Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 1.902
1.
Int J Biol Macromol ; 267(Pt 1): 131455, 2024 May.
Article En | MEDLINE | ID: mdl-38588835

The analysis of cryo-electron tomography images of human and rat mitochondria revealed that the mitochondrial matrix is at least as crowded as the cytosol. To mitigate the crowding effects, metabolite transport in the mitochondria primarily occurs through the intermembrane space, which is significantly less crowded. The scientific literature largely ignores how enzyme systems and metabolite transport are organized in the crowded environment of the mitochondrial matrix. Under crowded conditions, multivalent interactions carried out by disordered protein regions (IDRs), may become extremely important. We analyzed the human mitochondrial proteome to determine the presence and physiological significance of IDRs. Despite mitochondrial proteins being generally more ordered than cytosolic or overall proteome proteins, disordered regions plays a significant role in certain mitochondrial compartments and processes. Even in highly ordered enzyme systems, there are proteins with long IDRs. Some IDRs act as binding elements between highly ordered subunits, while the roles of others are not yet established. Mitochondrial systems, like their bacterial ancestors, rely less on IDRs and more on RNA for LLPS compartmentalization. More evolutionarily advanced subsystems that enable mitochondria-cell interactions contain more IDRs. The study highlights the crucial and often overlooked role played by IDRs and non-coding RNAs in mitochondrial organization.


Intrinsically Disordered Proteins , Mitochondria , Intrinsically Disordered Proteins/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Mitochondria/metabolism , Humans , Animals , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , RNA/metabolism , Proteome/metabolism , Rats
2.
Structure ; 32(5): 594-602.e4, 2024 May 02.
Article En | MEDLINE | ID: mdl-38460521

Apoptosis-inducing factor (AIF), which is confined to mitochondria of normal healthy cells, is the first identified caspase-independent cell death effector. Moreover, AIF is required for the optimal functioning of the respiratory chain machinery. Recent findings have revealed that AIF fulfills its pro-survival function by interacting with CHCHD4, a soluble mitochondrial protein which promotes the entrance and the oxidative folding of different proteins in the inner membrane space. Here, we report the crystal structure of the ternary complex involving the N-terminal 27-mer peptide of CHCHD4, NAD+, and AIF harboring its FAD (flavin adenine dinucleotide) prosthetic group in oxidized form. Combining this information with biophysical and biochemical data on the CHCHD4/AIF complex, we provide a detailed structural description of the interaction between the two proteins, validated by both chemical cross-linking mass spectrometry analysis and site-directed mutagenesis.


Apoptosis Inducing Factor , Catalytic Domain , Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proteins , Models, Molecular , Protein Binding , Apoptosis Inducing Factor/metabolism , Apoptosis Inducing Factor/chemistry , Apoptosis Inducing Factor/genetics , Humans , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Allosteric Regulation , Crystallography, X-Ray , NAD/metabolism , NAD/chemistry , Binding Sites , Transcription Factors/metabolism , Transcription Factors/chemistry , Transcription Factors/genetics
3.
J Inorg Biochem ; 255: 112535, 2024 Jun.
Article En | MEDLINE | ID: mdl-38527404

Human mitoNEET (mNT) and CISD2 are two NEET proteins characterized by an atypical [2Fe-2S] cluster coordination involving three cysteines and one histidine. They act as redox switches with an active state linked to the oxidation of their cluster. In the present study, we show that reduced glutathione but also free thiol-containing molecules such as ß-mercaptoethanol can induce a loss of the mNT cluster under aerobic conditions, while CISD2 cluster appears more resistant. This disassembly occurs through a radical-based mechanism as previously observed with the bacterial SoxR. Interestingly, adding cysteine prevents glutathione-induced cluster loss. At low pH, glutathione can bind mNT in the vicinity of the cluster. These results suggest a potential new regulation mechanism of mNT activity by glutathione, an essential actor of the intracellular redox state.


Mitochondrial Proteins , Humans , Cysteine/metabolism , Glutathione/metabolism , Homeostasis , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Oxidation-Reduction , Sulfhydryl Compounds
4.
J Biol Chem ; 300(3): 105745, 2024 Mar.
Article En | MEDLINE | ID: mdl-38354784

The NEET proteins, an important family of iron-sulfur (Fe-S) proteins, have generated a strong interest due to their involvement in diverse diseases such as cancer, diabetes, and neurodegenerative disorders. Among the human NEET proteins, CISD3 has been the least studied, and its functional role is still largely unknown. We have investigated the biochemical features of CISD3 at the atomic and in cellulo levels upon challenge with different stress conditions i.e., iron deficiency, exposure to hydrogen peroxide, and nitric oxide. The redox and cellular stability properties of the protein agree on a predominance of reduced form of CISD3 in the cells. Upon the addition of iron chelators, CISD3 loses its Fe-S clusters and becomes unstructured, and its cellular level drastically decreases. Chemical shift perturbation measurements suggest that, upon cluster oxidation, the protein undergoes a conformational change at the C-terminal CDGSH domain, which determines the instability of the oxidized state. This redox-associated conformational change may be the source of cooperative electron transfer via the two [Fe2S2] clusters in CISD3, which displays a single sharp voltammetric signal at -31 mV versus SHE. Oxidized CISD3 is particularly sensitive to the presence of hydrogen peroxide in vitro, whereas only the reduced form is able to bind nitric oxide. Paramagnetic NMR provides clear evidence that, upon NO binding, the cluster is disassembled but iron ions are still bound to the protein. Accordingly, in cellulo CISD3 is unaffected by oxidative stress induced by hydrogen peroxide but it becomes highly unstable in response to nitric oxide treatment.


Iron-Sulfur Proteins , Mitochondrial Proteins , Nitric Oxide , Humans , Hydrogen Peroxide/metabolism , Iron/metabolism , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Nitric Oxide/metabolism , Oxidation-Reduction , Oxidative Stress , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , HEK293 Cells , Protein Stability
5.
Structure ; 32(5): 575-584.e3, 2024 May 02.
Article En | MEDLINE | ID: mdl-38412855

Chaperonins Hsp60s are required for cellular vitality by assisting protein folding in an ATP-dependent mechanism. Although conserved, the human mitochondrial mHsp60 exhibits molecular characteristics distinct from the E. coli GroEL, with different conformational assembly and higher subunit association dynamics, suggesting a different mechanism. We previously found that the pathological mutant mHsp60V72I exhibits enhanced subunit association stability and ATPase activity. To provide structural explanations for the V72I mutational effects, here we determined a cryo-EM structure of mHsp60V72I. Our structural analysis combined with molecular dynamic simulations showed mHsp60V72I with increased inter-subunit interface, binding free energy, and dissociation force, all contributing to its enhanced subunit association stability. The gate to the nucleotide-binding (NB) site in mHsp60V72I mimicked the open conformation in the nucleotide-bound state with an additional open channel leading to the NB site, both promoting the mutant's ATPase activity. Our studies highlight the importance of mHsp60's characteristics in its biological function.


Adenosine Triphosphate , Chaperonin 60 , Cryoelectron Microscopy , Molecular Dynamics Simulation , Humans , Adenosine Triphosphate/metabolism , Adenosine Triphosphate/chemistry , Chaperonin 60/metabolism , Chaperonin 60/chemistry , Chaperonin 60/genetics , Protein Binding , Binding Sites , Protein Stability , Mutation , Mitochondrial Proteins/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/genetics , Protein Conformation
6.
Nature ; 626(8000): 874-880, 2024 Feb.
Article En | MEDLINE | ID: mdl-38297121

Stress response pathways detect and alleviate adverse conditions to safeguard cell and tissue homeostasis, yet their prolonged activation induces apoptosis and disrupts organismal health1-3. How stress responses are turned off at the right time and place remains poorly understood. Here we report a ubiquitin-dependent mechanism that silences the cellular response to mitochondrial protein import stress. Crucial to this process is the silencing factor of the integrated stress response (SIFI), a large E3 ligase complex mutated in ataxia and in early-onset dementia that degrades both unimported mitochondrial precursors and stress response components. By recognizing bifunctional substrate motifs that equally encode protein localization and stability, the SIFI complex turns off a general stress response after a specific stress event has been resolved. Pharmacological stress response silencing sustains cell survival even if stress resolution failed, which underscores the importance of signal termination and provides a roadmap for treating neurodegenerative diseases caused by mitochondrial import defects.


Mitochondria , Mitochondrial Proteins , Mutation , Neurodegenerative Diseases , Stress, Physiological , Ubiquitin-Protein Ligases , Apoptosis/drug effects , Ataxia/genetics , Cell Survival/drug effects , Dementia/genetics , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Multiprotein Complexes/antagonists & inhibitors , Multiprotein Complexes/genetics , Multiprotein Complexes/metabolism , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Protein Stability/drug effects , Protein Transport/drug effects , Proteolysis/drug effects , Stress, Physiological/drug effects , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/antagonists & inhibitors , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination/drug effects
7.
J Biomol Struct Dyn ; 42(3): 1307-1318, 2024.
Article En | MEDLINE | ID: mdl-37139557

Ubiquitin specific protease 30 (USP30) has been attributed to mitochondrial dysfunction and impediment of mitophagy in Parkinson's disease (PD). This happens once ubiquitin that supposed to bind with deformed mitochondria at the insistence of Parkin, it's been recruited by USP30 via the distal ubiquitin binding domain. This is a challenge when PINK1 and Parkin loss their functions due to mutation. Although, there are reports on USP30s' inhibitors but no study on the repurposing of inhibitors approved against MMP-9 and SGLT-2 as potential inhibitors of USP30 in PD. Thus, the highlight therein, is to repurpose approved inhibitors of MMP-9 and SGLT-2 against USP30 in PD using extensive computational modelling framework. 3D structures of Ligands and USP30 were obtained from PubChem and protein database (PDB) servers respectively, and were subjected to molecular docking, ADMET evaluation, DFT calculation, molecular dynamics simulation (MDS) and free energy calculations. Out of the 18 drugs, 2 drugs showed good binding affinity to the distal ubiquitin binding domain, moderate pharmacokinetic properties and good stability. The findings showed canagliflozin and empagliflozin as potential inhibitors of USP30. Thus, we present these drugs as repurposing candidates for the treatment of PD. However, the findings in this current study needs to be validated experimentally.Communicated by Ramaswamy H. Sarma.


Parkinson Disease , Humans , Parkinson Disease/genetics , Matrix Metalloproteinase 9 , Molecular Docking Simulation , Drug Repositioning , Protein Kinases/metabolism , Mitochondrial Proteins/chemistry , Thiolester Hydrolases/chemistry , Thiolester Hydrolases/genetics , Thiolester Hydrolases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin/metabolism , Ubiquitin-Specific Proteases/metabolism
8.
Proteins ; 92(5): 583-592, 2024 May.
Article En | MEDLINE | ID: mdl-38146092

Mitochondria play a central role in energy production and cellular metabolism. Mitochondria contain their own small genome (mitochondrial DNA, mtDNA) that carries the genetic instructions for proteins required for ATP synthesis. The mitochondrial proteome, including the mitochondrial transcriptional machinery, is subject to post-translational modifications (PTMs), including acetylation and phosphorylation. We set out to determine whether PTMs of proteins associated with mtDNA may provide a potential mechanism for the regulation of mitochondrial gene expression. Here, we focus on mitochondrial ribosomal protein L12 (MRPL12), which is thought to stabilize mitochondrial RNA polymerase (POLRMT) and promote transcription. Numerous acetylation sites of MRPL12 were identified by mass spectrometry. We employed amino acid mimics of the acetylated (lysine to glutamine mutants) and deacetylated (lysine to arginine mutants) versions of MRPL12 to interrogate the role of lysine acetylation in transcription initiation in vitro and mitochondrial gene expression in HeLa cells. MRPL12 acetyl and deacetyl protein mimics were purified and assessed for their ability to impact mtDNA promoter binding of POLRMT. We analyzed mtDNA content and mitochondrial transcript levels in HeLa cells upon overexpression of acetyl and deacetyl mimics of MRPL12. Our results suggest that MRPL12 single-site acetyl mimics do not change the mtDNA promoter binding ability of POLRMT or mtDNA content in HeLa cells. Individual acetyl mimics may have modest effects on mitochondrial transcript levels. We found that the mitochondrial deacetylase, Sirtuin 3, is capable of deacetylating MRPL12 in vitro, suggesting a potential role for dynamic acetylation controlling MRPL12 function in a role outside of the regulation of gene expression.


Acetylation , Lysine , Ribosomal Proteins , Transcription, Genetic , Humans , Cell Cycle Proteins/metabolism , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , HeLa Cells , Lysine/metabolism , Mitochondrial Proteins/chemistry , Nuclear Proteins/genetics , Protein Processing, Post-Translational , Ribosomal Proteins/genetics , Ribosomal Proteins/metabolism
9.
J Phys Chem B ; 127(45): 9685-9696, 2023 Nov 16.
Article En | MEDLINE | ID: mdl-37921649

The uncoupling protein 1 (UCP1) dissipates the transmembrane (TM) proton gradient in the inner mitochondrial membrane (IMM) by leaking protons across the membrane and producing heat in the process. Such a nonshivering production of heat in the brown adipose tissue can combat obesity-related diseases. UCP1-associated proton leak is activated by free fatty acids and inhibited by purine nucleotides. The mechanism of proton leak and the binding sites of the activators (fatty acids) remain unknown, while the binding site of the inhibitors (nucleotides) was described recently. Using molecular dynamics simulations, we generated a conformational ensemble of UCP1. Using metadynamics-based free energy calculations, we obtained the most likely ATP-bound conformation of UCP1. Our conformational ensemble provides a molecular basis for a breadth of prior biochemical data available for UCP1. Based on the simulations, we make the following testable predictions about the mechanisms of activation of proton leak and proton leak inhibition by ATP: (1) R277 plays the dual role of stabilizing ATP at the binding site for inhibition and acting as a proton surrogate for D28 in the absence of a proton during proton transport, (2) the binding of ATP to UCP1 is mediated by residues R84, R92, R183, and S88, (3) R92 shuttles ATP from the E191-R92 gate in the intermembrane space to the nucleotide binding site and serves to increase ATP affinity, (4) ATP can inhibit proton leak by controlling the ionization states of matrix facing lysine residues such as K269 and K56, and (5) fatty acids can bind to UCP1 from the IMM either via the cavity between TM1 and TM2 or between TM5 and TM6. Our simulations set the platform for future investigations into the proton transport and inhibition mechanisms of UCP1.


Ion Channels , Protons , Ion Channels/chemistry , Uncoupling Protein 1/metabolism , Mitochondrial Proteins/chemistry , Fatty Acids/metabolism , Nucleotides/metabolism , Adenosine Triphosphate
10.
Int J Mol Sci ; 24(19)2023 Sep 28.
Article En | MEDLINE | ID: mdl-37834108

In mitochondria, the major subunits of oxidative phosphorylation complexes are translated by the mitochondrial ribosome (mito-ribosome). The correct insertion and assembly of these subunits into the inner mitochondrial membrane (IMM) are facilitated by mitochondrial oxidase assembly protein 1 (Oxa1) during the translation process. This co-translational insertion process involves an association between the mito-ribosome and the C-terminus of Oxa1 (Oxa1-CTD) Nuclear magnetic resonance (NMR) methods were mainly used to investigate the structural characterization of yeast Oxa1-CTD and its mode of interaction with the E. coli 70S ribosome. Oxa1-CTD forms a transient α-helical structure within the residues P342-Q385, which were reported to form an α-helix when combining with the ribosome. Two conserved contact sites that could interact with the ribosome were further identified. The first site was located on the very end of the N-terminus (V321-I327), and the second one encompassed a stretch of amino acid residues I348-Q370. Based on our discoveries and previous reports, a model has been proposed in which Oxa1-CTD interacts with ribosomes, accompanied by transient-to-stable transitions at the second contact site. These observations may enhance our understanding of the potential role of Oxa1-CTD in facilitating the assembly of oxidative phosphorylation complexes and provide insight into the structural characteristics of Oxa1-CTD.


Escherichia coli , Mitochondrial Proteins , Ribosomes , Saccharomyces cerevisiae , Escherichia coli/genetics , Escherichia coli/metabolism , Magnetic Resonance Spectroscopy , Mitochondria/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Ribosomes/metabolism , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/metabolism
11.
J Struct Biol ; 215(3): 108008, 2023 09.
Article En | MEDLINE | ID: mdl-37543301

Mitochondria are essential organelles that produce most of the energy via the oxidative phosphorylation (OXPHOS) system in all eukaryotic cells. Several essential subunits of the OXPHOS system are encoded by the mitochondrial genome (mtDNA) despite its small size. Defects in mtDNA maintenance and expression can lead to severe OXPHOS deficiencies and are amongst the most common causes of mitochondrial disease. The mtDNA is packaged as nucleoprotein structures, referred to as nucleoids. The conserved mitochondrial proteins, ARS-binding factor 2 (Abf2) in the budding yeast Saccharomyces cerevisiae (S. cerevisiae) and mitochondrial transcription factor A (TFAM) in mammals, are nucleoid associated proteins (NAPs) acting as condensing factors needed for packaging and maintenance of the mtDNA. Interestingly, gene knockout of Abf2 leads, in yeast, to the loss of mtDNA and respiratory growth, providing evidence for its crucial role. On a structural level, the condensing factors usually contain two DNA binding domains called high-mobility group boxes (HMG boxes). The co-operating mechanical activities of these domains are crucial in establishing the nucleoid architecture by bending the DNA strands. Here we used advanced solution NMR spectroscopy methods to characterize the dynamical properties of Abf2 together with its interaction with DNA. We find that the two HMG-domains react notably different to external cues like temperature and salt, indicating distinct functional properties. Biophysical characterizations show the pronounced difference of these domains upon DNA-binding, suggesting a refined picture of the Abf2 functional cycle.


Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Animals , DNA, Mitochondrial/genetics , DNA, Mitochondrial/chemistry , DNA, Mitochondrial/metabolism , Mammals/genetics , Mammals/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/chemistry , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
12.
Gene ; 883: 147684, 2023 Oct 20.
Article En | MEDLINE | ID: mdl-37536398

Dominant genetic variants in the mitofusin 2 (MFN2) gene lead to Charcot-Marie-Tooth type 2A (CMT2A), a neurodegenerative disease caused by genetic defects that directly damage axons. In this study, we reported a proband with a pathogenic variant in the GTPase domain of MFN2, c.494A > G (p.His165Arg). To date, at least 184 distinct MFN2 variants identified in 944 independent probands have been reported in 131 references. However, the field of medical genetics has long been challenged by how genetic variation in the MFN2 gene is associated with disease phenotypes. Here, by collating the MFN2 variant data and patient clinical information from Leiden Open Variant Database 3.0, NCBI clinvar database, and available related references in PubMed, we determined the mutation frequency, age of onset, sex ratio, and geographical distribution. Furthermore, the results of an analysis examining the relationship between variants and phenotypes from multiple genetic perspectives indicated that insertion and deletions (indels), copy number variants (CNVs), duplication variants, and nonsense mutations in single nucleotide variants (SNVs) tend to be pathogenic, and the results emphasized the importance of the GTPase domain to the structure and function of MFN2. Overall, three reliable classification methods of MFN2 genotype-phenotype associations provide insights into the prediction of CMT2A disease severity. Of course, there are still many MFN2 variants that have not been given clear clinical significance, which requires clinicians to make more accurate clinical diagnoses.


Charcot-Marie-Tooth Disease , Neurodegenerative Diseases , Humans , Mutation , Charcot-Marie-Tooth Disease/genetics , Charcot-Marie-Tooth Disease/pathology , GTP Phosphohydrolases/genetics , Genetic Association Studies , Mitochondrial Proteins/genetics , Mitochondrial Proteins/chemistry
13.
Biol Chem ; 404(8-9): 807-812, 2023 07 26.
Article En | MEDLINE | ID: mdl-37155927

Most mitochondrial proteins are nuclear-encoded and imported by the protein import machinery based on specific targeting signals. The proteins that carry an amino-terminal targeting signal (presequence) are imported via the presequence import pathway that involves the translocases of the outer and inner membranes - TOM and TIM23 complexes. In this article, we discuss how mitochondrial matrix and inner membrane precursor proteins are imported along the presequence pathway in Saccharomyces cerevisiae with a focus on the dynamics of the TIM23 complex, and further update with some of the key findings that advanced the field in the last few years.


Mitochondrial Precursor Protein Import Complex Proteins , Mitochondrial Proteins , Protein Transport , Saccharomyces cerevisiae , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/metabolism , Mitochondria/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Mitochondrial Precursor Protein Import Complex Proteins/metabolism
14.
ACS Chem Neurosci ; 14(11): 2134-2145, 2023 06 07.
Article En | MEDLINE | ID: mdl-37194187

The V57E pathological variant of the mitochondrial coiled-coil-helix-coiled-coil-helix domain-containing protein 10 (CHCHD10) plays a role in frontotemporal dementia. The wild-type and V57E mutant CHCHD10 proteins contain intrinsically disordered regions, and therefore, these regions hampered structural characterization of these proteins using conventional experimental tools. For the first time in the literature, we represent that the V57E mutation is pathogenic to mitochondria as it increases mitochondrial superoxide and impairs mitochondrial respiration. In addition, we represent here the structural ensemble properties of the V57E mutant CHCHD10 and describe the impacts of V57E mutation on the structural ensembles of wild-type CHCHD10 in aqueous solution. We conducted experimental and computational studies for this research. Namely, MitoSOX Red staining and Seahorse Mito Stress experiments, atomic force microscopy measurements, bioinformatics, homology modeling, and multiple-run molecular dynamics simulation computational studies were conducted. Our experiments show that the V57E mutation results in mitochondrial dysfunction, and our computational studies present that the structural ensemble properties of wild-type CHCHD10 are impacted by the frontotemporal dementia-associated V57E genetic mutation.


Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Mitochondrial Proteins/chemistry , Mitochondria/metabolism , Mutation/genetics , Amyotrophic Lateral Sclerosis/metabolism
15.
Science ; 379(6637): 1105-1111, 2023 03 17.
Article En | MEDLINE | ID: mdl-36758104

Tight regulation of apoptosis is essential for metazoan development and prevents diseases such as cancer and neurodegeneration. Caspase activation is central to apoptosis, and inhibitor of apoptosis proteins (IAPs) are the principal actors that restrain caspase activity and are therefore attractive therapeutic targets. IAPs, in turn, are regulated by mitochondria-derived proapoptotic factors such as SMAC and HTRA2. Through a series of cryo-electron microscopy structures of full-length human baculoviral IAP repeat-containing protein 6 (BIRC6) bound to SMAC, caspases, and HTRA2, we provide a molecular understanding for BIRC6-mediated caspase inhibition and its release by SMAC. The architecture of BIRC6, together with near-irreversible binding of SMAC, elucidates how the IAP inhibitor SMAC can effectively control a processive ubiquitin ligase to respond to apoptotic stimuli.


Apoptosis Regulatory Proteins , Apoptosis , Caspases , Inhibitor of Apoptosis Proteins , Mitochondrial Proteins , Animals , Humans , Caspases/chemistry , Caspases/metabolism , Cryoelectron Microscopy , Enzyme Activation , High-Temperature Requirement A Serine Peptidase 2/chemistry , High-Temperature Requirement A Serine Peptidase 2/metabolism , Inhibitor of Apoptosis Proteins/chemistry , Inhibitor of Apoptosis Proteins/metabolism , Protein Domains , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/metabolism
16.
Science ; 379(6637): 1117-1123, 2023 03 17.
Article En | MEDLINE | ID: mdl-36758105

Inhibitor of apoptosis proteins (IAPs) bind to pro-apoptotic proteases, keeping them inactive and preventing cell death. The atypical ubiquitin ligase BIRC6 is the only essential IAP, additionally functioning as a suppressor of autophagy. We performed a structure-function analysis of BIRC6 in complex with caspase-9, HTRA2, SMAC, and LC3B, which are critical apoptosis and autophagy proteins. Cryo-electron microscopy structures showed that BIRC6 forms a megadalton crescent shape that arcs around a spacious cavity containing receptor sites for client proteins. Multivalent binding of SMAC obstructs client binding, impeding ubiquitination of both autophagy and apoptotic substrates. On the basis of these data, we discuss how the BIRC6/SMAC complex can act as a stress-induced hub to regulate apoptosis and autophagy drivers.


Apoptosis Regulatory Proteins , Apoptosis , Inhibitor of Apoptosis Proteins , Mitochondrial Proteins , Humans , Apoptosis/physiology , Apoptosis Regulatory Proteins/chemistry , Apoptosis Regulatory Proteins/metabolism , Autophagy , Cryoelectron Microscopy , Inhibitor of Apoptosis Proteins/chemistry , Inhibitor of Apoptosis Proteins/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Ubiquitination , Protein Multimerization , High-Temperature Requirement A Serine Peptidase 2/chemistry , High-Temperature Requirement A Serine Peptidase 2/metabolism
17.
Cell Chem Biol ; 30(3): 278-294.e11, 2023 03 16.
Article En | MEDLINE | ID: mdl-36827981

Mitochondrial fission is critical for mitochondrial dynamics and homeostasis. The dynamin superfamily GTPase DRP1 is recruited by three functionally redundant receptors, MFF, MiD49, and MiD51, to mitochondria to drive fission. Here, we exploit high-content live-cell imaging to screen for mitochondrial fission inhibitors and have developed a covalent compound, mitochondrial division inhibitor (MIDI). MIDI treatment potently blocks mitochondrial fragmentation induced by mitochondrial toxins and restores mitochondrial morphology in fusion-defective cells carrying pathogenic mitofusin and OPA1 mutations. Mechanistically, MIDI does not affect DRP1 tetramerization nor DRP1 GTPase activity but does block DRP1 recruitment to mitochondria. Subsequent biochemical and cellular characterizations reveal an unexpected mechanism that MIDI targets DRP1 interaction with multiple receptors via covalent interaction with DRP1-C367. Taken together, beyond developing a potent mitochondrial fission inhibitor that profoundly impacts mitochondrial morphogenesis, our study establishes proof of concept for developing protein-protein interaction inhibitors targeting DRP1.


Dynamins , Mitochondrial Dynamics , Dynamins/genetics , Dynamins/chemistry , Mitochondria , Mitochondrial Proteins/genetics , Mitochondrial Proteins/chemistry
18.
Int J Mol Sci ; 24(2)2023 Jan 04.
Article En | MEDLINE | ID: mdl-36674445

Abnormal functions of the cell adhesion molecule L1 are linked to several neural diseases. Proteolytic L1 fragments were reported to interact with nuclear and mitochondrial proteins to regulate events in the developing and the adult nervous system. Recently, we identified a 55 kDa L1 fragment (L1-55) that interacts with methyl CpG binding protein 2 (MeCP2) and heterochromatin protein 1 (HP1) via the KDET motif. We now show that L1-55 also interacts with histone H1.4 (HistH1e) via this motif. Moreover, we show that this motif binds to NADH dehydrogenase ubiquinone flavoprotein 2 (NDUFV2), splicing factor proline/glutamine-rich (SFPQ), the non-POU domain containing octamer-binding protein (NonO), paraspeckle component 1 (PSPC1), WD-repeat protein 5 (WDR5), heat shock cognate protein 71 kDa (Hsc70), and synaptotagmin 1 (SYT1). Furthermore, applications of HistH1e, NDUFV2, SFPQ, NonO, PSPC1, WDR5, Hsc70, or SYT1 siRNAs or a cell-penetrating KDET-carrying peptide decrease L1-dependent neurite outgrowth and the survival of cultured neurons. These findings indicate that L1's KDET motif binds to an unexpectedly large number of molecules that are essential for nervous system-related functions, such as neurite outgrowth and neuronal survival. In summary, L1 interacts with cytoplasmic, nuclear and mitochondrial proteins to regulate development and, in adults, the formation, maintenance, and flexibility of neural functions.


Mitochondrial Proteins , Neural Cell Adhesion Molecule L1 , Cytoplasm/metabolism , Cytosol/metabolism , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , Neural Cell Adhesion Molecule L1/chemistry , Neural Cell Adhesion Molecule L1/metabolism , Neurites/metabolism , Neurons/metabolism , Humans , Mice , Animals
19.
Proteins ; 91(6): 739-749, 2023 06.
Article En | MEDLINE | ID: mdl-36625206

The G66V pathological variant of the coiled-coil-helix-coiled-coil-helix domain-containing protein 10 (CHCHD10), mitochondrial, plays a role in Jokela type spinal muscular atrophy. The wild-type and G66V mutant-type CHCHD10 proteins contain intrinsically disordered regions, and therefore, their structural ensemble studies have been experiencing difficulties using conventional tools. Here, we show our results regarding the first characterization of the structural ensemble characteristics of the G66V mutant form of CHCHD10 and the first comparison of these characteristics with the structural ensemble properties of wild-type CHCHD10. We find that the structural properties, potential of mean force surfaces, and principal component analysis show stark differences between these two proteins. These results are important for a better pathology, biochemistry and structural biology understanding of CHCHD10 and its G66V genetic variant and it is likely that these reported structural properties are important for designing more efficient treatments for the Jokela type of spinal muscular atrophy disease.


Mitochondrial Proteins , Muscular Atrophy, Spinal , Humans , Mitochondrial Proteins/chemistry , Mutation , Mitochondria/genetics , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/metabolism , Muscular Atrophy, Spinal/pathology , HeLa Cells
20.
J Biol Chem ; 299(2): 102825, 2023 02.
Article En | MEDLINE | ID: mdl-36567017

Long noncoding RNAs (lncRNAs) are emerging as essential players in multiple biological processes. Mitochondrial dynamics, comprising the continuous cycle of fission and fusion, are required for healthy mitochondria that function properly. Despite long-term recognition of its significance in cell-fate control, the mechanism underlying mitochondrial fusion is not completely understood, particularly regarding the involvement of lncRNAs. Here, we show that the lncRNA HITT (HIF-1α inhibitor at translation level) can specifically localize in mitochondria. Cells expressing higher levels of HITT contain fragmented mitochondria. Conversely, we show that HITT knockdown cells have more tubular mitochondria than is present in control cells. Mechanistically, we demonstrate HITT directly binds mitofusin-2 (MFN2), a core component that mediates mitochondrial outer membrane fusion, by the in vitro RNA pull-down and UV-cross-linking RNA-IP assays. In doing so, we found HITT disturbs MFN2 homotypic or heterotypic complex formation, attenuating mitochondrial fusion. Under stress conditions, such as ultraviolet radiation, we in addition show HITT stability increases as a consequence of MiR-205 downregulation, inhibiting MFN2-mediated fusion and leading to apoptosis. Overall, our data provide significant insights into the roles of organelle (mitochondria)-specific resident lncRNAs in regulating mitochondrial fusion and also reveal how such a mechanism controls cellular sensitivity to UV radiation-induced apoptosis.


GTP Phosphohydrolases , Mitochondria , Mitochondrial Dynamics , Mitochondrial Proteins , Multiprotein Complexes , RNA, Long Noncoding , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Mitochondria/radiation effects , Mitochondrial Dynamics/radiation effects , Mitochondrial Proteins/chemistry , Mitochondrial Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Ultraviolet Rays , MicroRNAs/metabolism , Apoptosis/radiation effects , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Mitochondrial Membranes/metabolism
...