Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Nature ; 628(8009): 844-853, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570685

RESUMEN

Mitochondria are critical modulators of antiviral tolerance through the release of mitochondrial RNA and DNA (mtDNA and mtRNA) fragments into the cytoplasm after infection, activating virus sensors and type-I interferon (IFN-I) response1-4. The relevance of these mechanisms for mitochondrial diseases remains understudied. Here we investigated mitochondrial recessive ataxia syndrome (MIRAS), which is caused by a common European founder mutation in DNA polymerase gamma (POLG1)5. Patients homozygous for the MIRAS variant p.W748S show exceptionally variable ages of onset and symptoms5, indicating that unknown modifying factors contribute to disease manifestation. We report that the mtDNA replicase POLG1 has a role in antiviral defence mechanisms to double-stranded DNA and positive-strand RNA virus infections (HSV-1, TBEV and SARS-CoV-2), and its p.W748S variant dampens innate immune responses. Our patient and knock-in mouse data show that p.W748S compromises mtDNA replisome stability, causing mtDNA depletion, aggravated by virus infection. Low mtDNA and mtRNA release into the cytoplasm and a slow IFN response in MIRAS offer viruses an early replicative advantage, leading to an augmented pro-inflammatory response, a subacute loss of GABAergic neurons and liver inflammation and necrosis. A population databank of around 300,000 Finnish individuals6 demonstrates enrichment of immunodeficient traits in carriers of the POLG1 p.W748S mutation. Our evidence suggests that POLG1 defects compromise antiviral tolerance, triggering epilepsy and liver disease. The finding has important implications for the mitochondrial disease spectrum, including epilepsy, ataxia and parkinsonism.


Asunto(s)
Alelos , ADN Polimerasa gamma , Virus de la Encefalitis Transmitidos por Garrapatas , Herpesvirus Humano 1 , Tolerancia Inmunológica , SARS-CoV-2 , Animales , Femenino , Humanos , Masculino , Ratones , Edad de Inicio , COVID-19/inmunología , COVID-19/virología , COVID-19/genética , ADN Polimerasa gamma/genética , ADN Polimerasa gamma/inmunología , ADN Polimerasa gamma/metabolismo , ADN Mitocondrial/inmunología , ADN Mitocondrial/metabolismo , Virus de la Encefalitis Transmitidos por Garrapatas/inmunología , Encefalitis Transmitida por Garrapatas/genética , Encefalitis Transmitida por Garrapatas/inmunología , Encefalitis Transmitida por Garrapatas/virología , Efecto Fundador , Técnicas de Sustitución del Gen , Herpes Simple/genética , Herpes Simple/inmunología , Herpes Simple/virología , Herpesvirus Humano 1/inmunología , Tolerancia Inmunológica/genética , Tolerancia Inmunológica/inmunología , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Interferón Tipo I/inmunología , Enfermedades Mitocondriales/enzimología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/inmunología , Mutación , ARN Mitocondrial/inmunología , ARN Mitocondrial/metabolismo , SARS-CoV-2/inmunología
2.
J Clin Invest ; 132(1)2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34981777

RESUMEN

Vaccination affords protection from disease by activating pathogen-specific immune cells and facilitating the development of persistent immunologic memory toward the vaccine-specific pathogen. Current vaccine regimens are often based on the efficiency of the acute immune response, and not necessarily on the generation of memory cells, in part because the mechanisms underlying the development of efficient immune memory remain incompletely understood. This Review describes recent advances in defining memory T cell metabolism and how metabolism of these cells might be altered in patients affected by mitochondrial diseases or metabolic syndrome, who show higher susceptibility to recurrent infections and higher rates of vaccine failure. It discusses how this new understanding could add to the way we think about immunologic memory, vaccine development, and cancer immunotherapy.


Asunto(s)
Vacunas contra el Cáncer/uso terapéutico , Memoria Inmunológica , Células T de Memoria/metabolismo , Síndrome Metabólico/metabolismo , Enfermedades Mitocondriales/metabolismo , Neoplasias/metabolismo , Vacunación , Animales , Humanos , Células T de Memoria/inmunología , Síndrome Metabólico/inmunología , Síndrome Metabólico/terapia , Enfermedades Mitocondriales/inmunología , Enfermedades Mitocondriales/terapia , Neoplasias/inmunología , Neoplasias/terapia
3.
Nat Immunol ; 22(11): 1367-1374, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34686862

RESUMEN

Group 2 innate lymphoid cells (ILC2s) represent innate homologs of type 2 helper T cells (TH2) that participate in immune defense and tissue homeostasis through production of type 2 cytokines. While T lymphocytes metabolically adapt to microenvironmental changes, knowledge of human ILC2 metabolism is limited, and its key regulators are unknown. Here, we show that circulating 'naive' ILC2s have an unexpected metabolic profile with a higher level of oxidative phosphorylation (OXPHOS) than natural killer (NK) cells. Accordingly, ILC2s are severely reduced in individuals with mitochondrial disease (MD) and impaired OXPHOS. Metabolomic and nutrient receptor analysis revealed ILC2 uptake of amino acids to sustain OXPHOS at steady state. Following activation with interleukin-33 (IL-33), ILC2s became highly proliferative, relying on glycolysis and mammalian target of rapamycin (mTOR) to produce IL-13 while continuing to fuel OXPHOS with amino acids to maintain cellular fitness and proliferation. Our results suggest that proliferation and function are metabolically uncoupled in human ILC2s, offering new strategies to target ILC2s in disease settings.


Asunto(s)
Proliferación Celular , Citocinas/metabolismo , Metabolismo Energético , Inmunidad Innata , Activación de Linfocitos , Enfermedades Mitocondriales/metabolismo , Células Th2/metabolismo , Aminoácidos de Cadena Ramificada/metabolismo , Arginina/metabolismo , Estudios de Casos y Controles , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Metabolismo Energético/efectos de los fármacos , Humanos , Inmunidad Innata/efectos de los fármacos , Interleucina-33/farmacología , Activación de Linfocitos/efectos de los fármacos , Mitocondrias/metabolismo , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/inmunología , Fenotipo , Células Th2/efectos de los fármacos , Células Th2/inmunología
4.
Front Immunol ; 12: 729763, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34512665

RESUMEN

The immune response to viral infection involves the recognition of pathogen-derived nucleic acids by intracellular sensors, leading to type I interferon (IFN), and downstream IFN-stimulated gene, induction. Ineffective discrimination of self from non-self nucleic acid can lead to autoinflammation, a phenomenon implicated in an increasing number of disease states, and well highlighted by the group of rare genetic disorders referred to as the type I interferonopathies. To understand the pathogenesis of these monogenic disorders, and polyfactorial diseases associated with pathogenic IFN upregulation, such as systemic lupus erythematosus and dermatomyositis, it is important to define the self-derived nucleic acid species responsible for such abnormal IFN induction. Recently, attention has focused on mitochondria as a novel source of immunogenic self nucleic acid. Best appreciated for their function in oxidative phosphorylation, metabolism and apoptosis, mitochondria are double membrane-bound organelles that represent vestigial bacteria in the cytosol of eukaryotic cells, containing their own DNA and RNA enclosed within the inner mitochondrial membrane. There is increasing recognition that a loss of mitochondrial integrity and compartmentalization can allow the release of mitochondrial nucleic acid into the cytosol, leading to IFN induction. Here, we provide recent insights into the potential of mitochondrial-derived DNA and RNA to drive IFN production in Mendelian disease. Specifically, we summarize current understanding of how nucleic acids are detected as foreign when released into the cytosol, and then consider the findings implicating mitochondrial nucleic acid in type I interferonopathy disease states. Finally, we discuss the potential for IFN-driven pathology in primary mitochondrial disorders.


Asunto(s)
ADN Mitocondrial/inmunología , Interferones/metabolismo , Mitocondrias/inmunología , Enfermedades Mitocondriales/inmunología , ARN Mitocondrial/inmunología , Animales , Autoinmunidad , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Humanos , Inmunidad Innata , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Enfermedades Mitocondriales/patología , ARN Mitocondrial/genética , ARN Mitocondrial/metabolismo , Transducción de Señal , Regulación hacia Arriba
5.
J Allergy Clin Immunol ; 148(2): 599-611, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33662367

RESUMEN

BACKGROUND: Homozygous loss of DIAPH1 results in seizures, cortical blindness, and microcephaly syndrome (SCBMS). We studied 5 Finnish and 2 Omani patients with loss of DIAPH1 presenting with SCBMS, mitochondrial dysfunction, and immunodeficiency. OBJECTIVE: We sought to further characterize phenotypes and disease mechanisms associated with loss of DIAPH1. METHODS: Exome sequencing, genotyping and haplotype analysis, B- and T-cell phenotyping, in vitro lymphocyte stimulation assays, analyses of mitochondrial function, immunofluorescence staining for cytoskeletal proteins and mitochondria, and CRISPR-Cas9 DIAPH1 knockout in heathy donor PBMCs were used. RESULTS: Genetic analyses found all Finnish patients homozygous for a rare DIAPH1 splice-variant (NM_005219:c.684+1G>A) enriched in the Finnish population, and Omani patients homozygous for a previously described pathogenic DIAPH1 frameshift-variant (NM_005219:c.2769delT;p.F923fs). In addition to microcephaly, epilepsy, and cortical blindness characteristic to SCBMS, the patients presented with infection susceptibility due to defective lymphocyte maturation and 3 patients developed B-cell lymphoma. Patients' immunophenotype was characterized by poor lymphocyte activation and proliferation, defective B-cell maturation, and lack of naive T cells. CRISPR-Cas9 knockout of DIAPH1 in PBMCs from healthy donors replicated the T-cell activation defect. Patient-derived peripheral blood T cells exhibited impaired adhesion and inefficient microtubule-organizing center repositioning to the immunologic synapse. The clinical symptoms and laboratory tests also suggested mitochondrial dysfunction. Experiments with immortalized, patient-derived fibroblasts indicated that DIAPH1 affects the amount of complex IV of the mitochondrial respiratory chain. CONCLUSIONS: Our data demonstrate that individuals with SCBMS can have combined immune deficiency and implicate defective cytoskeletal organization and mitochondrial dysfunction in SCBMS pathogenesis.


Asunto(s)
Ceguera Cortical , Forminas , Microcefalia , Enfermedades Mitocondriales , Convulsiones , Inmunodeficiencia Combinada Grave , Adulto , Ceguera Cortical/genética , Ceguera Cortical/inmunología , Ceguera Cortical/patología , Niño , Preescolar , Femenino , Finlandia , Forminas/deficiencia , Forminas/inmunología , Humanos , Masculino , Microcefalia/genética , Microcefalia/inmunología , Microcefalia/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/inmunología , Enfermedades Mitocondriales/patología , Omán , Convulsiones/genética , Convulsiones/inmunología , Convulsiones/patología , Inmunodeficiencia Combinada Grave/genética , Inmunodeficiencia Combinada Grave/inmunología , Inmunodeficiencia Combinada Grave/patología , Síndrome
6.
Front Immunol ; 12: 799896, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095881

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection results in rapid T lymphocytopenia and functional impairment of T cells. The underlying mechanism, however, remains incompletely understood. In this study, we focused on characterizing the phenotype and kinetics of T-cell subsets with mitochondrial dysfunction (MD) by multicolor flow cytometry and investigating the association between MD and T-cell functionality. While 73.9% of study subjects displayed clinical lymphocytopenia upon hospital admission, a significant reduction of CD4 or CD8 T-cell frequency was found in all asymptomatic, symptomatic, and convalescent cases. CD4 and CD8 T cells with increased MD were found in both asymptomatic and symptomatic patients within the first week of symptom onset. Lower proportion of memory CD8 T cell with MD was found in severe patients than in mild ones at the stage of disease progression. Critically, the frequency of T cells with MD in symptomatic patients was preferentially associated with CD4 T-cell loss and CD8 T-cell hyperactivation, respectively. Patients bearing effector memory CD4 and CD8 T cells with the phenotype of high MD exhibited poorer T-cell responses upon either phorbol 12-myristate-13-acetate (PMA)/ionomycin or SARS-CoV-2 peptide stimulation than those with low MD. Our findings demonstrated an MD-associated mechanism underlying SARS-CoV-2-induced T lymphocytopenia and functional impairment during the acute phase of infection.


Asunto(s)
COVID-19/complicaciones , Linfopenia/complicaciones , Linfopenia/etiología , Enfermedades Mitocondriales/etiología , Adulto , Anciano , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Femenino , Humanos , Memoria Inmunológica/inmunología , Ionomicina/uso terapéutico , Linfopenia/inmunología , Masculino , Persona de Mediana Edad , Mitocondrias/inmunología , Enfermedades Mitocondriales/inmunología , Fosforilcolina/análogos & derivados , Fosforilcolina/uso terapéutico , Ácidos Polimetacrílicos/uso terapéutico , Tratamiento Farmacológico de COVID-19
7.
Trends Endocrinol Metab ; 31(10): 725-741, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32265079

RESUMEN

Type 2 diabetes (T2D) is one of the main current threats to human health. Both T2D and its numerous clinical complications are related to mitochondrial dysfunction and oxidative stress. Over the past decade, great progress has been made in extending our knowledge about the signaling events regulated by mitochondria. However, the links among mitochondrial impairment, oxidative stress, autophagy, endoplasmic reticulum (ER) stress, and activation of the inflammasome still need to be clarified. In light of this deficit, we aim to provide a review of the existing literature concerning the complicated crosstalk between mitochondrial impairment, autophagy, ER stress, and the inflammasome in the molecular pathogenesis of T2D.


Asunto(s)
Autofagia , Diabetes Mellitus Tipo 2 , Estrés del Retículo Endoplásmico , Inflamasomas , Enfermedades Mitocondriales , Estrés Oxidativo , Animales , Autofagia/fisiología , Diabetes Mellitus Tipo 2/inmunología , Diabetes Mellitus Tipo 2/metabolismo , Estrés del Retículo Endoplásmico/fisiología , Humanos , Inflamasomas/inmunología , Inflamasomas/metabolismo , Enfermedades Mitocondriales/inmunología , Enfermedades Mitocondriales/metabolismo , Estrés Oxidativo/fisiología
8.
J Clin Invest ; 128(9): 3651-3661, 2018 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-30059015

RESUMEN

Remodeling of mitochondrial metabolism plays an important role in regulating immune cell fate, proliferation, and activity. Furthermore, given their bacterial ancestry, disruption in mitochondrial fidelity leading to extravasation of their content initiates and amplifies innate immune surveillance with a myriad of physiologic and pathologic consequences. Investigations into the role of mitochondria in the immune system have come to the fore, and appreciation of mitochondrial function and quality control in immune regulation has enhanced our understanding of disease pathogenesis and identified new targets for immune modulation. This mitochondria-centered Review focuses on the role of mitochondrial metabolism and fidelity, as well as the role of the mitochondria as a structural platform, for the control of immune cell polarity, activation, and signaling. Mitochondria-linked disease and mitochondrially targeted therapeutic strategies to manage these conditions are also discussed.


Asunto(s)
Mitocondrias/inmunología , Mitocondrias/metabolismo , Animales , Diferenciación Celular/inmunología , Polaridad Celular/inmunología , Transporte de Electrón , Humanos , Inmunidad Innata , Inflamasomas/inmunología , Inflamasomas/metabolismo , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/inmunología , Enfermedades Mitocondriales/metabolismo , Dinámicas Mitocondriales/inmunología , Modelos Inmunológicos , Transducción de Señal
9.
Toxicol Sci ; 162(1): 15-23, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29340618

RESUMEN

Recent decades have seen a rapid increase in reported toxic effects of drugs and pollutants on mitochondria. Researchers have also documented many genetic differences leading to mitochondrial diseases, currently reported to affect ∼1 person in 4,300, creating a large number of potential gene-environment interactions in mitochondrial toxicity. We briefly review this history, and then highlight cutting-edge areas of mitochondrial research including the role of mitochondrial reactive oxygen species in signaling; increased understanding of fundamental biological processes involved in mitochondrial homeostasis (DNA maintenance and mutagenesis, mitochondrial stress response pathways, fusion and fission, autophagy and biogenesis, and exocytosis); systemic effects resulting from mitochondrial stresses in specific cell types; mitochondrial involvement in immune function; the growing evidence of long-term effects of mitochondrial toxicity; mitochondrial-epigenetic cross-talk; and newer approaches to test chemicals for mitochondrial toxicity. We also discuss the potential importance of hormetic effects of mitochondrial stressors. Finally, we comment on future areas of research we consider critical for mitochondrial toxicology, including increased integration of clinical, experimental laboratory, and epidemiological (human and wildlife) studies; improved understanding of biomarkers in the human population; and incorporation of other factors that affect mitochondria, such as diet, exercise, age, and nonchemical stressors.


Asunto(s)
Investigación Biomédica/historia , Contaminantes Ambientales/toxicidad , Mitocondrias/efectos de los fármacos , Enfermedades Mitocondriales/historia , Toxicología/historia , Investigación Biomédica/tendencias , Contaminantes Ambientales/historia , Historia del Siglo XX , Historia del Siglo XXI , Homeostasis , Hormesis , Humanos , Mitocondrias/inmunología , Mitocondrias/metabolismo , Enfermedades Mitocondriales/inmunología , Enfermedades Mitocondriales/metabolismo , Especies Reactivas de Oxígeno/historia , Especies Reactivas de Oxígeno/metabolismo , Toxicología/tendencias
10.
Metabolism ; 81: 97-112, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29162500

RESUMEN

Immunometabolism aims to define the role of intermediary metabolism in immune cell function, with bioenergetics and the mitochondria recently taking center stage. To date, the medical literature on mitochondria and immune function extols the virtues of mouse models in exploring this biologic intersection. While the laboratory mouse has become a standard for studying mammalian biology, this model comprises part of a comprehensive approach. Humans, with their broad array of inherited phenotypes, serve as a starting point for studying immunometabolism; specifically, patients with mitochondrial disease. Using this top-down approach, the mouse as a model organism facilitates further exploration of the consequences of mutations involved in mitochondrial maintenance and function. In this review, we will discuss the emerging phenotype of immune dysfunction in mitochondrial disease as a model for understanding the role of the mitochondria in immune function in available mouse models.


Asunto(s)
Sistema Inmunológico/fisiología , Enfermedades Mitocondriales/inmunología , Animales , Calcio/metabolismo , Fusión Celular , ADN Mitocondrial/fisiología , Modelos Animales de Enfermedad , Humanos , Ratones , Fosforilación Oxidativa
11.
J Invest Dermatol ; 138(1): 132-140, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28867657

RESUMEN

Accumulation of large-scale mitochondrial DNA (mtDNA) deletions and chronic, subclinical inflammation are concomitant during skin aging, thus raising the question of a causal link. To approach this, we generated mice expressing a mutant mitochondrial helicase (K320E-TWINKLE) in the epidermis to accelerate the accumulation of mtDNA deletions in this skin compartment. Mice displayed low amounts of large-scale deletions and a dramatic depletion of mtDNA in the epidermis and showed macroscopic signs of severe skin inflammation. The mtDNA alterations led to an imbalanced stoichiometry of mitochondrial respiratory chain complexes, inducing a unique combination of cytokine expression, causing a severe inflammatory phenotype, with massive immune cell infiltrates already before birth. Altogether, these data unraveled a previously unknown link between an imbalanced stoichiometry of the mitochondrial respiratory chain complexes and skin inflammation and suggest that severe respiratory chain dysfunction, as observed in few cells leading to a mosaic in aged tissues, might be involved in the development of chronic subclinical inflammation.


Asunto(s)
ADN Helicasas/metabolismo , ADN Mitocondrial/metabolismo , Dermatitis/inmunología , Epidermis/inmunología , Mitocondrias/inmunología , Proteínas Mitocondriales/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , ADN Helicasas/genética , Dermatitis/genética , Dermatitis/patología , Modelos Animales de Enfermedad , Transporte de Electrón/genética , Transporte de Electrón/inmunología , Embrión de Mamíferos , Epidermis/patología , Femenino , Humanos , Queratinocitos/inmunología , Queratinocitos/metabolismo , Masculino , Ratones , Ratones Transgénicos , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/inmunología , Enfermedades Mitocondriales/patología , Proteínas Mitocondriales/genética , Cultivo Primario de Células , Envejecimiento de la Piel/genética , Envejecimiento de la Piel/inmunología
12.
Cell Metab ; 25(6): 1254-1268.e7, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28591633

RESUMEN

T cells undergo metabolic reprogramming with major changes in cellular energy metabolism during activation. In patients with mitochondrial disease, clinical data were marked by frequent infections and immunodeficiency, prompting us to explore the consequences of oxidative phosphorylation dysfunction in T cells. Since cytochrome c oxidase (COX) is a critical regulator of OXPHOS, we created a mouse model with isolated dysfunction in T cells by targeting a gene, COX10, that produces mitochondrial disease in humans. COX dysfunction resulted in increased apoptosis following activation in vitro and immunodeficiency in vivo. Select T cell effector subsets were particularly affected; this could be traced to their bioenergetic requirements. In summary, the findings presented herein emphasize the role of COX particularly in T cells as a metabolic checkpoint for cell fate decisions following T cell activation, with heterogeneous effects in T cell subsets. In addition, our studies highlight the utility of translational models that recapitulate human mitochondrial disease for understanding immunometabolism.


Asunto(s)
Transferasas Alquil y Aril/inmunología , Diferenciación Celular/inmunología , Complejo IV de Transporte de Electrones/inmunología , Activación de Linfocitos , Proteínas de la Membrana/inmunología , Enfermedades Mitocondriales/inmunología , Linfocitos T/inmunología , Transferasas Alquil y Aril/genética , Animales , Complejo IV de Transporte de Electrones/genética , Femenino , Humanos , Masculino , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Enfermedades Mitocondriales/genética
13.
Front Biosci (Landmark Ed) ; 22(6): 1011-1022, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-27814660

RESUMEN

Mitochondria are membrane-enclosed organelles, the energy-producing centers in almost all eukaryotic cells. The evolutionary emergence of mitochondria is a result of the endocytosis of a-proteobacteria. There are several characteristic features which refer to its prokaryotic ancestors including its independent sets of double-stranded mitochondrial DNA, which is uniquely circular in form and contains a significant amount of unmethylated DNA as CpG islands. Resent research has proven that free mitochondrial DNA found in blood was associated with innate immunomodulation in a broad-range of clinical conditions. Upon release, mitochondrial DNA acts as a danger-associated molecular pattern in the circulation, it is recognized by pattern recognition receptors and it facilitates inflammatory responses. Besides its high receptor activation potential, mitochondrial DNA is likely to perform direct crosstalk with activated leukocytes and to be contributed to other anti-microbial activities. Here we highlight the pathological conditions where cell free mtDNA is involved, describe the potential sources and mechanisms of extracellular mtDNA release and explore evidence for its mechanism of action after being excreted and potential therapeutic strategies.


Asunto(s)
ADN Mitocondrial/sangre , ADN Mitocondrial/genética , Animales , Muerte Celular , ADN Mitocondrial/inmunología , Humanos , Inmunidad Innata , Inmunomodulación , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/sangre , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/inmunología , Mutación , Estrés Oxidativo , Estrés Mecánico
14.
Curr Opin Rheumatol ; 27(6): 571-6, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26398012

RESUMEN

PURPOSE OF REVIEW: Systemic sclerosis (SSc) is an autoimmune disease with fibrosis seen in multiple organs. Although not traditionally regarded as a disease of aging, SSc-associated fibrosis shares many of the hallmarks of aging seen in other age-related fibrotic disorders. Here, we review the current literature of the potential role of aging and age-related cellular processes in the development of SSc and fibrosis. RECENT FINDINGS: Accumulating evidence supports a role for immune dysregulation, epigenetic modifications, cellular senescence, mitochondrial dysregulation and impaired autophagy in fibrosis that occurs in aging and SSc. SUMMARY: Cellular alterations linked to aging may promote the development and/or progression of SSc-associated fibrosis.


Asunto(s)
Envejecimiento/fisiología , Esclerodermia Sistémica/fisiopatología , Envejecimiento/genética , Envejecimiento/inmunología , Autofagia/fisiología , Senescencia Celular/genética , Senescencia Celular/inmunología , Senescencia Celular/fisiología , Epigénesis Genética , Fibroblastos/inmunología , Fibroblastos/patología , Fibroblastos/fisiología , Fibrosis , Humanos , Enfermedades Mitocondriales/inmunología , Enfermedades Mitocondriales/fisiopatología , Fenotipo , Esclerodermia Sistémica/inmunología , Esclerodermia Sistémica/patología
15.
BMC Med ; 13: 68, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25889215

RESUMEN

BACKGROUND: Mitochondrial dysfunction and defects in oxidative metabolism are a characteristic feature of many chronic illnesses not currently classified as mitochondrial diseases. Examples of such illnesses include bipolar disorder, multiple sclerosis, Parkinson's disease, schizophrenia, depression, autism, and chronic fatigue syndrome. DISCUSSION: While the majority of patients with multiple sclerosis appear to have widespread mitochondrial dysfunction and impaired ATP production, the findings in patients diagnosed with Parkinson's disease, autism, depression, bipolar disorder schizophrenia and chronic fatigue syndrome are less consistent, likely reflecting the fact that these diagnoses do not represent a disease with a unitary pathogenesis and pathophysiology. However, investigations have revealed the presence of chronic oxidative stress to be an almost invariant finding in study cohorts of patients afforded each diagnosis. This state is characterized by elevated reactive oxygen and nitrogen species and/or reduced levels of glutathione, and goes hand in hand with chronic systemic inflammation with elevated levels of pro-inflammatory cytokines. SUMMARY: This paper details mechanisms by which elevated levels of reactive oxygen and nitrogen species together with elevated pro-inflammatory cytokines could conspire to pave a major road to the development of mitochondrial dysfunction and impaired oxidative metabolism seen in many patients diagnosed with these disorders.


Asunto(s)
Trastornos Mentales/fisiopatología , Enfermedades Mitocondriales/fisiopatología , Neuroinmunomodulación/fisiología , Estrés Oxidativo/inmunología , Trastorno Autístico/inmunología , Trastorno Autístico/fisiopatología , Trastorno Bipolar/inmunología , Trastorno Bipolar/fisiopatología , Trastorno Depresivo/inmunología , Trastorno Depresivo/fisiopatología , Síndrome de Fatiga Crónica/inmunología , Síndrome de Fatiga Crónica/fisiopatología , Femenino , Humanos , Trastornos Mentales/inmunología , Mitocondrias/metabolismo , Enfermedades Mitocondriales/inmunología , Esclerosis Múltiple/inmunología , Esclerosis Múltiple/fisiopatología , Enfermedad de Parkinson/fisiopatología , Esquizofrenia/inmunología , Esquizofrenia/fisiopatología
16.
Biomed Res Int ; 2015: 598605, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25767808

RESUMEN

Human immunodeficiency virus (HIV), tuberculosis (TB), and helminthic infections are among the commonest public health problems in the sub-Saharan African countries like Ethiopia. Multiple micronutrient deficiencies also known as the "hidden hunger" are common in people living in these countries either playing a role in their pathogenesis or as consequences. This results in a vicious cycle of multiple micronutrient deficiencies and infection/disease progression. As infection is profoundly associated with nutritional status resulting from decreased nutrient intake, decreased nutrient absorption, and nutrient losses, micronutrient deficiencies affect immune system and impact infection and diseases progression. As a result, micronutrients, immunity, and infection are interrelated. The goal of this review is therefore to provide a summary of available findings regarding the "quadruple burden trouble" of HIV, TB, intestinal parasitic infections, and multiple micronutrient deficiencies to describe immune-modulating effects related to disorders.


Asunto(s)
Infecciones por VIH/inmunología , Parasitosis Intestinales/inmunología , Enfermedades Mitocondriales/inmunología , Tuberculosis/inmunología , Animales , Etiopía , Humanos
17.
Hum Mol Genet ; 24(10): 2848-60, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25652399

RESUMEN

Mitochondrial complex I (NADH dehydrogenase) is a major contributor to neuronal energetics, and mutations in complex I lead to vision loss. Functional, neuroanatomical and transcriptional consequences of complex I deficiency were investigated in retinas of the Ndufs4 knockout mouse. Whole-eye ERGs and multielectrode arrays confirmed a major retinal ganglion cell functional loss at P32, and retinal ganglion cell loss at P42. RNAseq demonstrated a mild and then sharp increase in innate immune and inflammatory retinal transcripts at P22 and P33, respectively, which were confirmed with QRT-PCR. Intraperitoneal injection of the inflammogen lipopolysaccharide further reduced retinal ganglion cell function in Ndufs4 KO, supporting the connection between inflammatory activation and functional loss. Complex I deficiency in the retina clearly caused innate immune and inflammatory markers to increase coincident with loss of vision, and RGC functional loss. How complex I incites inflammation and functional loss is not clear, but could be the result of misfolded complex I generating a 'non-self' response, and induction of innate immune response transcripts was observed before functional loss at P22, including ß-2 microglobulin and Cx3cr1, and during vision loss at P31 (B2m, Tlr 2, 3, 4, C1qa, Cx3cr1 and Fas). These data support the hypothesis that mitochondrial complex I dysfunction in the retina triggers an innate immune and inflammatory response that results in loss of retinal ganglion cell function and death, as in Leber's hereditary Optic Neuropathy and suggests novel therapeutic routes to counter mitochondrial defects that contribute to vision loss.


Asunto(s)
Complejo I de Transporte de Electrón/deficiencia , Enfermedades Mitocondriales/fisiopatología , Retina/fisiopatología , Células Ganglionares de la Retina/fisiología , Animales , Muerte Celular , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/inmunología , Femenino , Técnicas de Inactivación de Genes , Inmunidad Innata/genética , Inflamación/genética , Masculino , Ratones , Ratones Noqueados , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/inmunología , Retina/inmunología
18.
J Immunol Res ; 2014: 164309, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25309931

RESUMEN

Mitochondria are critical subcellular organelles that are required for several metabolic processes, including oxidative phosphorylation, as well as signaling and tissue-specific processes. Current understanding of the role of mitochondria in both the innate and adaptive immune systems is expanding. Concurrently, immunodeficiencies arising from perturbation of mitochondrial elements are increasingly recognized. Recent observations of immune dysfunction and increased incidence of infection in patients with primary mitochondrial disorders further support an important role for mitochondria in the proper function of the immune system. Here we review current findings.


Asunto(s)
Inmunidad Adaptativa/inmunología , Sistema Inmunológico/inmunología , Inmunidad Innata/inmunología , Mitocondrias/inmunología , Enfermedades Mitocondriales/inmunología , Predisposición Genética a la Enfermedad/genética , Humanos , Sistema Inmunológico/citología , Sistema Inmunológico/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Modelos Inmunológicos , Mutación
19.
Clin Immunol ; 155(2): 209-12, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25264263

RESUMEN

Coenzyme Q10 (CoQ10) deficiency can manifest diversely, from isolated myopathy to multisystem involvement. Immune dysregulation has not been reported as a feature of the disease. We report a four-year old girl with failure to thrive, recurrent infections, developmental delay with hypotonia, and CoQ10 deficiency with impaired immune function, which improved after CoQ10 and immunoglobulin replacement therapy. Immune dysfunction in CoQ10 deficiency should be considered and treated appropriately.


Asunto(s)
Ataxia/inmunología , Ataxia/metabolismo , Inmunidad/fisiología , Enfermedades Mitocondriales/inmunología , Enfermedades Mitocondriales/metabolismo , Debilidad Muscular/inmunología , Debilidad Muscular/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/deficiencia , Ataxia/diagnóstico , Ataxia/tratamiento farmacológico , Preescolar , Terapia de Reemplazo Enzimático , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Subgrupos Linfocitarios/inmunología , Subgrupos Linfocitarios/metabolismo , Enfermedades Mitocondriales/diagnóstico , Enfermedades Mitocondriales/tratamiento farmacológico , Debilidad Muscular/diagnóstico , Debilidad Muscular/tratamiento farmacológico , Resultado del Tratamiento , Ubiquinona/inmunología , Ubiquinona/metabolismo , Ubiquinona/uso terapéutico
20.
Immunity ; 41(3): 351-353, 2014 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-25238092

RESUMEN

Proinflammatory macrophage activation is coupled to a metabolic switch toward glycolysis. In Cell Metabolism, Jin et al. (2014) show that this process is negatively regulated by mitochondrial electron transport chain complex I through both cell intrinsic and extrinsic pathways.


Asunto(s)
Resorción Ósea/complicaciones , Resorción Ósea/inmunología , Complejo I de Transporte de Electrón/deficiencia , Macrófagos/patología , Enfermedades Mitocondriales/complicaciones , Enfermedades Mitocondriales/inmunología , Osteoclastos/patología , Animales , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/inmunología , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA