Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.098
1.
Sci Rep ; 14(1): 11282, 2024 05 17.
Article En | MEDLINE | ID: mdl-38760440

This study presents a thorough investigation into the concentration of heavy metals and mineral composition within four distinct coastal flora species: Cyperus conglomeratus, Halopyrum mucronatum, Sericostem pauciflorum, and Salvadora persica. Employing rigorous statistical methodologies such as Pearson coefficient correlation, principal component analysis (PCA), analysis of variance (ANOVA), and interclass correlation (ICC), we aimed to elucidate the bioavailability of heavy metals, minerals, and relevant physical characteristics. The analysis focused on essential elements including copper (Cu), iron (Fe), manganese (Mn), zinc (Zn), magnesium (Mg2+), calcium (Ca2+), sodium (Na+), potassium (K+), and chloride (Cl-), all of which are known to play pivotal roles in the ecological dynamics of coastal ecosystems. Through PCA, we discerned distinctive patterns within PC1 to PC4, collectively explaining an impressive 99.65% of the variance observed in heavy metal composition across the studied flora species. These results underscore the profound influence of environmental factors on the mineral composition of coastal flora, offering critical insights into the ecological processes shaping these vital ecosystems. Furthermore, significant correlations among mineral contents in H. mucronatum; K+ with content of Na+ (r = 0.989) and Mg2+ (r = 0.984); as revealed by ICC analyses, contributed to a nuanced understanding of variations in electrical conductivity (EC), pH levels, and ash content among the diverse coastal flora species. By shedding light on heavy metal and mineral dynamics in coastal flora, this study not only advances our scientific understanding but also provides a foundation for the development of targeted environmental monitoring and management strategies aimed at promoting the ecological sustainability and resilience of coastal ecosystems in the face of ongoing environmental challenges.


Metals, Heavy , Minerals , Metals, Heavy/analysis , Metals, Heavy/metabolism , Minerals/analysis , Minerals/metabolism , Multivariate Analysis , Ecosystem , Biological Availability , Principal Component Analysis
2.
BMC Plant Biol ; 24(1): 365, 2024 May 06.
Article En | MEDLINE | ID: mdl-38706002

BACKGROUND: In plants, GABA plays a critical role in regulating salinity stress tolerance. However, the response of soybean seedlings (Glycine max L.) to exogenous gamma-aminobutyric acid (GABA) under saline stress conditions has not been fully elucidated. RESULTS: This study investigated the effects of exogenous GABA (2 mM) on plant biomass and the physiological mechanism through which soybean plants are affected by saline stress conditions (0, 40, and 80 mM of NaCl and Na2SO4 at a 1:1 molar ratio). We noticed that increased salinity stress negatively impacted the growth and metabolism of soybean seedlings, compared to control. The root-stem-leaf biomass (27- and 33%, 20- and 58%, and 25- and 59% under 40- and 80 mM stress, respectively]) and the concentration of chlorophyll a and chlorophyll b significantly decreased. Moreover, the carotenoid content increased significantly (by 35%) following treatment with 40 mM stress. The results exhibited significant increase in the concentration of hydrogen peroxide (H2O2), malondialdehyde (MDA), dehydroascorbic acid (DHA) oxidized glutathione (GSSG), Na+, and Cl- under 40- and 80 mM stress levels, respectively. However, the concentration of mineral nutrients, soluble proteins, and soluble sugars reduced significantly under both salinity stress levels. In contrast, the proline and glycine betaine concentrations increased compared with those in the control group. Moreover, the enzymatic activities of ascorbate peroxidase, monodehydroascorbate reductase, glutathione reductase, and glutathione peroxidase decreased significantly, while those of superoxide dismutase, catalase, peroxidase, and dehydroascorbate reductase increased following saline stress, indicating the overall sensitivity of the ascorbate-glutathione cycle (AsA-GSH). However, exogenous GABA decreased Na+, Cl-, H2O2, and MDA concentration but enhanced photosynthetic pigments, mineral nutrients (K+, K+/Na+ ratio, Zn2+, Fe2+, Mg2+, and Ca2+); osmolytes (proline, glycine betaine, soluble sugar, and soluble protein); enzymatic antioxidant activities; and AsA-GSH pools, thus reducing salinity-associated stress damage and resulting in improved growth and biomass. The positive impact of exogenously applied GABA on soybean plants could be attributed to its ability to improve their physiological stress response mechanisms and reduce harmful substances. CONCLUSION: Applying GABA to soybean plants could be an effective strategy for mitigating salinity stress. In the future, molecular studies may contribute to a better understanding of the mechanisms by which GABA regulates salt tolerance in soybeans.


Ascorbic Acid , Glutathione , Glycine max , Seedlings , gamma-Aminobutyric Acid , gamma-Aminobutyric Acid/metabolism , Seedlings/drug effects , Seedlings/metabolism , Seedlings/physiology , Glycine max/drug effects , Glycine max/metabolism , Glycine max/physiology , Ascorbic Acid/metabolism , Glutathione/metabolism , Minerals/metabolism , Salt Tolerance/drug effects , Salt Stress/drug effects , Chlorophyll/metabolism , Salinity
3.
BMC Plant Biol ; 24(1): 378, 2024 May 09.
Article En | MEDLINE | ID: mdl-38724893

Pakistan's economy greatly benefits from citrus production since these fruits are sold and consumed all over the world. Although citrus fruits are easy to cultivate, they are susceptible to diseases caused by bacteria, viruses, and fungi. These challenges, as well as difficulties in obtaining the proper nutrients, might negatively impact fruit yields and quality. Citrus canker is another complicated problem caused by the germ Xanthomonas axonopodis. This germ affects many types of citrus fruits all over the world. This study looked closely at how citrus canker affects the leaves and the quality of the fruit in places like Sargodha, Bhalwal, Kotmomin, and Silanwali, which are big areas for growing citrus in the Sargodha district. What we found was that plants without the disease had more chlorophyll in their leaves compared to the sick plants. Also, the healthy plants had better amounts of important minerals like calcium, magnesium, potassium, and phosphorus in their fruits. But the fruits with the disease had too much sodium, and the iron levels were a bit different. The fruits with the disease also didn't have as much of something that protects them called antioxidants, which made them more likely to get sick. This study helps us understand how citrus canker affects plants and fruit, so we can think of ways to deal with it.


Citrus , Fruit , Plant Diseases , Plant Leaves , Xanthomonas axonopodis , Citrus/microbiology , Xanthomonas axonopodis/physiology , Plant Leaves/microbiology , Plant Leaves/metabolism , Plant Diseases/microbiology , Fruit/microbiology , Minerals/metabolism , Minerals/analysis , Chlorophyll/metabolism , Pakistan
4.
PLoS One ; 19(5): e0301092, 2024.
Article En | MEDLINE | ID: mdl-38718028

Globally, the rapid aging of the population is predicted to become even more severe in the second half of the 21st century. Thus, it is expected to establish a growing expectation for innovative, non-invasive health indicators and diagnostic methods to support disease prevention, care, and health promotion efforts. In this study, we aimed to establish a new health index and disease diagnosis method by analyzing the minerals and free amino acid components contained in hair shaft. We first evaluated the range of these components in healthy humans and then conducted a comparative analysis of these components in subjects with diabetes, hypertension, androgenetic alopecia, major depressive disorder, Alzheimer's disease, and stroke. In the statistical analysis, we first used a student's t test to compare the hair components of healthy people and those of patients with various diseases. However, many minerals and free amino acids showed significant differences in all diseases, because the sample size of the healthy group was very large compared to the sample size of the disease group. Therefore, we attempted a comparative analysis based on effect size, which is not affected by differences in sample size. As a result, we were able to narrow down the minerals and free amino acids for all diseases compared to t test analysis. For diabetes, the t test narrowed down the minerals to 15, whereas the effect size measurement narrowed it down to 3 (Cr, Mn, and Hg). For free amino acids, the t test narrowed it down to 15 minerals. By measuring the effect size, we were able to narrow it down to 7 (Gly, His, Lys, Pro, Ser, Thr, and Val). It is also possible to narrow down the minerals and free amino acids in other diseases, and to identify potential health indicators and disease-related components by using effect size.


Amino Acids , Hair , Humans , Hair/chemistry , Male , Amino Acids/analysis , Amino Acids/metabolism , Female , Middle Aged , Adult , Alopecia/diagnosis , Aged , Minerals/analysis , Minerals/metabolism , Alzheimer Disease/diagnosis , Alzheimer Disease/metabolism , Stroke , Hypertension , Depressive Disorder, Major/diagnosis , Diabetes Mellitus/diagnosis , Case-Control Studies
5.
World J Microbiol Biotechnol ; 40(6): 188, 2024 May 04.
Article En | MEDLINE | ID: mdl-38702590

Methanol, the second most abundant volatile organic compound, primarily released from plants, is a major culprit disturbing atmospheric chemistry. Interestingly, ubiquitously found methanol-utilizing bacteria, play a vital role in mitigating atmospheric methanol effects. Despite being extensively characterized, the effect of nitrogen sources on the richness of methanol-utilizers in the bulk soil and rhizosphere is largely unknown. Therefore, the current study was planned to isolate, characterize and explore the richness of cultivable methylotrophs from the bulk soil and rhizosphere of a paddy field using media with varying nitrogen sources. Our data revealed that more genera of methylotrophs, including Methylobacterium, Ancylobacter, Achromobacter, Xanthobacter, Moraxella, and Klebsiella were enriched with the nitrate-based medium compared to only two genera, Hyphomicrobium and Methylobacterium, enriched with the ammonium-based medium. The richness of methylotrophic bacteria also differed substantially in the bulk soil as compared to the rhizosphere. Growth characterization revealed that majority of the newly isolated methanol-utilizing strains in this study exhibited better growth at 37 °C instead of 30 or 45 °C. Moreover, Hyphomicrobium sp. FSA2 was the only strain capable of utilizing methanol even at elevated temperature 45 °C, showing its adaptability to a wide range of temperatures. Differential carbon substrate utilization profiling revealed the facultative nature of all isolated methanol-utilizer strains with Xanthobacter sp. TS3, being an important methanol-utilizer capable of degrading toxic compounds such as acetone and ethylene glycol. Overall, our study suggests the role of nutrients and plant-microbial interaction in shaping the composition of methanol-utilizers in terrestrial environment.


Bacteria , Methanol , Nitrogen , Oryza , Rhizosphere , Soil Microbiology , Nitrogen/metabolism , Methanol/metabolism , Oryza/microbiology , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Soil/chemistry , RNA, Ribosomal, 16S/genetics , Phylogeny , Minerals/metabolism , Temperature , Carbon/metabolism
7.
Plant Physiol Biochem ; 210: 108616, 2024 May.
Article En | MEDLINE | ID: mdl-38615444

This study aims to examine the effect of foliar magnetic iron oxide (Fe3O4) nanoparticles (IONP) application on the physiology, photosynthetic parameters, magnetic character, and mineral element distribution of cherry tomatoes (Solanum lycopersicum var. cerasiforme). The IONP suspension (500 mg L-1) was sprayed once (S1), twice (S2), thrice (S3), and four times (S4) a week on seedlings. Upon 21 days of the treatments, photosynthetic parameters (chlorophyll, carotenoids, photosynthetic yield, electron transport rate) were elucidated. Inductively-coupled plasma-optical emission spectrometer (ICP-OES) and vibrating sample magnetometer (VSM) were used to determine the mineral elements and abundance of magnetic power in the seedlings. In addition, the RT-qPCR method was performed to quantify the expressions of photosystem-related (PsaC, PsbP6, and PsbQ) and ferritin-coding (Fer-1 and Fer-2) genes. Results revealed that the physiological and photosynthetic indices were improved upon S1 treatment. The optimal dosage of IONP spraying enhances chlorophyll, carotenoid, electron transport rate (ETR), and effective photochemical quantum yield of photosystem II (Y(II)) but substantially diminishes non-photochemical quenching (NPQ). However, frequent IONP applications (S2, S3, and S4) caused growth retardation and suppressed the photosynthetic parameters, suggesting a toxic effect of IONP in recurrent treatments. Fer-1 and Fer-2 expressions were strikingly increased by IONP applications, suggesting an attempt to neutralize the excess amount of Fe ions by ferritin. Nevertheless, frequent IONP treatment fluctuated the mineral distribution and caused growth inhibition. Although low-repeat foliar applications of IONP (S1 in this study) may help improve plant growth, consecutive applications (S2, S3, and S4) should be avoided.


Photosynthesis , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/drug effects , Solanum lycopersicum/metabolism , Photosynthesis/drug effects , Plant Leaves/metabolism , Plant Leaves/drug effects , Magnetic Iron Oxide Nanoparticles , Chlorophyll/metabolism , Minerals/metabolism , Carotenoids/metabolism , Gene Expression Regulation, Plant/drug effects , Ferric Compounds
8.
Acta Biomater ; 178: 221-232, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38428510

The SLC20A2 transporter supplies phosphate ions (Pi) for diverse biological functions in vertebrates, yet has not been studied in crustaceans. Unlike vertebrates, whose skeletons are mineralized mainly by calcium phosphate, only minute amounts of Pi are found in the CaCO3-mineralized exoskeletons of invertebrates. In this study, a crustacean SLC20A2 transporter was discovered and Pi transport to exoskeletal elements was studied with respect to the role of Pi in invertebrate exoskeleton biomineralization, revealing an evolutionarily conserved mechanism for Pi transport in both vertebrates and invertebrates. Freshwater crayfish, including the study animal Cherax quadricarinatus, require repeated molt cycles for their growth. During the molt cycle, crayfish form transient exoskeletal mineral storage organs named gastroliths, which mostly contain amorphous calcium carbonate (ACC), an unstable polymorph long-thought to be stabilized by Pi. RNA interference experiments via CqSLC20A2 dsRNA injections reduced Pi content in C. quadricarinatus gastroliths, resulting in increased calcium carbonate (CaCO3) crystallinity and grain size. The discovery of a SLC20A2 transporter in crustaceans and the demonstration that knocking down its mRNA reduced Pi content in exoskeletal elements offers the first direct proof of a long-hypothesized mechanism by which Pi affects CaCO3 biomineralization in the crustacean exoskeleton. This research thus demonstrated the distinct role of Pi as an amorphous mineral polymorph stabilizer in vivo, suggesting further avenues for amorphous biomaterial studies. STATEMENT OF SIGNIFICANCE: • Crustaceans exoskeletons are hardened mainly by CaCO3, with Pi in minute amounts • Pi was hypothesized to stabilize exoskeletal amorphous mineral forms in vivo • For the first time, transport protein for Pi was discovered in crayfish • Transport knock-down resulted in exoskeletal CaCO3 crystallization and reduced Pi.


Biomineralization , Calcium Carbonate , Animals , Calcium Carbonate/chemistry , Minerals/metabolism , Astacoidea/chemistry , Astacoidea/metabolism , RNA Interference
9.
Sci Total Environ ; 926: 171809, 2024 May 20.
Article En | MEDLINE | ID: mdl-38513845

Soil cadmium (Cd) can affect crop growth and food safety, and through the enrichment in the food chain, it ultimately poses a risk to human health. Reducing the re-mobilization of Cd caused by the release of protons and acids by crops and microorganisms after stabilization is one of the significant technical challenges in agricultural activities. This study aimed to investigate the re-mobilization of stabilized Cd within the clay mineral-bound fraction of soil and its subsequent accumulation in crops utilizing nitrogen ammonium nitrogen (NH4+-N) and nitrate nitrogen (NO3--N), at 60 and 120 mg kg-1. Furthermore, the study harvested root exudates at various growth stages to assess their direct influence on the re-mobilization of stabilized Cd and to evaluate the indirect effects mediated by soil microorganisms. The results revealed that, in contrast to the NO3--N treatment, the NH4+-N treatment significantly enhanced the conversion of clay mineral-bound Cd in the soil to NH4NO3-extractable Cd. It also amplified the accumulation of Cd in edible amaranth, with concentrations in roots and shoots rising from 1.7-6.0 mg kg-1 to 4.3-9.8 mg kg-1. The introduction of NH4+-N caused a decrease in the pH value of the rhizosphere soil and stimulated the production and secretion organic and amino acids, such as oxalic acid, lactic acid, stearic acid, succinic acid, and l-serine, from the crop roots. Furthermore, compared to NO3--N, the combined interaction of root exudates with NH4+-N has a more pronounced impact on the abundance of microbial genes associated with glycolysis pathway and tricarboxylic acid cycle, such as pkfA, pfkB, sucB, sucC, and sucD. The effects of NH4+-N on crops and microorganisms ultimately result in a significant increase in the re-mobilization of stabilized Cd. However, the simulated experiments showed that microorganisms only contribute to 3.8-6.6 % of the re-mobilization of clay mineral-bound Cd in soil. Therefore, the fundamental strategy to inhibit the re-mobilization of stabilized Cd in vegetable cultivation involves the regulation of proton and organic acid secretion by crops.


Soil Pollutants , Soil , Humans , Soil/chemistry , Cadmium/analysis , Clay , Nitrogen/metabolism , Organic Chemicals/metabolism , Crops, Agricultural/metabolism , Minerals/metabolism , Fertilization , Soil Pollutants/analysis
10.
BMC Plant Biol ; 24(1): 187, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38481163

BACKGROUND: As the second largest leafy vegetable, cabbage (Brassica oleracea L. var. capitata) is grown globally, and the characteristics of the different varieties, forms, and colors of cabbage may differ. In this study, five analysis methods-variance analysis, correlation analysis, cluster analysis, principal component analysis, and comprehensive ranking-were used to evaluate the quality indices (soluble protein, soluble sugar, and nitrate), antioxidant content (vitamin C, polyphenols, and flavonoids), and mineral (K, Ca, Mg, Cu, Fe, Mn, and Zn) content of 159 varieties of four forms (green spherical, green oblate, purple spherical, and green cow heart) of cabbage. RESULTS: The results showed that there are significant differences among different forms and varieties of cabbage. Compared to the other three forms, the purple spherical cabbage had the highest flavonoid, K, Mg, Cu, Mn, and Zn content. A scatter plot of the principal component analysis showed that the purple spherical and green cow heart cabbage varieties were distributed to the same quadrant, indicating that their quality indices and mineral contents were highly consistent, while those of the green spherical and oblate varieties were irregularly distributed. Overall, the green spherical cabbage ranked first, followed by the green cow heart, green oblate, and purple spherical varieties. CONCLUSIONS: Our results provide a theoretical basis for the cultivation and high-quality breeding of cabbage.


Antioxidants , Brassica , Antioxidants/metabolism , Brassica/genetics , Brassica/metabolism , Plant Breeding , Flavonoids/metabolism , Minerals/metabolism
11.
J Mech Behav Biomed Mater ; 153: 106472, 2024 May.
Article En | MEDLINE | ID: mdl-38432183

At the tissue-scale and above, there are now well-established structure-property relationships that provide good approximations of the biomechanical performance of bone through, for example, power-law relationships that relate tissue mineral density to elastic properties. However, below the tissue-level, the individual role of the constituents becomes prominent and these simple relationships tend to break down, with more detailed theoretical and computational models are required to describe the mechanical response. In this study, a two-dimensional micromechanics damage-based representative volume element (RVE) of lamellar bone was developed, which included a novel implementation of a phase-field damage model to describe the behaviour of non-collagenous proteins at mineral-mineral and mineral-fibril interface regions. It was found that, while the stiffness of the tissue was governed by the relative proportion of extra-fibrillar mineral and mineralised collagen fibrils, the strength and toughness of the tissue in transverse direction relied on the interactions occurring at mineral-mineral and mineral-fibril interfaces, highlighting the prominence of non-collagenous proteins in determine fracture-based processes at this scale. While fractures tended to initiate in mineral rich areas of the extra-fibrillar mineral matrix, it was found that the presence of mineralised collagen fibrils at low density did not provide a substantial contribution to crack propagation behaviour under transverse loading. However, at physiological volume fraction (VfMCF=50%), different scenarios could arise depending on the relative strength value of the interphase around the MCFs ( [Formula: see text] ) to the interphase between individual minerals ( [Formula: see text] ): (i) When [Formula: see text] , MCFs appear to facilitate crack propagation with MCF-mineral debonding being the dominant failure mode; (ii) once γ>1, the MCFs hinder the microcracks, leading to inhibition of crack propagation, which can be regarded as an energy dissipation mechanism. The effective fracture properties of the tissue also experience a sudden increase in fracture work density (J-integral) once the crack is arrested by MCFs or severely deflected. Collectively, the predicted behaviour of the model compared well to those reported through experimental and computational methods, highlighting its potential to provide further understanding into the mechanistic response of bone ultrastructure alterations related to the structural and compositional changes resulting from disease and aging.


Collagen , Fractures, Bone , Humans , Collagen/chemistry , Bone and Bones/metabolism , Extracellular Matrix/metabolism , Minerals/metabolism , Stress, Mechanical
12.
J Mech Behav Biomed Mater ; 153: 106471, 2024 May.
Article En | MEDLINE | ID: mdl-38458079

Bone is a naturally occurring composite material composed of a stiff mineral phase and a compliant organic matrix of collagen and non-collagenous proteins (NCP). While diverse mineral morphologies such as platelets and grains have been documented, the precise role of individual constituents, and their morphology, remains poorly understood. To understand the role of constituent morphology on the fracture behaviour of lamellar bone, a damage based representative volume element (RVE) was developed, which considered various mineral morphologies and mineralised collagen fibril (MCF) configurations. This model framework incorporated a novel phase-field damage model to predict the onset and evolution of damage at mineral-mineral and mineral-MCF interfaces. It was found that platelet-based mineral morphologies had superior mechanical performance over their granular counterparts, owing to their higher load-bearing capacity, resulting from a higher aspect ratio. It was also found that MCFs had a remarkable capacity for energy dissipation under axial loading, with these fibrillar structures acting as barriers to crack propagation, thereby enhancing overall elongation and toughness. Interestingly, the presence of extrafibrillar platelet-based minerals also provided an additional toughening through a similar mechanism, whereby these structures also inhibited crack propagation. These findings demonstrate that the two primary constituent materials of lamellar bone play a key role in its toughening behaviour, with combined effect by both mineral and MCFs to inhibit crack propagation at this scale. These results have provided novel insight into the fracture behaviour of lamellar bone, enhancing our understanding of microstructure-property relationships at the sub-tissue level.


Bone and Bones , Fractures, Bone , Humans , Stress, Mechanical , Bone and Bones/metabolism , Collagen/chemistry , Minerals/metabolism
13.
Plant Physiol Biochem ; 208: 108527, 2024 Mar.
Article En | MEDLINE | ID: mdl-38484682

Sewage sludge (SS) disposal poses environmental concerns, yet its organic matter, macro- and micronutrients, make it potentially beneficial for enhancing soil quality and crop yield. This study focuses on three types of SS: "R10" (SS1), which is commonly used in agricultural practices, and two environmentally friendlier options (SS2 and SS3), as alternatives to mineral fertilizer (urea) for rice cultivation. A pot experiment was conducted to investigate the ecophysiological, biochemical, and molecular responses of rice at three different growth stages. SS application led to a significant increase in biomass production (particularly SS3), along with increased nitrogen (N) levels. Enhanced chlorophyll content was observed in SS-treated plants, especially during inflorescence emergence (with the highest content in SS3 plants). At the ecophysiological and biochemical levels, SS treatments did not adversely affect plant health, as evidenced by unchanged values of maximal PSII photochemical efficiency and malondialdehyde by-products. At biochemical and gene expression levels, antioxidant enzyme activities showed transient variations, likely related to physiological adjustments rather than oxidative stress. Ascorbic acid and glutathione did not significantly vary. This study concludes that the use of SS in soil can be a viable alternative fertilizer for rice plants, with positive effects on biomass, chlorophyll content, and no adverse effects on plant health. Among the tested SSs, SS3 showed the most positive effect, even compared to commercial fertilizer. These results suggest that SS application could improve rice yield while addressing environmental concerns surrounding SS disposal.


Oryza , Soil Pollutants , Oryza/metabolism , Sewage/chemistry , Fertilizers/analysis , Soil/chemistry , Chlorophyll/metabolism , Soil Pollutants/metabolism , Minerals/metabolism
14.
Plant Physiol Biochem ; 208: 108459, 2024 Mar.
Article En | MEDLINE | ID: mdl-38484684

The essentiality of silicon (Si) has always been a matter of debate as it is not considered crucial for the lifecycles of most plants. But beneficial effects of endogenous Si and its supplementation have been observed in many plants. Silicon plays a pivotal role in alleviating the biotic and abiotic stress in plants by acting as a physical barrier as well as affecting molecular pathways involved in stress tolerance, thus widely considered as "quasi-essential". In soil, most of Si is found in complex forms as mineral silicates which is not available for plant uptake. Monosilicic acid [Si(OH)4] is the only plant-available form of silicon (PAS) present in the soil. The ability of a plant to uptake Si is positively correlated with the PAS concentration of the soil. Since many cultivated soils often lack a sufficient amount of PAS, it has become common practice to supplement Si through the use of Si-based fertilizers in various crop cultivation systems. This review outlines the use of natural and chemical sources of Si as fertilizer, different regimes of Si fertilization, and conclude by identifying the optimum concentration of Si required to observe the beneficial effects in plants. Also, the different mathematical models defining the mineral dynamics for Si uptake at whole plant scale considering various natural factors like plant morphology, mineral distribution, and transporter expression have been discussed. Information provided here will further help in increasing understanding of Si role and thereby facilitate efficient exploration of the element as a fertilizer in crop production.


Fertilizers , Silicon , Silicon/pharmacology , Soil/chemistry , Biological Transport , Plants/metabolism , Minerals/metabolism
15.
J Microbiol Biotechnol ; 34(3): 527-537, 2024 Mar 28.
Article En | MEDLINE | ID: mdl-38346803

Pilins are protein subunits of pili. The pilins of type IV pili (T4P) in pathogenic bacteria are well characterized, but anything is known about the T4P proteins in acidophilic chemolithoautotrophic microorganisms such as the genus Acidithiobacillus. The interest in T4P of A. thiooxidans is because of their possible role in cell recruitment and bacterial aggregation on the surface of minerals during biooxidation of sulfide minerals. In this study we present a successful ad hoc methodology for the heterologous expression and purification of extracellular proteins such as the minor pilin PilV of the T4P of A. thiooxidans, a pilin exposed to extreme conditions of acidity and high oxidation-reduction potentials, and that interact with metal sulfides in an environment rich in dissolved minerals. Once obtained, the model structure of A. thiooxidans PilV revealed the core basic architecture of T4P pilins. Because of the acidophilic condition, we carried out in silico characterization of the protonation status of acidic and basic residues of PilV in order to calculate the ionization state at specific pH values and evaluated their pH stability. Further biophysical characterization was done using UV-visible and fluorescence spectroscopy and the results showed that PilV remains soluble and stable even after exposure to significant changes of pH. PilV has a unique amino acid composition that exhibits acid stability, with significant biotechnology implications such as biooxidation of sulfide minerals. The biophysics profiles of PilV open new paradigms about resilient proteins and stimulate the study of other pilins from extremophiles.


Acidithiobacillus thiooxidans , Fimbriae Proteins , Fimbriae Proteins/genetics , Acidithiobacillus thiooxidans/metabolism , Fimbriae, Bacterial , Sulfides/metabolism , Minerals/metabolism
16.
Environ Sci Pollut Res Int ; 31(13): 20133-20148, 2024 Mar.
Article En | MEDLINE | ID: mdl-38372914

Microcystins (MCs) are the most widespread and hazardous cyanotoxins posing a huge threat to agro-ecosystem by irrigation. Some adaptive metabolisms can be initiated at the cellular and molecular levels of plant to survive environmental change. To find ways to improve plant tolerance to MCs after recognizing adaptive mechanism in plant, we studied effects of MCs on root morphology, mineral element contents, root activity, H+-ATPase activity, and its gene expression level in cucumber during exposure and recovery (without MCs) periods. After being exposed to MCs (1, 10, 100 and 1000 µg L-1) for 7 days, we found 1 µg L-1 MCs did not affect growth and mineral elements in cucumber. MCs at 10 µg ·L-1 increased root activity and H+-ATPase activity partly from upregulation of genes (CsHA2, CsHA3, CsHA8, and CsHA9) expression, to promote nutrient uptake. Then, the increase in NO3-, Fe, Zn, and Mn contents could contribute to maintaining root growth and morphology. Higher concentration MCs (100 or 1000 µg L-1) inhibited root activity and H+-ATPase activity by downregulating expression of genes (CsHA2, CsHA3, CsHA4, CsHA8, CsHA9, and CsHA10), decreased contents of nutrient elements except Ca largely, and caused root growing worse. After a recovery, the absorption activity and H+-ATPase activity in cucumber treated with10 µg L-1 MCs were closed to the control whereas all parameters in cucumber treated 1000 µg L-1 MCs were even worse. All results indicate that the increase in H+-ATPase activity can enhance cucumber tolerance to MC stress by regulating nutrient uptake, especially when the MCs occur at low concentrations.


Cucumis sativus , Microcystins/metabolism , Ecosystem , Proton-Translocating ATPases/metabolism , Cell Membrane/metabolism , Minerals/metabolism , Plant Roots/metabolism
18.
BMC Genomics ; 25(1): 220, 2024 Feb 27.
Article En | MEDLINE | ID: mdl-38413895

BACKGROUND: The appropriate mineral nutrients are essential for sheep growth and reproduction. However, traditional grazing sheep often experience mineral nutrient deficiencies, especially copper (Cu), due to inadequate mineral nutrients from natural pastures. RESULTS: The results indicated that dietary Cu deficiency and supplementation significantly reduced and elevated liver concentration of Cu, respectively (p < 0.05). FOXO3, PLIN1, ACTN2, and GHRHR were identified as critical genes using the weighted gene co-expression network analysis (WGCNA), quantitative real-time polymerase chain reaction (qRT-PCR), and receiver operating characteristic curve (ROC) validation as potential biomarkers for evaluating Cu status in grazing sheep. Combining these critical genes with gene functional enrichment analysis, it was observed that dietary Cu deficiency may impair liver regeneration and compromise ribosomal function. Conversely, dietary Cu supplementation may enhance ribosomal function, promote lipid accumulation, and stimulate growth and metabolism in grazing sheep. Metabolomics analysis indicated that dietary Cu deficiency significantly decreased the abundance of metabolites such as cholic acid (p < 0.05). On the other hand, dietary Cu supplementation significantly increased the abundance of metabolites such as palmitic acid (p < 0.05). Integrative analysis of the transcriptome and metabolome revealed that dietary Cu deficiency may reduce liver lipid metabolism while Cu supplementation may elevate it in grazing sheep. CONCLUSIONS: The Cu content in diets may have an impact on hepatic lipid metabolism in grazing sheep. These findings provide new insights into the consequences of dietary Cu deficiency and supplementation on sheep liver and can provide valuable guidance for herders to rationalize the use of mineral supplements.


Copper , Liver , Sheep , Animals , Copper/pharmacology , Liver/metabolism , Dietary Supplements , Minerals/metabolism , Gene Expression Profiling , Gene Expression
19.
Plant Sci ; 342: 112024, 2024 May.
Article En | MEDLINE | ID: mdl-38325661

Plant growth relies on the mineral nutrients present in the rhizosphere. The distribution of nutrients in soils varies depending on their mobility and capacity to bind with soil particles. Consequently, plants often encounter either low or high levels of nutrients in the rhizosphere. Plant roots are the essential organs that sense changes in soil mineral content, leading to the activation of signaling pathways associated with the adjustment of plant architecture and metabolic responses. During differential availability of minerals in the rhizosphere, plants trigger adaptation strategies such as cellular remobilization of minerals, secretion of organic molecules, and the attenuation or enhancement of root growth to balance nutrient uptake. The interdependency, availability, and uptake of minerals, such as phosphorus (P), iron (Fe), zinc (Zn), potassium (K), nitrogen (N) forms, nitrate (NO3-), and ammonium (NH4+), modulate the root architecture and metabolic functioning of plants. Here, we summarized the interactions of major nutrients (N, P, K, Fe, Zn) in shaping root architecture, physiological responses, genetic components involved, and address the current challenges associated with nutrient-nutrient interactions. Furthermore, we discuss the major gaps and opportunities in the field for developing plants with improved nutrient uptake and use efficiency for sustainable agriculture.


Plants , Soil , Plants/metabolism , Agriculture , Minerals/metabolism , Nutrients , Plant Roots/metabolism
20.
Animal ; 18(3): 101084, 2024 Mar.
Article En | MEDLINE | ID: mdl-38367312

Procedures such as transport and marketing can subject animals to water and feed deprivation and impair animal health and performance. Maintaining the mineral status of animals under these conditions can bring benefits to health and performance. The use of hydroxychloride mineral sources can improve mineral status, nutrient digestibility and performance. Two studies were conducted to investigate how the supplementation of 02 trace mineral sources of Cu and Zn and 48-hour water/feed deprivation would affect the performance and metabolism of grass-fed beef cattle. In the first study, 20 castrated and rumen-canulated Nellore steers (BW = 350 ±â€¯132 kg; 20 m) were distributed in individual pens, in a 2 × 2 factorial arrangement: supplemental Cu and Zn sources from inorganic vs hydroxychloride (HTM) and 48-hours deprivation (WFD) vs unrestricted (WFU) access to water and feed. The 57d of study was divided into two periods: (1) Adaptation from -21d to -1d and (2) evaluation from 0d to 36d. Interaction between deprivation × period was detected (P < 0.05) for digestibility of DM (DMD), organic matter (OMD), neutral detergent fiber (NDFD), and acid detergent fiber (ADFD). Deprivation increased DMD, OMD, NDFD, and ADFD immediately after the deprivation period (3-5d), but impaired digestibility at longer periods such as 11-13d and 32-34d. DM (DMI) and nutrient intake (P = 0.075), as well as NDFD were higher in HTM. Several ruminal parameters were affected by deprivation: short-chain fatty acids concentration decreased, while rumen pH increased (deprivation × time; P < 0.05); decreased propionate, butyrate and increased isobutyrate, isovalerate, and valerate in WFD (deprivation × time; P < 0.05), respectively. In the second study, eighty-four intact Nellore males (BW = 260 ±â€¯35 kg) were blocked by BW and randomly assigned to Urochloa brizantha cv. Marandu paddocks for 131d in a 2 × 2 factorial arrangement. Liver Cu was higher in WFU/HTM animals (mineral × deprivation; P < 0.05). Interaction between deprivation × period (P < 0.05) was detected for BW and average daily gain (ADG). On 2d and 12d after deprivation, WFD increased ADG and recovered the BW lost. In conclusion, water and feed deprivation imposed in these trials were able to impact several nutrient digestibility and ruminal fermentation parameters in short- and long-term. Performance was not affected by the studied factors. Furthermore, supplementation with sources of Cu and Zn hydroxychloride increased Cu in the liver and tended to increase DMI and NDFD.


Copper , Zinc , Male , Cattle , Animals , Dietary Supplements , Diet/veterinary , Water/metabolism , Detergents/metabolism , Digestion , Minerals/metabolism , Fermentation , Animal Feed/analysis , Rumen/metabolism
...