates included 8 LAB genera and 21 species. Significant differences in LAB composition were observed throughout the production chain (P ≤ 0.001), with Enterococcus (e.g., E. hirae and E. faecalis) and Bacillus (e.g., B. thuringiensis and B. cereus) predominating in ovine faeces and raw ewe milk, respectively, along with Lactococcus (L. lactis) in whey and fresh cheeses, while Lactobacillus and Lacticaseibacillus species (e.g., Lactobacillus sp. and L. paracasei) prevailed in ripened cheeses. Phenotypically, by broth microdilution, Lactococcus, Enterococcus and Bacillus species presented the greatest resistance rates (on average, 78.2 %, 56.8 % and 53.4 %, respectively), specifically against polymyxin B, and were more susceptible to dihydrostreptomycin. Conversely, Lacticaseibacillus and Lactobacillus were more susceptible to all antimicrobials tested (31.4 % and 39.1 %, respectively). Thus, resistance patterns and multidrug resistance were reduced along the production chain (P ≤ 0.05). Genotypically, through HT-qPCR, 31 antimicrobial resistance genes (ARGs) and 6 mobile genetic elements (MGEs) were detected, predominating Str, StrB and aadA-01, related to aminoglycoside resistance, and the transposons tnpA-02 and tnpA-01. In general, a significant reduction in ARGs and MGEs abundances was also observed throughout the production chain (P ≤ 0.001). The current findings indicate that LAB dynamics throughout the raw ewe milk cheese production chain facilitated a reduction in AMRs, which has not been reported to date.


Anti-Bacterial Agents , Cheese , Drug Resistance, Bacterial , Lactobacillales , Milk , Animals , Cheese/microbiology , Milk/microbiology , Sheep , Lactobacillales/genetics , Lactobacillales/drug effects , Lactobacillales/isolation & purification , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Phenotype , Food Microbiology , Genotype , RNA, Ribosomal, 16S/genetics , Microbial Sensitivity Tests , Feces/microbiology , Female
7.
Allergol Immunopathol (Madr) ; 52(3): 42-52, 2024.
Article En | MEDLINE | ID: mdl-38721954

INTRODUCTION AND OBJECTIVES: Food allergy has several negative nutritional consequences and may persist beyond the first year of lives. This study aimed to assess the role of a complete oral amino acid-based supplement in the diet of children on cow's milk protein elimination diet because of food allergy. MATERIALS AND METHODS: This study included two groups of children aged 1-5 years paired by age and socioeconomic status: (1) study group, on cow's milk protein elimination diet plus an oral amino acid-based supplement, and (2) control group, on cow's milk protein elimination diet. Sociodemographic, clinical, anthropometric, and dietary data were obtained through online interviews. Two 24-h dietary recalls were collected on nonconsecutive days. Both groups comprised mostly boys. RESULTS: The study group presented lower values of body mass index. The frequency of feeding difficulties was similar between groups. The study group had a higher intake of energy, protein, carbohydrates, calcium, iron, zinc, phosphorus, magnesium, copper, selenium, vitamins D, E, B1, B2, B6, and B12, niacin, and folic acid compared to the control group. A higher proportion of children in the study group had adequate intake according to the recommendations made for energy, carbohydrates, iron, phosphorus, selenium, vitamins A, D, E, B1, B2, and B6, and folic acid. CONCLUSIONS: The use of a complete oral amino acid-based supplement has a positive effect on the diet quality of preschoolers on cow's milk elimination diet because of food allergy, promoting higher intake of energy, calcium, vitamin D, and other essential nutrients.


Amino Acids , Dietary Supplements , Milk Hypersensitivity , Humans , Child, Preschool , Male , Female , Animals , Cross-Sectional Studies , Infant , Amino Acids/administration & dosage , Milk/immunology , Cattle , Milk Proteins/administration & dosage , Milk Proteins/immunology , Diet , Elimination Diets
8.
BMC Vet Res ; 20(1): 193, 2024 May 11.
Article En | MEDLINE | ID: mdl-38734661

BACKGROUND: Bovine mastitis is a widespread disease affecting dairy cattle worldwide and it generates substantial losses for dairy farmers. Mastitis may be caused by bacteria, fungi or algae. The most common species isolated from infected milk are, among others, Streptococcus spp., Escherichia coli, Staphylococcus aureus and non-aureus staphylococci and mammaliicocci. The aim of this paper is to determine the frequency of occurrence of bacterial species in milk samples from cows with mastitis from three regions of Poland: the north-east, the south-west and the south. To this end 203 milk samples taken from cows with a clinical form (CM) of mastitis (n = 100) and healthy animals (n = 103) were examined, which included culture on an appropriate medium followed by molecular detection of E. coli, S. aureus, Streptococcus agalactiae and Streptococcus uberis, as one of the most common species isolated from mastitis milk. RESULTS: The results obtained indicated that S. uberis was the most commonly cultivated CM species (38%, n = 38), followed by S. aureus (22%, n = 22), E. coli (21%, n = 21) and S. agalactiae (18%, n = 18). Similar frequencies in molecular methods were obtained for S. uberis (35.1%) and S. aureus (28.0%). The variation of sensitivity of both methods may be responsible for the differences in the E. coli (41.0%, p = 0.002) and S. agalactiae (5.0%, p = 0.004) detection rates. Significant differences in composition of species between three regions of Poland were noted for E. coli incidence (p < 0.001), in both the culture and molecular methods, but data obtained by the PCR method indicated that this species was the least common in north-eastern Poland, while the culture method showed that in north-eastern Poland E. coli was the most common species. Significant differences for the molecular method were also observed for S. uberis (p < 0.001) and S. aureus (p < 0.001). Both species were most common in southern and south-western Poland. CONCLUSIONS: The results obtained confirm the need to introduce rapid molecular tests for veterinary diagnostics, as well as providing important epidemiological data, to the best of our knowledge data on Polish cows in selected areas of Poland is lacking.


Mastitis, Bovine , Milk , Streptococcus , Animals , Cattle , Mastitis, Bovine/microbiology , Mastitis, Bovine/epidemiology , Poland/epidemiology , Female , Milk/microbiology , Streptococcus/isolation & purification , Streptococcus/genetics , Streptococcus/classification , Escherichia coli/isolation & purification , Escherichia coli/genetics , Escherichia coli/classification , Staphylococcus aureus/isolation & purification , Staphylococcus aureus/genetics , Streptococcus agalactiae/isolation & purification , Streptococcus agalactiae/genetics , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics
9.
Immun Inflamm Dis ; 12(5): e1265, 2024 May.
Article En | MEDLINE | ID: mdl-38722265

BACKGROUND: The basophil activation test is an emerging clinical tool in the diagnosis of cow's milk allergy (CMA). The aim was to assess the association between the basophil allergen threshold sensitivity to the major milk protein casein (casein-specific CD-sens), the levels of milk- and casein-specific Immunoglobulin E antibodies (IgE-ab), and the severity of allergic reactions at milk challenges. METHODS: We enrolled 34 patients aged 5-15 (median 9) years who underwent a double-blind placebo-controlled milk-challenge (DBPCMC) as screening before inclusion in an oral immunotherapy study for CMA. The severity of the allergic reaction at the DBPCMC was graded using Sampson's severity score. Venous blood was drawn before the DBPCMC. Milk- and casein-specific IgE-ab were analyzed. Following in vitro stimulation of basophils with casein, casein-specific CD-sens, was determined. RESULTS: Thirty-three patients completed the DBPCMC. There were strong correlations between casein-specific CD-sens and IgE-ab to milk (rs = 0.682, p < .001), and between casein-specific CD-sens and IgE-ab to casein (rs = 0.823, p < .001). There was a correlation between the severity of the allergic reaction and casein-specific CD-sens level (rs = 0.395, p = .041) and an inverse correlation between casein-specific CD-sens level and the cumulative dose of milk protein to which the patient reacted at the DBPCMC (rs = -0.418, p = .027). Among the 30 patients with an allergic reaction at the DBPCMC, 67% had positive casein-specific CD-sens, 23% had negative casein-specific CD-sens, and 10% were declared non-responders. CONCLUSION: Two thirds of those reacting at the DBPMC had positive casein-specific CD-sens, but reactions also occurred despite negative casein-specific CD-sens. The association between casein-specific CD-sens and the severity of the allergic reaction and cumulative dose of milk protein, respectively, was moderate.


Allergens , Basophils , Caseins , Immunoglobulin E , Milk Hypersensitivity , Humans , Basophils/immunology , Basophils/metabolism , Caseins/immunology , Milk Hypersensitivity/immunology , Milk Hypersensitivity/diagnosis , Milk Hypersensitivity/blood , Immunoglobulin E/immunology , Immunoglobulin E/blood , Female , Male , Child , Adolescent , Child, Preschool , Allergens/immunology , Animals , Milk/immunology , Milk/adverse effects , Double-Blind Method
10.
Food Res Int ; 186: 114305, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729687

Kefir is a traditional dairy beverage, usually made from cow or goat milk fermented with kefir grains, and has many health benefits. To elucidate the fermentation patterns of animal milk kefirs during the fermentation process and find the optimal milk types, cow, camel, goat, and donkey milk were fermented with kefir grains for 0, 1, 3, 5, and 7 days. Volatile and non-volatile metabolites and microbial changes were dynamically monitored. The results showed that volatile flavor substances were massively elevated in four kefirs on days 1-3. Lipids and carbohydrates gradually decreased, while amino acids, small peptides, and tryptophan derivatives accumulated during fermentation in four kefirs. Besides, four kefirs had similar alterations in Lactobacillus and Acetobacter, while some distinctions existed in low-abundance bacteria. Association analysis of microorganisms and volatile and non-volatile metabolites also revealed the underlying fermentation mechanism. This study found that appropriately extending the fermentation time contributed to the accumulation of some functional nutrients. Furthermore, goat and donkey milk could be the better matrices for kefir fermentation.


Equidae , Fermentation , Goats , Kefir , Milk , Animals , Kefir/microbiology , Cattle , Milk/microbiology , Milk/chemistry , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Taste , Camelus , Food Microbiology , Lactobacillus/metabolism , Microbiota , Acetobacter/metabolism , Amino Acids/metabolism , Amino Acids/analysis
11.
Food Res Int ; 186: 114336, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729713

Alternative milk products such as A2 milk are gaining popular stand within consumer market, for their healthy profile and expected greater digestibility characteristics. However, total mineral content and its bioaccessible profile have lacked in studies through the years, even more because of their relevance in public health. The present study aimed to evaluate the mineral profile of commercial A2 bovine milk (AT) and estimate the bioaccessibility of calcium, phosphorus and magnesium using the INFOGEST protocol. Non-A2 samples (NAT) were evaluated for comparison purpose. The determination of Ca, Mg, Na and K was performed by FAAS and total P was quantified by colorimetric method. Total protein content was determined by Kjeldahl method. Free amino acids were quantified by OPA method along the in vitro digestion stages. Total content of Ca, Na and P exhibited equivalent results between samples, although A2 milk showed elevated levels of total Mg and K in the analyzed batches. AT showed protein content equivalent to NAT. In addition, levels of free NH2 were observed 2 times higher in AT, during the first hour of pancreatic phase in the intestinal digestion. Bioaccessibility of Ca showed equivalent percentages for AT (12-42 %) and NAT (10-39 %). The observed low values were possibly derived from interferences with saturated fatty acids and standardized electrolytes during digestion. Similar amounts of bioaccessible Mg were found for all milk samples (35-97 %), while A2 samples evidenced percentages of bioaccessible P exceeding 60 % across the three batches. Despite the health benefits associated to A2 milk, the study did not evidence clear distinction from non-A2 milk in terms of enhanced essential mineral solubility in digestive tract simulation, considering the association of greater digestibility expected for A2 milk.


Amino Acids , Biological Availability , Digestion , Milk , Minerals , Animals , Milk/chemistry , Amino Acids/analysis , Minerals/analysis , Cattle , Magnesium/analysis
12.
Trop Anim Health Prod ; 56(4): 160, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730050

The rearing of calves is an essential activity of a dairy system, as it impacts the future production of these animals. This study aims to evaluate the incidence of diarrhea, performance, and blood parameters of suckling calves that received mineral-vitamin supplementation in milk plus virginiamycin that was offered in milk (via the abomasum) or by esophageal tube (via the rumen). Twenty-seven calves were used, from the first week to 60 days of age, submitted to the following treatments: CONTROL, without supplementation; MILK, supplementation of 20 g of a mineral-vitamin complex with 100 mg of virginiamycin, diluted in milk; RUMEN, supplementation of 20 g of a mineral-vitamin complex diluted in milk and 100 mg of virginiamycin in gelatin capsules via an esophageal applicator. MILK and RUMEN calves had lower fecal consistency scoring, fewer days with scores 2 and 3 throughout the experimental period, and lower spending on medication compared to the CONTROL animals. Supplemented calves had higher fat and protein intake and reached feed intake of 600 g earlier than CONTROL animals, but did not differ in performance and hematological parameters. Supplementation with virginiamycin and vitamin-mineral complex for suckling calves reduced the incidence and days of diarrhea, and reduced medication costs, with no difference in performance, but the supplemented animals had higher initial protein and fat intake and reached targeted feed intake earlier to begin the weaning process.


Animal Feed , Cattle Diseases , Diarrhea , Dietary Supplements , Virginiamycin , Animals , Cattle , Dietary Supplements/analysis , Diarrhea/veterinary , Diarrhea/prevention & control , Diarrhea/epidemiology , Cattle Diseases/epidemiology , Cattle Diseases/prevention & control , Incidence , Animal Feed/analysis , Virginiamycin/administration & dosage , Virginiamycin/pharmacology , Vitamins/administration & dosage , Animals, Suckling , Male , Female , Minerals/administration & dosage , Minerals/analysis , Milk/chemistry , Diet/veterinary
13.
Trop Anim Health Prod ; 56(4): 159, 2024 May 10.
Article En | MEDLINE | ID: mdl-38730223

Cell components soluble in neutral detergent are a diverse group, both compositionally and nutritionally. The present study aimed to evaluate production responses, behavior (eating, ruminating, and idling), and nitrogen balance of dairy goats fed different ratios of neutral detergent-soluble carbohydrate fractions. Five multiparous Alpine does with mean ± SD initial body mass of 49.5 ± 7.9 kg and 60 days of lactation were randomly assigned in a 5 × 5 Latin square design. The treatments were the ratios of starch (starch associated with soluble sugar [StSS]) to neutral detergent-soluble fiber (NDSF) (StSS:NDSF): 0.89, 1.05, 1.24, 1.73, and 2.92. No effect was observed (P > 0.05) of StSS:NDSF on the intakes of neutral detergent fiber (NDF) and NDSC. However, DM intake showed a quadratic behavior (P = 0.049). The ingestive behavior was affected by StSS:NDSF linearly increased (P = 0.002) the feeding efficiency. The increase in StSS:NDSF caused a linear increase in fecal (P = 0.011), urinary (P < 0.001), and milk nitrogen excretion (P = 0.024). The increase in StSS:NDSF affected (P = 0.048) milk yield and net energy lactation (P = 0.036). In conclusion, dairy goats experience reduced dry matter intake and milk yield when subjected to high-NDSC diets, specifically those above 1.24 StSS:NDSF ratio. Elevated NDSC levels in the diets lead to decreased feeding time, whereas rumination remains unaffected. Nitrogen losses in goats increase linearly with high-NDSC diets, and a significant impact on nitrogen balance.


Animal Feed , Animal Nutritional Physiological Phenomena , Diet , Goats , Lactation , Milk , Nitrogen , Animals , Goats/physiology , Female , Nitrogen/metabolism , Nitrogen/analysis , Diet/veterinary , Milk/chemistry , Animal Feed/analysis , Feeding Behavior/drug effects , Random Allocation , Dietary Fiber/analysis , Dietary Fiber/administration & dosage , Dietary Carbohydrates/analysis , Dietary Carbohydrates/administration & dosage
14.
BMC Microbiol ; 24(1): 157, 2024 May 06.
Article En | MEDLINE | ID: mdl-38710998

BACKGROUND: Clostridium perfringens, a common environmental bacterium, is responsible for a variety of serious illnesses including food poisoning, digestive disorders, and soft tissue infections. Mastitis in lactating cattle and sudden death losses in baby calves are major problems for producers raising calves on dairy farms. The pathogenicity of this bacterium is largely mediated by its production of various toxins. RESULTS: The study revealed that Among the examined lactating animals with a history of mastitis, diarrheal baby calves, and acute sudden death cases in calves, C. perfringens was isolated in 23.5% (93/395) of the total tested samples. Eighteen isolates were obtained from mastitic milk, 59 from rectal swabs, and 16 from the intestinal contents of dead calves. Most of the recovered C. perfringens isolates (95.6%) were identified as type A by molecular toxinotyping, except for four isolates from sudden death cases (type C). Notably, C. perfringens was recovered in 100% of sudden death cases compared with 32.9% of rectal swabs and 9% of milk samples. This study analyzed the phylogeny of C. perfringens using the plc region and identified the plc region in five Egyptian bovine isolates (milk and fecal origins). Importantly, this finding expands the known data on C. perfringens phospholipase C beyond reference strains in GenBank from various animal and environmental sources. CONCLUSION: Phylogenetic analyses of nucleotide sequence data differentiated between strains of different origins. The plc sequences of Egyptian C. perfringens strains acquired in the present study differed from those reported globally and constituted a distinct genetic ancestor.


Clostridium Infections , Clostridium perfringens , Enteritis , Genetic Variation , Mastitis, Bovine , Milk , Phylogeny , Animals , Clostridium perfringens/genetics , Clostridium perfringens/isolation & purification , Clostridium perfringens/classification , Clostridium perfringens/pathogenicity , Cattle , Egypt , Female , Clostridium Infections/microbiology , Clostridium Infections/veterinary , Milk/microbiology , Enteritis/microbiology , Enteritis/veterinary , Mastitis, Bovine/microbiology , Cattle Diseases/microbiology , Feces/microbiology , Type C Phospholipases/genetics , Dairying , Farms , Bacterial Toxins/genetics
15.
Front Immunol ; 15: 1385896, 2024.
Article En | MEDLINE | ID: mdl-38715606

Introduction: Peripartal cows are susceptible to a negative energy balance due to inadequate nutrient intake and high energy requirements for lactation. Improving the energy metabolism of perinatal dairy cows is crucial in increasing production in dairy cows. Methods: In this study, we investigated the impact of rumen-protected branched-chain amino acid (RPBCAA) on the production performance, energy and lipid metabolism, oxidative stress, and immune function of primiparous dairy cows using metabolomics through a single-factor experiment. Twenty healthy primiparous Holstein cows were selected based on body condition scores and expected calving date, and were randomly divided into RPBCAA (n = 10) and control (n = 10) groups. The control group received a basal diet from calving until 21 d in milk, and the RPBCAA group received the basal diet and 44.6 g/d RPLeu, 25.14 g/d RPIle, and 25.43 g/d RPVal. Results: In comparison to the control group, the supplementation of RPBCAA had no significant effect on milk yield and milk composition of the dairy cows. Supplementation with RPBCAA significantly increased the concentrations of insulin, insulin growth factor 1, glucagon, and growth hormones, which are indicators of energy metabolism in postpartum cows. The very low density lipoprotein, fatty acid synthase, acetyl coenzyme A carboxylase, and hormone-sensitive lipase contents of the RPBCAA group were significantly greater than that of the control group; these metrics are related to lipid metabolism. In addition, RPBCAA supplementation significantly increased serum glutathione peroxidase and immunoglobulin G concentrations and decreased malondialdehyde concentrations. Liquid chromatography-mass spectrometry (LC-MS) analysis revealed 414 serum and 430 milk metabolic features. Supplementation with RPBCAA primarily increased concentrations of amino acid and lipid metabolism pathways and upregulated the abundance of serotonin, glutamine, and phosphatidylcholines. Discussion: In summary, adding RPBCAA to the daily ration can influence endocrine function and improve energy metabolism, regulate amino acid and lipid metabolism, mitigate oxidative stress and maintain immune function on primiparous cows in early lactation.


Amino Acids, Branched-Chain , Lactation , Metabolomics , Milk , Rumen , Animals , Cattle , Female , Amino Acids, Branched-Chain/metabolism , Rumen/metabolism , Metabolomics/methods , Milk/chemistry , Milk/metabolism , Energy Metabolism , Pregnancy , Dietary Supplements , Animal Feed/analysis , Parity , Oxidative Stress , Lipid Metabolism , Metabolome
16.
Sensors (Basel) ; 24(9)2024 Apr 25.
Article En | MEDLINE | ID: mdl-38732847

The most reliable methods for pregnancy diagnosis in dairy herds include rectal palpation, ultrasound examination, and evaluation of plasma progesterone concentrations. However, these methods are expensive, labor-intensive, and invasive. Thus, there is a need to develop a practical, non-invasive, cost-effective method that can be implemented on the farm to detect pregnancy. This study suggests employing microwave dielectric spectroscopy (MDS, 0.5-40 GHz) as a method to evaluate reproduction events in dairy cows. The approach involves the integration of MDS data with information on milk solids to detect pregnancy and identify early embryonic loss in dairy cows. To test the ability to predict pregnancy according to these measurements, milk samples were collected from (i) pregnant and non-pregnant randomly selected cows, (ii) weekly from selected cows (n = 12) before insemination until a positive pregnancy test, and (iii) daily from selected cows (n = 10) prior to insemination until a positive pregnancy test. The results indicated that the dielectric strength of Δε and the relaxation time, τ, exhibited reduced variability in the case of a positive pregnancy diagnosis. Using principal component analysis (PCA), a clear distinction between pregnancy and nonpregnancy status was observed, with improved differentiation upon a higher sampling frequency. Additionally, a neural network machine learning technique was employed to develop a prediction algorithm with an accuracy of 73%. These findings demonstrate that MDS can be used to detect changes in milk upon pregnancy. The developed machine learning provides a broad classification that could be further enhanced with additional data.


Microwaves , Milk , Animals , Female , Cattle , Milk/chemistry , Pregnancy , Principal Component Analysis , Dielectric Spectroscopy/methods , Dairying/methods , Pregnancy Tests/methods , Pregnancy Tests/veterinary , Algorithms
17.
Nat Commun ; 15(1): 3953, 2024 May 10.
Article En | MEDLINE | ID: mdl-38729967

Efficient milk production in mammals confers evolutionary advantages by facilitating the transmission of energy from mother to offspring. However, the regulatory mechanism responsible for the gradual establishment of milk production efficiency in mammals, from marsupials to eutherians, remains elusive. Here, we find that mammary gland of the marsupial sugar glider contained milk components during adolescence, and that mammary gland development is less dynamically cyclic compared to that in placental mammals. Furthermore, fused in sarcoma (FUS) is found to be partially responsible for this establishment of low efficiency. In mouse model, FUS inhibit mammary epithelial cell differentiation through the cyclin-dependent kinase inhibitor p57Kip2, leading to lactation failure and pup starvation. Clinically, FUS levels are negatively correlated with milk production in lactating women. Overall, our results shed light on FUS as a negative regulator of milk production, providing a potential mechanism for the establishment of milk production from marsupial to eutherian mammals.


Lactation , Mammary Glands, Animal , Milk , Animals , Female , Mammary Glands, Animal/metabolism , Humans , Mice , Milk/metabolism , Cell Differentiation , Cyclin-Dependent Kinase Inhibitor p57/metabolism , Cyclin-Dependent Kinase Inhibitor p57/genetics , Epithelial Cells/metabolism , Macropodidae/metabolism , Mammals , Marsupialia
18.
Int J Mol Sci ; 25(9)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38731976

Increasing antimicrobial resistance (AMR) challenges conventional antibiotics, prompting the search for alternatives. Extracellular vesicles (EVs) from pasteurised cattle milk offer promise, due to their unique properties. This study investigates their efficacy against five pathogenic bacteria, including Staphylococcus aureus ATCC 25923, aiming to combat AMR and to develop new therapies. EVs were characterised and tested using various methods. Co-culture experiments with S. aureus showed significant growth inhibition, with colony-forming units decreasing from 2.4 × 105 CFU/mL (single dose) to 7.4 × 104 CFU/mL (triple doses) after 12 h. Milk EVs extended lag time (6 to 9 h) and increased generation time (2.8 to 4.8 h) dose-dependently, compared to controls. In conclusion, milk EVs exhibit dose-dependent inhibition against S. aureus, prolonging lag and generation times. Despite limitations, this suggests their potential in addressing AMR.


Extracellular Vesicles , Milk , Staphylococcus aureus , Extracellular Vesicles/metabolism , Animals , Milk/microbiology , Staphylococcus aureus/drug effects , Cattle , Anti-Bacterial Agents/pharmacology , Pasteurization , Microbial Sensitivity Tests
19.
Vet Microbiol ; 293: 110103, 2024 Jun.
Article En | MEDLINE | ID: mdl-38718528

Oxazolidinones are potent antimicrobial agents used to treat human infections caused by multidrug-resistant Gram-positive bacteria. The growing resistance to oxazolidinones poses a significant threat to public health. In August 2021, a linezolid-resistant Enterococcus faecium BN83 was isolated from a raw milk sample of cow in Inner Mongolia, China. This isolate exhibited a multidrug resistance phenotype and was resistant to most of drugs tested including linezolid and tedizolid. PCR detection showed that two mobile oxazolidinones resistance genes, optrA and poxtA, were present in this isolate. Whole genome sequencing analysis revealed that the genes optrA and poxtA were located on two different plasmids, designated as pBN83-1 and pBN83-2, belonging to RepA_N and Inc18 families respectively. Genetic context analysis suggested that optrA gene on plasmid pBN83-1 was located in transposon Tn6261 initially found in E. faecalis. Comprehensive analysis revealed that Tn6261 act as an important horizontal transmission vector for the spread of optrA in E. faecium. Additionally, poxtA-bearing pBN83-2 displayed high similarity to numerous plasmids from Enterococcus of different origin and pBN83-2-like plasmid represented a key mobile genetic element involved in movement of poxtA in enterococcal species. The presence of optrA- and poxtA-carrying E. faecium in raw bovine milk represents a public health concern and active surveillance is urgently warranted to investigate the prevalence of oxazolidinone resistance genes in animal-derived food products.


Anti-Bacterial Agents , Enterococcus faecium , Milk , Oxazolidinones , Animals , Cattle , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Milk/microbiology , China/epidemiology , Oxazolidinones/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Linezolid/pharmacology , Whole Genome Sequencing , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/veterinary , Gram-Positive Bacterial Infections/epidemiology , Genes, Bacterial/genetics
20.
Mikrochim Acta ; 191(6): 297, 2024 05 06.
Article En | MEDLINE | ID: mdl-38709347

A new detection platform based on a hydroxylated covalent organic framework (COF) integrated with liquid chromatography-tandem mass spectrometry (LC-MS/MS) was constructed and used for detecting adrenergic receptor agonists (ARAs) residues in milk. The hydroxylated COF was prepared by polymerization of tris(4-aminophenyl)amine and 1,3,5-tris(4-formyl-3-hydroxyphenyl)benzene and applied to solid-phase extraction (SPE) of ARAs. This hydroxylated COF was featured with hierarchical flower-like morphology, easy preparation, and copious active adsorption sites. The adsorption model fittings and molecular simulation were applied to explore the potential adsorption mechanism. This detection platform was suitable for detecting four α2- and five ß2-ARAs residues in milk. The linear ranges of the ARAs were from 0.25 to 50 µg·kg-1; the intra-day and the inter-day repeatability were in the range 2.9-7.9% and 2.0-10.1%, respectively. This work demonstrates this hydroxylated COF has great potential as SPE cartridge packing, and provides a new way to determine ARAs residues in milk.


Milk , Solid Phase Extraction , Tandem Mass Spectrometry , Solid Phase Extraction/methods , Milk/chemistry , Animals , Tandem Mass Spectrometry/methods , Hydroxylation , Metal-Organic Frameworks/chemistry , Adsorption , Adrenergic Agonists/chemistry , Adrenergic Agonists/analysis , Limit of Detection , Cattle
...