Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Des Devel Ther ; 18: 2653-2679, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38974119

RESUMEN

Purpose: Over the last few years, covalent fragment-based drug discovery has gained significant importance. Thus, striving for more warhead diversity, we conceived a library consisting of 20 covalently reacting compounds. Our covalent fragment library (CovLib) contains four different warhead classes, including five α-cyanoacacrylamides/acrylates (CA), three epoxides (EO), four vinyl sulfones (VS), and eight electron-deficient heteroarenes with a leaving group (SNAr/SN). Methods: After predicting the theoretical solubility of the fragments by LogP and LogS during the selection process, we determined their experimental solubility using a turbidimetric solubility assay. The reactivities of the different compounds were measured in a high-throughput 5,5'-dithiobis-(2-nitrobenzoic acid) DTNB assay, followed by a (glutathione) GSH stability assay. We employed the CovLib in a (differential scanning fluorimetry) DSF-based screening against different targets: c-Jun N-terminal kinase 3 (JNK3), ubiquitin-specific protease 7 (USP7), and the tumor suppressor p53. Finally, the covalent binding was confirmed by intact protein mass spectrometry (MS). Results: In general, the purchased fragments turned out to be sufficiently soluble. Additionally, they covered a broad spectrum of reactivity. All investigated α-cyanoacrylamides/acrylates and all structurally confirmed epoxides turned out to be less reactive compounds, possibly due to steric hindrance and reversibility (for α-cyanoacrylamides/acrylates). The SNAr and vinyl sulfone fragments are either highly reactive or stable. DSF measurements with the different targets JNK3, USP7, and p53 identified reactive fragment hits causing a shift in the melting temperatures of the proteins. MS confirmed the covalent binding mode of all these fragments to USP7 and p53, while additionally identifying the SNAr-type electrophile SN002 as a mildly reactive covalent hit for p53. Conclusion: The screening and target evaluation of the CovLib revealed first interesting hits. The highly cysteine-reactive fragments VS004, SN001, SN006, and SN007 covalently modify several target proteins and showed distinct shifts in the melting temperatures up to +5.1 °C and -9.1 °C.


Asunto(s)
Proteína Quinasa 10 Activada por Mitógenos , Proteína p53 Supresora de Tumor , Peptidasa Específica de Ubiquitina 7 , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/química , Peptidasa Específica de Ubiquitina 7/antagonistas & inhibidores , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/química , Humanos , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Proteína Quinasa 10 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 10 Activada por Mitógenos/química , Sulfonas/química , Sulfonas/farmacología , Estructura Molecular , Solubilidad , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Acrilamidas/química , Acrilamidas/farmacología , Acrilatos/química , Acrilatos/farmacología , Unión Proteica
2.
Int J Mol Sci ; 22(20)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34681742

RESUMEN

As members of the MAPK family, c-Jun-N-terminal kinases (JNKs) regulate the biological processes of apoptosis. In particular, the isoform JNK3 is expressed explicitly in the brain at high levels and is involved in the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). In this study, we prepared a series of five 6-dihydroxy-1H-benzo[d]imidazoles as JNK3 inhibitors and found them have potential as neuroprotective agents. Following a previous lead scaffold, benzimidazole moiety was modified with various aryl groups and hydroxylation, and the resulting compounds exhibited JNK3 inhibitory activity with improved potency and selectivity. Out of 37 analogues synthesized, (S)-cyclopropyl(3-((4-(2-(2,3-dihydrobenzo[b][1,4]dioxin -6-yl)-5,6-dihydroxy-1H-benzo[d]imidazol-1-yl)pyrimidin-2-yl)amino) piperidin-1-yl)methanone (35b) demonstrated the highest JNK3 inhibition (IC50 = 9.7 nM), as well as neuroprotective effects against Aß-induced neuronal cell death. As a protein kinase inhibitor, it also showed excellent selectivity over other protein kinases including isoforms JNK1 (>1000 fold) and JNK2 (-10 fold).


Asunto(s)
Proteína Quinasa 10 Activada por Mitógenos/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología , Péptidos beta-Amiloides/toxicidad , Animales , Células Cultivadas , Evaluación Preclínica de Medicamentos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Proteína Quinasa 10 Activada por Mitógenos/química , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Modelos Moleculares , Neuronas/patología , Síndromes de Neurotoxicidad/prevención & control , Fragmentos de Péptidos/toxicidad , Ratas
3.
Sci Rep ; 11(1): 9606, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-33953223

RESUMEN

Non-steroidal anti-inflammatory drugs (NSAIDs) showed promising clinical efficacy toward COVID-19 (Coronavirus disease 2019) patients as potent painkillers and anti-inflammatory agents. However, the prospective anti-COVID-19 mechanisms of NSAIDs are not evidently exposed. Therefore, we intended to decipher the most influential NSAIDs candidate(s) and its novel mechanism(s) against COVID-19 by network pharmacology. FDA (U.S. Food & Drug Administration) approved NSAIDs (19 active drugs and one prodrug) were used for this study. Target proteins related to selected NSAIDs and COVID-19 related target proteins were identified by the Similarity Ensemble Approach, Swiss Target Prediction, and PubChem databases, respectively. Venn diagram identified overlapping target proteins between NSAIDs and COVID-19 related target proteins. The interactive networking between NSAIDs and overlapping target proteins was analyzed by STRING. RStudio plotted the bubble chart of the KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment analysis of overlapping target proteins. Finally, the binding affinity of NSAIDs against target proteins was determined through molecular docking test (MDT). Geneset enrichment analysis exhibited 26 signaling pathways against COVID-19. Inhibition of proinflammatory stimuli of tissues and/or cells by inactivating the RAS signaling pathway was identified as the key anti-COVID-19 mechanism of NSAIDs. Besides, MAPK8, MAPK10, and BAD target proteins were explored as the associated target proteins of the RAS. Among twenty NSAIDs, 6MNA, Rofecoxib, and Indomethacin revealed promising binding affinity with the highest docking score against three identified target proteins, respectively. Overall, our proposed three NSAIDs (6MNA, Rofecoxib, and Indomethacin) might block the RAS by inactivating its associated target proteins, thus may alleviate excessive inflammation induced by SARS-CoV-2.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Antivirales/farmacología , Evaluación Preclínica de Medicamentos/métodos , Proteínas/metabolismo , SARS-CoV-2/efectos de los fármacos , Antiinflamatorios no Esteroideos/metabolismo , Antivirales/metabolismo , Humanos , Proteína Quinasa 10 Activada por Mitógenos/química , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/química , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Terapia Molecular Dirigida , Mapas de Interacción de Proteínas/efectos de los fármacos , SARS-CoV-2/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína Letal Asociada a bcl/química , Proteína Letal Asociada a bcl/metabolismo , Proteínas ras/metabolismo
4.
Cells ; 9(8)2020 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-32751228

RESUMEN

JNK is a protein kinase, which induces transactivation of c-jun. The three isoforms of JNK, JNK1, JNK2, and JNK3, are encoded by three distinct genes. JNK1 and JNK2 are expressed ubiquitously throughout the body. By contrast, the expression of JNK3 is limited and observed mainly in the brain, heart, and testes. Concerning the biological properties of JNKs, the contribution of upstream regulators and scaffold proteins plays an important role in the activation of JNKs. Since JNK signaling has been described as a form of stress-response signaling, the contribution of JNK3 to pathophysiological events, such as stress response or cell death including apoptosis, has been well studied. However, JNK3 also regulates the physiological functions of neurons and non-neuronal cells, such as development, regeneration, and differentiation/reprogramming. In this review, we shed light on the physiological functions of JNK3. In addition, we summarize recent advances in the knowledge regarding interactions between JNK3 and cellular reprogramming.


Asunto(s)
Astrocitos/metabolismo , Células Secretoras de Insulina/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Miocitos Cardíacos/metabolismo , Neuronas/metabolismo , Animales , Diferenciación Celular/fisiología , Reprogramación Celular/fisiología , Humanos , Proteína Quinasa 10 Activada por Mitógenos/química , Proteína Quinasa 10 Activada por Mitógenos/genética , ARN Mensajero/genética
5.
Int J Mol Sci ; 21(5)2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32131443

RESUMEN

We designed and synthesized 1-pyrimidinyl-2-aryl-4, 6-dihydropyrrolo [3,4-d] imidazole-5(1H)-carboxamide derivatives as selective inhibitors of c-Jun-N-terminal Kinase 3 (JNK3), a target for the treatment of neurodegenerative diseases. Based on the compounds found in previous studies, a novel scaffold was designed to improve pharmacokinetic characters and activity, and compound 18a, (R)-1-(2-((1-(cyclopropanecarbonyl)pyrrolidin-3-yl)amino)pyrimidin-4-yl)-2-(3,4-dichlorophenyl)-4,6-dihydro pyrrolo [3,4-d]imidazole-5(1H)-carboxamide, showed the highest IC50 value of 2.69 nM. Kinase profiling results also showed high selectivity for JNK3 among 38 kinases, having mild activity against JNK2, RIPK3, and GSK3ß, which also known to involve in neuronal apoptosis.


Asunto(s)
Proteína Quinasa 10 Activada por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/síntesis química , Sitios de Unión , Imidazoles/química , Proteína Quinasa 10 Activada por Mitógenos/química , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Unión Proteica , Inhibidores de Proteínas Quinasas/farmacología
6.
J Comput Aided Mol Des ; 34(6): 671-682, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32040807

RESUMEN

The c-Jun N-terminal kinase 3 (JNK3) signaling cascade is activated during cerebral ischemia leading to neuronal damage. The present study was carried out to identify and evaluate novel JNK3 inhibitors using in-silico and in-vitro approach. A total of 380 JNK3 inhibitors belonging to different organic groups was collected from the previously reported literature. These molecules were used to generate a pharmacophore model. This model was used to screen a chemical database (SPECS) to identify newer molecules with similar chemical features. The top 1000 hits molecules were then docked against the JNK3 enzyme coordinate following GLIDE rigid receptor docking (RRD) protocol. Best posed molecules of RRD were used during induced-fit docking (IFD), allowing receptor flexibility. Other computational predictions such as binding free energy, electronic configuration and ADME/tox were also calculated. Inferences from the best pharmacophore model suggested that, in order to have specific JNK3 inhibitory activity, the molecules must possess one H-bond donor, two hydrophobic and two ring features. Docking studies suggested that the main interaction between lead molecules and JNK3 enzyme consisted of hydrogen bond interaction with methionine 149 of the hinge region. It was also observed that the molecule with better MM-GBSA dG binding free energy, had greater correlation with JNK3 inhibition. Lead molecule (AJ-292-42151532) with the highest binding free energy (dG = 106.8 Kcal/mol) showed better efficacy than the SP600125 (reference JNK3 inhibitor) during cell-free JNK3 kinase assay (IC50 = 58.17 nM) and cell-based neuroprotective assay (EC50 = 7.5 µM).


Asunto(s)
Proteína Quinasa 10 Activada por Mitógenos/química , Fármacos Neuroprotectores/química , Compuestos Orgánicos/química , Inhibidores de Proteínas Quinasas/química , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/enzimología , Isquemia Encefálica/patología , Evaluación Preclínica de Medicamentos , Humanos , Proteína Quinasa 10 Activada por Mitógenos/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Neuronas/enzimología , Neuronas/patología , Unión Proteica/efectos de los fármacos , Relación Estructura-Actividad , Interfaz Usuario-Computador
7.
J Mol Graph Model ; 91: 30-51, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31158642

RESUMEN

The kinase c-Jun N-terminal Kinase 3 (JNK3) plays an important role in neurodegenerative diseases. JNK3 inhibitors have shown promising results in treating Alzheimer's and Parkinson's diseases. This prompted us to model this interesting target via three established structure-based computational workflows; namely, docking-based Comparative Intermolecular Contacts Analysis (db-CICA), pharmacophore modeling via molecular-dynamics based Ligand-Receptor Contact Analysis (md-LRCA), and QSAR-guided selection of crystallographic pharmacophores. Moreover, we compared the performances of resulting pharmacophores against binding models generated via a newly introduced technique, namely, QSAR-guided selection of docking-based pharmacophores. The resulting pharmacophores were validated by receiver operating characteristic (ROC) curve analysis and used as virtual search queries to screen the National Cancer Institute (NCI) database for promising anti-JNK3 hits of novel chemotypes. Eleven nanomolar and low micromolar hits were identified, three of which were captured by QSAR-guided docking-based pharmacophores.


Asunto(s)
Proteína Quinasa 10 Activada por Mitógenos/antagonistas & inhibidores , Simulación del Acoplamiento Molecular , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Relación Estructura-Actividad Cuantitativa , Sitios de Unión , Humanos , Ligandos , Proteína Quinasa 10 Activada por Mitógenos/química , Simulación de Dinámica Molecular , Curva ROC
8.
Structure ; 27(7): 1162-1170.e3, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31080119

RESUMEN

Arrestins, in addition to desensitizing GPCR-induced G protein activation, also mediate G protein-independent signaling by interacting with various signaling proteins. Among these, arrestins regulate MAPK signal transduction by scaffolding mitogen-activated protein kinase (MAPK) signaling components such as MAPKKK, MAPKK, and MAPK. In this study, we investigated the binding mode and interfaces between arrestin-3 and JNK3 using hydrogen/deuterium exchange mass spectrometry, 19F-NMR, and tryptophan-induced Atto 655 fluorescence-quenching techniques. Results suggested that the ß1 strand of arrestin-3 is the major and potentially only interaction site with JNK3. The results also suggested that C-lobe regions near the activation loop of JNK3 form the potential binding interface, which is variable depending on the ATP binding status. Because the ß1 strand of arrestin-3 is buried by the C-terminal strand in its basal state, C-terminal truncation (i.e., pre-activation) of arrestin-3 facilitates the arrestin-3/JNK3 interaction.


Asunto(s)
Adenosina Trifosfato/química , Arrestinas/química , Proteína Quinasa 10 Activada por Mitógenos/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Arrestinas/genética , Arrestinas/metabolismo , Sitios de Unión , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/genética , Proteína Quinasa 10 Activada por Mitógenos/genética , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Modelos Moleculares , Fosforilación , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
9.
Sci Rep ; 8(1): 9435, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29930333

RESUMEN

In this work, we study the dynamics and the energetics of the all-atom structure of a neuronal-specific serine/threonine kinase c-Jun N-terminal kinase 3 (JNK3) in three states: unphosphorylated, phosphorylated, and ATP-bound phosphorylated. A series of 2 µs atomistic simulations followed by a conformational landscape mapping and a principal component analysis supports the mechanistic understanding of the JNK3 inactivation/activation process and also indicates key structural intermediates. Our analysis reveals that the unphosphorylated JNK3 undergoes the 'open-to-closed' movement via a two-step mechanism. Furthermore, the phosphorylation and ATP-binding allow the JNK3 kinase to attain a fully active conformation. JNK3 is a widely studied target for small-drugs used to treat a variety of neurological disorders. We believe that the mechanistic understanding of the large-conformational changes upon the activation of JNK3 will aid the development of novel targeted therapeutics.


Asunto(s)
Proteína Quinasa 10 Activada por Mitógenos/química , Simulación de Dinámica Molecular , Humanos , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Fosforilación , Dominios Proteicos
10.
Bioorg Med Chem Lett ; 27(10): 2139-2143, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28372912

RESUMEN

JNK3 is an emerging target for neurodegenerative diseases including AD and PD, with histological selectivity. Specifically, in AD, JNK3 is the main protein kinase for APP phosphorylation, which is an important mechanism for Aß processing, and a biomarker of Alzheimer's disease. Therefore, targeting JNK3 is a reasonable strategy for drug discovery in neurodegenerative diseases. In order to find a novel scaffold for JNK3 inhibitors, we performed 3D-QSAR modeling studies with two different JNK3 inhibitor series. The CoMFA model was obtained with a q2 value of 0.806 and an r2 value of 0.850. Based on CoMFA and CoMSIA models, rational design was conducted and led to a novel scaffold, N-(thiophen-2-yl)-8H-pyrazolo[1,5-a]pyrido[1,2-c]pyrimidine-10-carboxamide.


Asunto(s)
Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad Cuantitativa , Diseño de Fármacos , Humanos , Concentración 50 Inhibidora , Proteína Quinasa 10 Activada por Mitógenos/química , Modelos Moleculares , Inhibidores de Proteínas Quinasas/metabolismo
11.
J Struct Biol ; 197(3): 271-278, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27998708

RESUMEN

c-Jun N-terminal kinases (JNKs) are members of the mitogen-activated protein kinase (MAPK) family that regulate apoptosis, inflammation, cytokine production, and metabolism. MAPKs undergo various splicing within their kinase domains. Unlike other MAPKs, JNKs have alternative splicing at the C-terminus, resulting in long and short variants. Functional or conformational effects due to the elongated C-terminal tail in the long splice variants have not been investigated nor has the conformation of the C-terminal tail been analyzed. Here, we analyzed the conformation of the elongated C-terminal tail and investigated conformational differences between long and short splice variants of JNKs using JNK3α2 and JNK3α1 as models. We adopted hydrogen/deuterium exchange mass spectrometry (HDX-MS) to analyze the conformation. HDX-MS revealed that the C-terminal tail is mostly intrinsically disordered, and that the conformation of the kinase domain of JNK3α2 is more dynamic than that of JNK3α1. The different conformation dynamics between long and short splice variants of JNK3α might affect the cellular functions of JNK3.


Asunto(s)
Medición de Intercambio de Deuterio/métodos , Espectrometría de Masas/métodos , Proteína Quinasa 10 Activada por Mitógenos/química , Proteína Quinasa 10 Activada por Mitógenos/genética , Empalme Alternativo/genética , Secuencia de Aminoácidos , Deuterio/química , Humanos , Hidrógeno/química , Conformación Proteica , Estructura Secundaria de Proteína , Empalme del ARN/genética , Homología de Secuencia de Aminoácido
12.
Anal Biochem ; 503: 28-40, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-26954235

RESUMEN

Two fluorescein-labeled pyridinylimidazoles were synthesized and evaluated as probes for the binding affinity determination of potential kinase inhibitors to the c-Jun N-terminal kinase 3 (JNK3) and p38α mitogen-activated protein kinase (MAPK). Fluorescence polarization (FP)-based competition binding assays were developed for both enzymes using 1-(3',6'-dihydroxy-3-oxo-3H-spiro[isobenzofuran-1,9'-xanthen]-5-yl)-3-(4-((4-(4-(4-fluorophenyl)-2-(methylthio)-1H-imidazol-5-yl)pyridin-2-yl)amino)phenyl)thiourea (5) as an FP probe (JNK3: Kd = 3.0 nM; p38α MAPK: Kd = 5.7 nM). The validation of the assays with known inhibitors of JNK3 and p38α MAPK revealed that both FP assays correlate very well with inhibition data received by the activity assays. This, in addition to the viability of both FP-based binding assays for the high-throughput screening procedure, makes the assays suitable as inexpensive prescreening protocols for JNK3 and p38α MAPK inhibitors.


Asunto(s)
Polarización de Fluorescencia , Colorantes Fluorescentes/química , Imidazoles/química , Proteína Quinasa 10 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Sitios de Unión/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Colorantes Fluorescentes/síntesis química , Humanos , Imidazoles/síntesis química , Proteína Quinasa 10 Activada por Mitógenos/química , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/química , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Estructura Molecular , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad
13.
J Am Chem Soc ; 137(46): 14640-52, 2015 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-26505827

RESUMEN

We target the gatekeeper MET146 of c-Jun N-terminal kinase 3 (JNK3) to exemplify the applicability of X···S halogen bonds in molecular design using computational, synthetic, structural and biophysical techniques. In a designed series of aminopyrimidine-based inhibitors, we unexpectedly encounter a plateau of affinity. Compared to their QM-calculated interaction energies, particularly bromine and iodine fail to reach the full potential according to the size of their σ-hole. Instead, mutation of the gatekeeper residue into leucine, alanine, or threonine reveals that the heavier halides can significantly influence selectivity in the human kinome. Thus, we demonstrate that, although the choice of halogen may not always increase affinity, it can still be relevant for inducing selectivity. Determining the crystal structure of the iodine derivative in complex with JNK3 (4X21) reveals an unusual bivalent halogen/chalcogen bond donated by the ligand and the back-pocket residue MET115. Incipient repulsion from the too short halogen bond increases the flexibility of Cε of MET146, whereas the rest of the residue fails to adapt being fixed by the chalcogen bond. This effect can be useful to induce selectivity, as the necessary combination of methionine residues only occurs in 9.3% of human kinases, while methionine is the predominant gatekeeper (39%).


Asunto(s)
Calcógenos/química , Halógenos/química , Metionina/metabolismo , Proteína Quinasa 10 Activada por Mitógenos/química , Cristalografía por Rayos X , Polarización de Fluorescencia
14.
PLoS One ; 10(4): e0119204, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25856433

RESUMEN

INTRODUCTION AND AIMS: The ASK1-JNK3 signaling pathway plays a pivotal role in the pathogenesis of Parkinson's disease (PD). The specific binding of ß-arrestin2 to JNK3 is essential for activation of the ASK1-JNK3 cascade, representing a potential therapeutic target for preventing dopaminergic neuronal death in PD. The aim of this study was to identify a novel strategy for the prevention of dopaminergic neuronal death in PD. METHODS: Based on the specific binding of ß-arrestin2 to JNK3, a 21-amino-acid fusion peptide, termed JNK3-N-Tat, was synthesized. We evaluated the ability of this peptide to inhibit the binding of ß-arrestin2 to its target domain in JNK3 in vitro and in vivo. RESULTS: The JNK3-N-Tat peptide inhibited activation of the ASK1-JNK3 cascade by disrupting the interaction between ß-arrestin2 and JNK3. JNK3-N-Tat exerted beneficial effects through pathways downstream of JNK3 and improved mitochondrial function, resulting in attenuated MPP+/MPTP-induced damage. JNK3-N-Tat protected mesencephalic dopaminergic neurons against MPTP-induced toxicity. CONCLUSIONS: JNK3-N-Tat, a JNK3-inhibitory peptide, protects dopaminergic neurons against MPP+/MPTP-induced injury by inhibiting the ASK1-JNK3 signaling pathway.


Asunto(s)
1-Metil-4-fenil-1,2,3,6-Tetrahidropiridina/efectos adversos , Neuronas Dopaminérgicas/citología , Neuronas Dopaminérgicas/efectos de los fármacos , MAP Quinasa Quinasa Quinasa 5/metabolismo , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Péptidos/farmacología , Transducción de Señal/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Apoptosis/efectos de los fármacos , Arrestinas/química , Arrestinas/metabolismo , Línea Celular Tumoral , Citoprotección/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Proteína Quinasa 10 Activada por Mitógenos/química , Datos de Secuencia Molecular , Enfermedad de Parkinson/patología , Péptidos/química , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Estructura Terciaria de Proteína , beta-Arrestinas
15.
J Med Chem ; 58(7): 2967-87, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25760409

RESUMEN

Through medicinal chemistry lead optimization studies focused on calculated properties and guided by X-ray crystallography and computational modeling, potent pan-JNK inhibitors were identified that showed submicromolar activity in a cellular assay. Using in vitro ADME profiling data, 9t was identified as possessing favorable permeability and a low potential for efflux, but it was rapidly cleared in liver microsomal incubations. In a mouse pharmacokinetics study, compound 9t was brain-penetrant after oral dosing, but exposure was limited by high plasma clearance. Brain exposure at a level expected to support modulation of a pharmacodynamic marker in mouse was achieved when the compound was coadministered with the pan-cytochrome P450 inhibitor 1-aminobenzotriazole.


Asunto(s)
Proteína Quinasa 10 Activada por Mitógenos/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Animales , Barrera Hematoencefálica/efectos de los fármacos , Técnicas de Química Sintética , Cristalografía por Rayos X , Inhibidores Enzimáticos del Citocromo P-450/química , Inhibidores Enzimáticos del Citocromo P-450/farmacología , Modelos Animales de Enfermedad , Perros , Evaluación Preclínica de Medicamentos/métodos , Semivida , Humanos , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/metabolismo , Concentración 50 Inhibidora , Células de Riñón Canino Madin Darby/efectos de los fármacos , Ratones , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Proteína Quinasa 10 Activada por Mitógenos/química , Estructura Molecular , Inhibidores de Proteínas Quinasas/síntesis química , Pirazoles/química , Pirimidinas/química , Relación Estructura-Actividad
16.
Sci Rep ; 5: 8047, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25623238

RESUMEN

Three JNK isoforms, JNK1, JNK2, and JNK3 have been reported and unique biological function has been ascribed to each. It is unknown if selective inhibition of these isoforms would confer therapeutic or safety benefit. To probe JNK isoform function we designed JNK2/3 inhibitors that have >30-fold selectivity over JNK1. Utilizing site-directed mutagenesis and x-ray crystallography we identified L144 in JNK3 as a key residue for selectivity. To test whether JNK2/3 selective inhibitors protect human dopaminergic neurons against neurotoxin-induced mitochondrial dysfunction, we monitored reactive oxygen species (ROS) generation and mitochondrial membrane potential (MMP). The results showed that JNK2/3 selective inhibitors protected against 6-hydroxydopamine-induced ROS generation and MMP depolarization. These results suggest that it was possible to develop JNK2/3 selective inhibitors and that residues in hydrophobic pocket I were responsible for selectivity. Moreover, the findings also suggest that inhibition of JNK2/3 likely contributed to protecting mitochondrial function and prevented ultimate cell death.


Asunto(s)
Proteína Quinasa 10 Activada por Mitógenos/química , Proteína Quinasa 9 Activada por Mitógenos/química , Inhibidores de Proteínas Quinasas/química , Pirazoles/química , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular Tumoral , Cristalografía por Rayos X , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteína Quinasa 10 Activada por Mitógenos/genética , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/genética , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oxidopamina/farmacología , Unión Proteica , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Estructura Terciaria de Proteína , Pirazoles/metabolismo , Pirazoles/farmacología , Especies Reactivas de Oxígeno/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Alineación de Secuencia
17.
J Med Chem ; 58(1): 443-56, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25475894

RESUMEN

Tetra-substituted imidazoles were designed as dual inhibitors of c-Jun N-terminal kinase (JNK) 3 and p38α mitogen-activated protein (MAP) kinase. A library of 45 derivatives was prepared and evaluated in a kinase activity assay for their ability to inhibit both kinases, JNK3 and p38α MAP kinase. Dual inhibitors with IC50 values down to the low double-digit nanomolar range at both enzymes were identified. The best balanced dual JNK3/p38α MAP kinase inhibitors are 6m (IC50: JNK3, 18 nM; p38α, 30 nM) and 14d (IC50: JNK3, 26 nM; p38α, 34 nM) featuring both excellent solubility and metabolic stability. They may serve as useful tool compounds for preclinical proof-of-principle studies in order to validate the synergistic role of both kinases in the progression of Huntington's disease.


Asunto(s)
Imidazoles/farmacología , Proteína Quinasa 10 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 14 Activada por Mitógenos/antagonistas & inhibidores , Enfermedades Neurodegenerativas/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Piridinas/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Humanos , Enfermedad de Huntington/tratamiento farmacológico , Imidazoles/química , Imidazoles/metabolismo , Masculino , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/metabolismo , Proteína Quinasa 10 Activada por Mitógenos/química , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Proteína Quinasa 14 Activada por Mitógenos/química , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína , Piridinas/química , Piridinas/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología
18.
Biochem Biophys Res Commun ; 453(3): 576-81, 2014 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-25301550

RESUMEN

The c-Jun N-terminal Kinases (JNKs) play important roles in cell responses to stress or growth factor stimulation. The JNK1α1 isoform shares >90% identity with a predominantly neuronal JNK3α1 isoform, but JNK3α1 also includes a distinctive 38 amino acid N-terminal sequence. To address the outstanding question of the potential for these JNK isoforms to have different binding partners that mediate different biological actions, the work presented here refined the yeast two-hybrid approach to identify and categorize binding partners for JNK1α1 and JNK3α1. Specifically, site-directed mutagenesis of the JNK1α1 common docking (CD) domain that mediates typical JNK-binding domain (JBD)-dependent interactions, truncation of the distinctive JNK3 N-terminal domain (i.e. ΔN JNK3α1), and interaction evaluation in the yeast two-hybrid system defined the interacting partners as either JNK1-specific interactors (ATF7, FUS, KCNE4, PIAS1, SHANK1, TKT), typical JBD-dependent interactors shared by JNK1α1 and JNK3α1 (AKAP6, BMPR2, EEF1A1, GFAP, GRIP2, GTF2F1, HDAC2, MAP1B, MYO9B, PTPN2, RABGAP1, RUSC2, SUMO1, SYPL1, TOPBP1, ZNF668), or JNK3-specific partners (ATXN1, NNAT, PTGDS) dependent on interaction with the JNK3 N-terminal extension. The interacting partners ATF7, AKAP6, and ATXN1 were explored further as representatives of these different classes. Two potential JBDs were identified in ATF7 as important for its interaction with JNK1α1, but additionally an interaction between ATF7 and ΔN JNK3α1 was shown to be JBD-dependent, suggesting that the JNK3α1 N-terminus prevents interaction with some proteins. For the shared partner AKAP6, one of the multiple potential JBDs predicted by sequence analysis was important for the AKAP6-JNK interaction in the yeast screening system as well as in mammalian cells. Finally, the ATXN1-JNK3α1 interaction was dependent on the JNK3α1 N-terminus in a mammalian cell context. These studies therefore highlight a diversity of potential JNK-interacting partners with both JBD-dependent as well as JBD-independent modes of interaction.


Asunto(s)
Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/metabolismo , Sitios de Unión , Proteína Quinasa 10 Activada por Mitógenos/química , Proteína Quinasa 10 Activada por Mitógenos/genética , Proteína Quinasa 8 Activada por Mitógenos/química , Proteína Quinasa 8 Activada por Mitógenos/genética , Técnicas del Sistema de Dos Híbridos
19.
J Mol Biol ; 426(21): 3569-89, 2014 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-25178256

RESUMEN

Many studies have characterized how changes to the stability and internal motions of a protein during activation can contribute to their catalytic function, even when structural changes cannot be observed. Here, unfolding studies and hydrogen-deuterium exchange (HX) mass spectrometry were used to investigate the changes to the stability and conformation/conformational dynamics of JNK1ß1 induced by phosphorylative activation. Equivalent studies were also employed to determine the effects of nucleotide binding on both inactive and active JNK1ß1 using the ATP analogue, 5'-adenylyl-imidodiphosphate (AMP-PNP). JNK1ß1 phosphorylation alters HX in regions involved in catalysis and substrate binding, changes that can be ascribed to functional modifications in either structure and/or backbone flexibility. Increased HX in the hinge between the N- and C-terminal domains implied that it acquires enhanced flexibility upon phosphorylation that may be a prerequisite for interdomain closure. In combination with the finding that nucleotide binding destabilizes the kinase, the patterns of solvent protection by AMP-PNP were consistent with a novel mode of nucleotide binding to the C-terminal domain of a destabilized and open domain conformation of inactive JNK1ß1. Solvent protection by AMP-PNP of both N- and C-terminal domains in active JNK1ß1 revealed that the domains close around nucleotide upon phosphorylation, concomitantly stabilizing the kinase. This suggests that phosphorylation activates JNK1ß1 in part by increasing hinge flexibility to facilitate interdomain closure and the creation of a functional active site. By uncovering the complex interplay that occurs between nucleotide binding and phosphorylation, we present new insight into the unique mechanisms by which JNK1ß1 is regulated.


Asunto(s)
Escherichia coli/enzimología , Hidrógeno/química , Proteína Quinasa 10 Activada por Mitógenos/química , Proteína Quinasa 8 Activada por Mitógenos/química , Adenosina Trifosfato/química , Secuencia de Aminoácidos , Sitios de Unión , Dominio Catalítico , Medición de Intercambio de Deuterio , Activación Enzimática , Humanos , Sistema de Señalización de MAP Quinasas , Espectrometría de Masas , Datos de Secuencia Molecular , Nucleótidos/química , Fosforilación , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Solventes/química , Temperatura , Termodinámica , Urea/química
20.
PLoS Comput Biol ; 10(2): e1003470, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24550720

RESUMEN

Interleukin-1 (IL-1) is a large cytokine family closely related to innate immunity and inflammation. IL-1 proteins are key players in signaling pathways such as apoptosis, TLR, MAPK, NLR and NF-κB. The IL-1 pathway is also associated with cancer, and chronic inflammation increases the risk of tumor development via oncogenic mutations. Here we illustrate that the structures of interfaces between proteins in this pathway bearing the mutations may reveal how. Proteins are frequently regulated via their interactions, which can turn them ON or OFF. We show that oncogenic mutations are significantly at or adjoining interface regions, and can abolish (or enhance) the protein-protein interaction, making the protein constitutively active (or inactive, if it is a repressor). We combine known structures of protein-protein complexes and those that we have predicted for the IL-1 pathway, and integrate them with literature information. In the reconstructed pathway there are 104 interactions between proteins whose three dimensional structures are experimentally identified; only 15 have experimentally-determined structures of the interacting complexes. By predicting the protein-protein complexes throughout the pathway via the PRISM algorithm, the structural coverage increases from 15% to 71%. In silico mutagenesis and comparison of the predicted binding energies reveal the mechanisms of how oncogenic and single nucleotide polymorphism (SNP) mutations can abrogate the interactions or increase the binding affinity of the mutant to the native partner. Computational mapping of mutations on the interface of the predicted complexes may constitute a powerful strategy to explain the mechanisms of activation/inhibition. It can also help explain how an oncogenic mutation or SNP works.


Asunto(s)
Inflamación/genética , Inflamación/inmunología , Interleucina-1/metabolismo , Mutación , Neoplasias/genética , Neoplasias/inmunología , Oncogenes , Biología Computacional , Simulación por Computador , Humanos , Inflamación/metabolismo , Interleucina-1/química , Interleucina-1/genética , Proteína Accesoria del Receptor de Interleucina-1/química , Proteína Accesoria del Receptor de Interleucina-1/genética , Proteína Accesoria del Receptor de Interleucina-1/metabolismo , MAP Quinasa Quinasa 4/química , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/metabolismo , MAP Quinasa Quinasa 7/química , MAP Quinasa Quinasa 7/genética , MAP Quinasa Quinasa 7/metabolismo , Proteína Quinasa 10 Activada por Mitógenos/química , Proteína Quinasa 10 Activada por Mitógenos/genética , Proteína Quinasa 10 Activada por Mitógenos/metabolismo , Proteína Quinasa 9 Activada por Mitógenos/química , Proteína Quinasa 9 Activada por Mitógenos/genética , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Modelos Biológicos , Modelos Moleculares , Mutagénesis , Neoplasias/metabolismo , Polimorfismo de Nucleótido Simple , Mapas de Interacción de Proteínas/genética , Mapas de Interacción de Proteínas/inmunología , Receptores Tipo I de Interleucina-1/química , Receptores Tipo I de Interleucina-1/genética , Receptores Tipo I de Interleucina-1/metabolismo , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA