Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
1.
J Biosci Bioeng ; 138(1): 1-12, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38614829

RESUMEN

Unable to move on their own, plants have acquired the ability to produce a wide variety of low molecular weight compounds to survive against various stresses. It is estimated that there are as many as one million different kinds. Plants also have the ability to accumulate high levels of proteins. Although plant-based bioproduction has traditionally relied on classical tissue culture methods, the attraction of bioproduction by plants is increasing with the development of omics and bioinformatics and other various technologies, as well as synthetic biology. This review describes the current status and prospects of these plant-based bioproduction from five advanced research topics, (i) de novo production of plant-derived high value terpenoids in engineered yeast, (ii) biotransformation of plant-based materials, (iii) genome editing technology for plant-based bioproduction, (iv) environmental effect of metabolite production in plant factory, and (v) molecular pharming.


Asunto(s)
Edición Génica , Plantas , Terpenos , Plantas/metabolismo , Plantas/genética , Terpenos/metabolismo , Biología Sintética , Agricultura Molecular , Biotransformación , Ingeniería Metabólica/métodos
2.
Plant Biotechnol J ; 22(8): 2282-2300, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38685599

RESUMEN

Antimicrobial peptides (AMPs) are emerging as next-generation therapeutics due to their broad-spectrum activity against drug-resistant bacterial strains and their ability to eradicate biofilms, modulate immune responses, exert anti-inflammatory effects and improve disease management. They are produced through solid-phase peptide synthesis or in bacterial or yeast cells. Molecular farming, i.e. the production of biologics in plants, offers a low-cost, non-toxic, scalable and simple alternative platform to produce AMPs at a sustainable cost. In this review, we discuss the advantages of molecular farming for producing clinical-grade AMPs, advances in expression and purification systems and the cost advantage for industrial-scale production. We further review how 'green' production is filling the sustainability gap, streamlining patent and regulatory approvals and enabling successful clinical translations that demonstrate the future potential of AMPs produced by molecular farming. Finally, we discuss the regulatory challenges that need to be addressed to fully realize the potential of molecular farming-based AMP production for therapeutics.


Asunto(s)
Péptidos Antimicrobianos , Agricultura Molecular , Péptidos Antimicrobianos/genética , Péptidos Antimicrobianos/metabolismo , Agricultura Molecular/métodos
3.
Plant Biotechnol J ; 22(8): 2248-2266, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38516995

RESUMEN

The need for therapeutics to treat a plethora of medical conditions and diseases is on the rise and the demand for alternative approaches to mammalian-based production systems is increasing. Plant-based strategies provide a safe and effective alternative to produce biological drugs but have yet to enter mainstream manufacturing at a competitive level. Limitations associated with batch consistency and target protein production levels are present; however, strategies to overcome these challenges are underway. In this study, we apply state-of-the-art mass spectrometry-based proteomics to define proteome remodelling of the plant following agroinfiltration with bacteria grown under shake flask or bioreactor conditions. We observed distinct signatures of bacterial protein production corresponding to the different growth conditions that directly influence the plant defence responses and target protein production on a temporal axis. Our integration of proteomic profiling with small molecule detection and quantification reveals the fluctuation of secondary metabolite production over time to provide new insight into the complexities of dual system modulation in molecular pharming. Our findings suggest that bioreactor bacterial growth may promote evasion of early plant defence responses towards Agrobacterium tumefaciens (updated nomenclature to Rhizobium radiobacter). Furthermore, we uncover and explore specific targets for genetic manipulation to suppress host defences and increase recombinant protein production in molecular pharming.


Asunto(s)
Agrobacterium tumefaciens , Reactores Biológicos , Nicotiana , Proteómica , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiología , Nicotiana/crecimiento & desarrollo , Reactores Biológicos/microbiología , Agrobacterium tumefaciens/genética , Agrobacterium tumefaciens/metabolismo , Agricultura Molecular/métodos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Proteoma/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
4.
Plant Cell Rep ; 43(2): 43, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38246952

RESUMEN

KEY MESSAGE: Characterization of Physcomitrella 3'UTRs across different promoters yields endogenous single and double terminators for usage in molecular pharming. The production of recombinant proteins for health applications accounts for a large share of the biopharmaceutical market. While many drugs are produced in microbial and mammalian systems, plants gain more attention as expression hosts to produce eukaryotic proteins. In particular, the good manufacturing practice (GMP)-compliant moss Physcomitrella (Physcomitrium patens) has outstanding features, such as excellent genetic amenability, reproducible bioreactor cultivation, and humanized protein glycosylation patterns. In this study, we selected and characterized novel terminators for their effects on heterologous gene expression. The Physcomitrella genome contains 53,346 unique 3'UTRs (untranslated regions) of which 7964 transcripts contain at least one intron. Over 91% of 3'UTRs exhibit more than one polyadenylation site, indicating the prevalence of alternative polyadenylation in Physcomitrella. Out of all 3'UTRs, 14 terminator candidates were selected and characterized via transient Dual-Luciferase assays, yielding a collection of endogenous terminators performing equally high as established heterologous terminators CaMV35S, AtHSP90, and NOS. High performing candidates were selected for testing as double terminators which impact reporter levels, dependent on terminator identity and positioning. Testing of 3'UTRs among the different promoters NOS, CaMV35S, and PpActin5 showed an increase of more than 1000-fold between promoters PpActin5 and NOS, whereas terminators increased reporter levels by less than tenfold, demonstrating the stronger effect promoters play as compared to terminators. Among selected terminator attributes, the number of polyadenylation sites as well as polyadenylation signals were found to influence terminator performance the most. Our results improve the biotechnology platform Physcomitrella and further our understanding of how terminators influence gene expression in plants in general.


Asunto(s)
Briófitas , Bryopsida , Animales , Bryopsida/genética , Regiones no Traducidas 3' , Agricultura Molecular , Expresión Génica , Mamíferos
5.
Int J Mol Sci ; 24(12)2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37373192

RESUMEN

Immune checkpoint inhibitors (ICIs) are a class of immunotherapy agents capable of alleviating the immunosuppressive effects exerted by tumorigenic cells. The programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) immune checkpoint is one of the most ubiquitous checkpoints utilized by tumorigenic cells for immune evasion by inducing apoptosis and inhibiting the proliferation and cytokine production of T lymphocytes. Currently, the most frequently used ICIs targeting the PD-1/PD-L1 checkpoint include monoclonal antibodies (mAbs) pembrolizumab and nivolumab that bind to PD-1 on T lymphocytes and inhibit interaction with PD-L1 on tumorigenic cells. However, pembrolizumab and nivolumab are costly, and thus their accessibility is limited in low- and middle-income countries (LMICs). Therefore, it is essential to develop novel biomanufacturing platforms capable of reducing the cost of these two therapies. Molecular farming is one such platform utilizing plants for mAb production, and it has been demonstrated to be a rapid, low-cost, and scalable platform that can be potentially implemented in LMICs to diminish the exorbitant prices, ultimately leading to a significant reduction in cancer-related mortalities within these countries.


Asunto(s)
Antígeno B7-H1 , Nivolumab , Nivolumab/farmacología , Receptor de Muerte Celular Programada 1 , Agricultura Molecular , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Inmunoterapia
7.
Trends Biotechnol ; 41(9): 1182-1198, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37012119

RESUMEN

Many efforts have been put into engineering plants to improve crop yields and stress tolerance and boost the bioproduction of valuable molecules. Yet, our capabilities are still limited due to the lack of well-characterized genetic building blocks and resources for precise manipulation and given the inherently challenging properties of plant tissues. Advancements in plant synthetic biology can overcome these bottlenecks and release the full potential of engineered plants. In this review, we first discuss the recently developed plant synthetic elements from single parts to advanced circuits, software, and hardware tools expediting the engineering cycle. Next, we survey the advancements in plant biotechnology enabled by these recent resources. We conclude the review with outstanding challenges and future directions of plant synthetic biology.


Asunto(s)
Agricultura Molecular , Biología Sintética , Ingeniería Genética , Plantas/genética , Biotecnología , Ingeniería Metabólica
8.
Planta Med ; 89(10): 1010-1020, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37072112

RESUMEN

Recombinant proteins are a major breakthrough in biomedical research with a wide range of applications from diagnostics to therapeutics. Strategic construct design, consistent expression platforms, and suitable upstream and downstream techniques are key considerations to produce commercially viable recombinant proteins. The recombinant antigenic protein production for use either as a diagnostic reagent or subunit vaccine formulation is usually carried out in prokaryotic or eukaryotic expression platforms. Microbial and mammalian systems dominate the biopharmaceutical industry for such applications. However, there is no universal expression system that can meet all the requirements for different types of proteins. The adoptability of any expression system is likely based on the quality and quantity of the proteins that can be produced from it. The huge demand of recombinant proteins for different applications requires an inexpensive production platform for rapid development. The molecular farming scientific community has been promoting the plant system for nearly 3 decades as a cost-effective alternative to produce high-quality proteins for research, diagnostic, and therapeutic applications. Here, we discuss how plant biotechnology could offer solutions for the rapid and scalable production of protein antigens as low-cost diagnostic reagents for use in functional assays.


Asunto(s)
Enfermedades Transmisibles , Agricultura Molecular , Animales , Plantas Modificadas Genéticamente/metabolismo , Biotecnología/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Enfermedades Transmisibles/diagnóstico , Mamíferos/metabolismo
9.
Vaccine ; 41(13): 2261-2269, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36868876

RESUMEN

The outbreak of the SARS-CoV-2 global pandemic heightened the pace of vaccine development with various vaccines being approved for human use in a span of 24 months. The SARS-CoV-2 trimeric spike (S) surface glycoprotein, which mediates viral entry by binding to ACE2, is a key target for vaccines and therapeutic antibodies. Plant biopharming is recognized for its scalability, speed, versatility, and low production costs and is an increasingly promising molecular pharming vaccine platform for human health. We developed Nicotiana benthamiana-produced SARS-CoV-2 virus-like particle (VLP) vaccine candidates displaying the S-protein of the Beta (B.1.351) variant of concern (VOC), which triggered cross-reactive neutralising antibodies against Delta (B.1.617.2) and Omicron (B.1.1.529) VOCs. In this study, immunogenicity of the VLPs (5 µg per dose) adjuvanted with three independent adjuvants i.e. oil-in-water based adjuvants SEPIVAC SWETM (Seppic, France) and "AS IS" (Afrigen, South Africa) as well as a slow-release synthetic oligodeoxynucleotide (ODN) adjuvant designated NADA (Disease Control Africa, South Africa) were evaluated in New Zealand white rabbits and resulted in robust neutralising antibody responses after booster vaccination, ranging from 1:5341 to as high as 1:18204. Serum neutralising antibodies elicited by the Beta variant VLP vaccine also showed cross-neutralisation against the Delta and Omicron variants with neutralising titres ranging from 1:1702 and 1:971, respectively. Collectively, these data provide support for the development of a plant-produced VLP based candidate vaccine against SARS-CoV-2 based on circulating variants of concern.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Conejos , Animales , Humanos , SARS-CoV-2 , Agricultura Molecular , COVID-19/prevención & control , Adyuvantes Inmunológicos , Anticuerpos Neutralizantes , Sudáfrica , Anticuerpos Antivirales , Glicoproteína de la Espiga del Coronavirus/genética , Inmunogenicidad Vacunal
10.
SLAS Technol ; 28(4): 278-291, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36966988

RESUMEN

Epidermal growth factor (EGF) is a known signaling cue essential towards the development and organoid biofabrication particularly for exocrine glands. This study developed an in vitro EGF delivery platform with Nicotiana benthamiana plant-produced EGF (P-EGF) encapsulated on hyaluronic acid/alginate (HA/Alg) hydrogel to improve the effectiveness of glandular organoid biofabrication in short-term culture systems. Primary submandibular gland epithelial cells were treated with 5 - 20 ng/mL of P-EGF and commercially available bacteria-derived EGF (B-EGF). Cell proliferation and metabolic activity were measured by MTT and luciferase-based ATP assays. P-EGF and B-EGF 5 - 20 ng/mL promoted glandular epithelial cell proliferation during 6 culture days on a comparable fashion. Organoid forming efficiency and cellular viability, ATP-dependent activity and expansion were evaluated using two EGF delivery systems, HA/Alg-based encapsulation and media supplementation. Phosphate buffered saline (PBS) was used as a control vehicle. Epithelial organoids fabricated from PBS-, B-EGF-, and P-EGF-encapsulated hydrogels were characterized genotypically, phenotypically and by functional assays. P-EGF-encapsulated hydrogel enhanced organoid formation efficiency and cellular viability and metabolism relative to P-EGF supplementation. At culture day 3, epithelial organoids developed from P-EGF-encapsulated HA/Alg platform contained functional cell clusters expressing specific glandular epithelial markers such as exocrine pro-acinar (AQP5, NKCC1, CHRM1, CHRM3, Mist1), ductal (K18, Krt19), and myoepithelial (α-SMA, Acta2), and possessed a high mitotic activity (38-62% Ki67 cells) with a large epithelial progenitor population (∼70% K14 cells). The P-EGF encapsulation strikingly upregulated the expression of pro-acinar AQP5 cells through culture time when compared to others (B-EGF, PBS). Thus, the utilization of Nicotiana benthamiana in molecular farming can produce EGF biologicals amenable to encapsulation in HA/Alg-based in vitro platforms, which can effectively and promptly induce the biofabrication of exocrine gland organoids.


Asunto(s)
Factor de Crecimiento Epidérmico , Hidrogeles , Factor de Crecimiento Epidérmico/farmacología , Agricultura Molecular , Organoides , Ácido Hialurónico/farmacología , Adenosina Trifosfato
11.
Int J Mol Sci ; 24(2)2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36675043

RESUMEN

Plant viruses have traditionally been studied as pathogens in the context of understanding the molecular and cellular mechanisms of a particular disease affecting crops. In recent years, viruses have emerged as a new alternative for producing biological nanomaterials and chimeric vaccines. Plant viruses were also used to generate highly efficient expression vectors, revolutionizing plant molecular farming (PMF). Several biological products, including recombinant vaccines, monoclonal antibodies, diagnostic reagents, and other pharmaceutical products produced in plants, have passed their clinical trials and are in their market implementation stage. PMF offers opportunities for fast, adaptive, and low-cost technology to meet ever-growing and critical global health needs. In this review, we summarized the advancements in the virus-like particles-based (VLPs-based) nanotechnologies and the role they played in the production of advanced vaccines, drugs, diagnostic bio-nanomaterials, and other bioactive cargos. We also highlighted various applications and advantages plant-produced vaccines have and their relevance for treating human and animal illnesses. Furthermore, we summarized the plant-based biologics that have passed through clinical trials, the unique challenges they faced, and the challenges they will face to qualify, become available, and succeed on the market.


Asunto(s)
Agricultura Molecular , Virus de Plantas , Animales , Humanos , Plantas Modificadas Genéticamente/metabolismo , Vacunas Sintéticas , Virus de Plantas/genética , Anticuerpos Monoclonales/metabolismo
12.
Virology ; 578: 7-12, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36434906

RESUMEN

Many plant virus-like particles (VLPs) utilized in nanotechnology are 30-nm icosahedrons. To expand the VLP platforms, we produced VLPs of Cytoplasmic type citrus leprosis virus (CiLV-C) in Nicotiana benthamiana. We were interested in CiLV-C because of its unique bacilliform shape (60-70 nm × 110-120 nm). The CiLV-C capsid protein (p29) gene was transferred to the pTRBO expression vector transiently expressed in leaves. Stable VLPs were formed, as confirmed by agarose gel electrophoresis, transmission electron microscopy and size exclusion chromatography. Interestingly, the morphology of the VLPs (15.8 ± 1.3 nm icosahedral particles) differed from that of the native bacilliform particles indicating that the assembly of native virions is influenced by other viral proteins and/or the packaged viral genome. The smaller CiLV-C VLPs will also be useful for structure-function studies to compare with the 30-nm icosahedrons of other VLPs.


Asunto(s)
Citrus , Virus ARN , Rhabdoviridae , Agricultura Molecular , Virus ARN/genética , Virión/genética
14.
Molecules ; 27(24)2022 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-36558107

RESUMEN

Soilless cultivation of saffron (Crocus sativus) in a controlled environment represents an interesting alternative to field cultivation, in order to obtain a standardized high-quality product and to optimize yields. In particular, pharma-grade saffron is fundamental for therapeutic applications of this spice, whose efficacy has been demonstrated in the treatment of macular diseases, such as Age-related Macular Degeneration (AMD). In this work, a hydroponic cultivation system was developed, specifically designed to meet the needs of C. sativus plant. Various cultivation recipes, different in spectrum and intensity of lighting, temperature, photoperiod and irrigation, have been adopted to study their effect on saffron production. The experimentation involved the cultivation of corms from two subsequent farm years, to identify and validate the optimal conditions, both in terms of quantitative yield and as accumulation of bioactive metabolites, with particular reference to crocins and picrocrocin, which define the 'pharma-grade' quality of saffron. Through HPLC analysis and chromatography it was possible to identify the cultivation parameters suitable for the production of saffron with neuroprotective properties, evaluated by comparison with an ISO standard and the REPRON® procedure. Furthermore, the biochemical characterization was completed through NMR and high-resolution mass spectrometry analyses of saffron extracts. The whole experimental framework allowed to establish an optimized protocol to produce pharma-grade saffron, allowing up to 3.2 g/m2 harvest (i.e., more than three times higher than field production in optimal conditions), which meets the standards of composition for the therapy of AMD.


Asunto(s)
Crocus , Crocus/química , Granjas , Hidroponía , Agricultura Molecular , Agricultura , Extractos Vegetales/química
15.
Biotechnol Bioeng ; 119(10): 2831-2841, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35822204

RESUMEN

Hairy root systems have proven to be a viable alternative for recombinant protein production. For recalcitrant proteins, maximizing the productivity of hairy root cultures is essential. The aim of this study was to optimize a Brassica rapa rapa hairy root process for secretion of alpha- l-iduronidase (IDUA), a biologic of medical value. The process was first optimized with hairy roots expressing eGFP. For the biomass optimization, the highest biomass yields were achieved in modified Gamborg B5 culture medium. For the secretion induction, the optimized secretion media was obtained with additives (1.5 g/l PVP + 1 mg/l 2,4- d + 20.5 g/l KNO3 ) resulting in 3.4 fold eGFP secretion when compared to the non-induced control. These optimized conditions were applied to the IDUA-expressing hairy root clone, confirming that the highest yields of secreted IDUA occurred when using the defined additive combination. The functionality of the IDUA protein, secreted and intracellular, was confirmed with an enzymatic activity assay. A > 150-fold increase of the IDUA activity was observed using an optimized secretion medium, compared with a non-induced medium. We have proven that our B. rapa rapa hairy root system can be harnessed to secrete recalcitrant proteins, illustrating the high potential of hairy roots in plant molecular farming.


Asunto(s)
Productos Biológicos , Brassica , Productos Biológicos/metabolismo , Brassica/genética , Brassica/metabolismo , Agricultura Molecular , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
Methods Mol Biol ; 2456: 275-286, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35612749

RESUMEN

Transient expression of recombinant proteins in plants is being used as a platform for production of therapeutic proteins. Benefits of this system include a reduced cost of drug development, rapid delivery of new products to the market, and an ability to provide safe and efficacious medicines for diseases. Although plant-based production systems offer excellent potential for therapeutic protein production, barriers, such as plant host defense response, exist which negatively impact the yield of product. Here we provide a protocol using tandem mass tags and mass spectrometry-based proteomics to quickly and robustly quantify the change in abundance of host defense proteins produced during the production process. These proteins can then become candidates for genetic manipulation to create host plants with reduced plant defenses capable of producing higher therapeutic protein yields.


Asunto(s)
Agrobacterium tumefaciens , Agricultura Molecular , Agrobacterium tumefaciens/metabolismo , Agricultura Molecular/métodos , Plantas/genética , Plantas Modificadas Genéticamente/genética , Proteómica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Nicotiana/metabolismo
17.
Trends Biotechnol ; 40(10): 1248-1260, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35562237

RESUMEN

Plant expression platforms are low-cost, scalable, safe, and environmentally friendly systems for the production of recombinant proteins and bioactive metabolites. Rice (Oryza sativa L.) endosperm is an ideal bioreactor for the production and storage of high-value active substances, including pharmaceutical proteins, oral vaccines, vitamins, and nutraceuticals such as flavonoids and carotenoids. Here, we explore the use of molecular farming from producing medicines to developing functional food crops (biofortification). We review recent progress in producing pharmaceutical proteins and bioactive substances in rice endosperm and compare this platform with other plant expression systems. We describe how rice endosperm could be modified to design metabolic pathways and express and store stable products and discuss the factors restricting the commercialization of transgenic rice products and future prospects.


Asunto(s)
Endospermo , Oryza , Carotenoides , Endospermo/genética , Endospermo/metabolismo , Flavonoides , Regulación de la Expresión Génica de las Plantas , Agricultura Molecular , Oryza/genética , Oryza/metabolismo , Preparaciones Farmacéuticas/metabolismo , Proteínas de Plantas , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Proteínas Recombinantes/metabolismo , Vitaminas/metabolismo
18.
Methods Mol Biol ; 2480: 49-60, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35616856

RESUMEN

The production of recombinant proteins in seed crops has a long history and cereal grains are now one of the platforms in commercial use. Specific advantages include excellent storage properties, a well-developed endomembrane system with a high biosynthetic capacity and well-established cultivation procedures worldwide. However, the production of transgenic cereals is a time-consuming procedure and the lack of efficient transformation systems is still a significant bottleneck. Barley can be transformed at high efficiency but the protocols are genotype-dependent. Wheat is generally more challenging to transform, but considerable progress has been made in enhancing transformation efficiencies and in controlling transgene expression. In this chapter, we describe and discuss standard procedures for generating transgenic barley and wheat for the production of recombinant proteins.


Asunto(s)
Hordeum , Productos Agrícolas/genética , Grano Comestible/genética , Hordeum/genética , Agricultura Molecular , Proteínas Recombinantes , Semillas/genética , Triticum/genética
19.
Methods Mol Biol ; 2480: 313-333, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35616870

RESUMEN

The regulation of molecular farming is a complex topic because plants and plant-based systems are relative newcomers among the many production platforms available for recombinant proteins. The regulations specific for different types of product (human/veterinary pharmaceuticals and medical devices, cosmetics, diagnostics, and research reagents) must therefore be overlaid with the regulations governing hitherto unfamiliar production platforms, and this must be achieved in different jurisdictions that handle genetically modified organisms (and genetically modified plants in particular) in very different ways. This chapter uses examples of different product types and production methods in three different jurisdictions (the USA, the EU, and Canada) to demonstrate some of the challenges facing the regulatory authorities.


Asunto(s)
Agricultura Molecular , Drogas Veterinarias , Canadá , Humanos , Plantas Modificadas Genéticamente/genética , Proteínas Recombinantes/genética
20.
Methods Mol Biol ; 2480: 335-342, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35616871

RESUMEN

Academic scientists are increasingly engaged in translational research oriented toward bringing products and processes to commercial markets. They need to diligently analyze the intellectual property (IP) rights of others to avoid infringement, and use their own IP strategically. For this it is useful to perform a freedom-to-operate (FTO) analysis which includes searching the prior art and patent databases. This chapter outlines the principles of FTO analysis with a special focus on plant biotechnology.


Asunto(s)
Propiedad Intelectual , Agricultura Molecular , Biotecnología , Libertad , Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA