Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.219
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 316: 124357, 2024 Aug 05.
Article En | MEDLINE | ID: mdl-38692110

This study described the preparation of an azide covalent organic framework-embedded molecularly imprinted polymers (COFs(azide)@MIPs) platform for urea adsorption and indirect ethyl carbamate (EC) removal from Chinese yellow rice wine (Huangjiu). By modifying the pore surface of COFs using the copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction, COFs(azide) with a high fluorescence quantum yield and particular recognition ability were inventively produced. In order to selectively trap urea, the COFs(azide) were encased in an imprinted shell layer via imprinting technology. With a detection limit (LOD) of 0.016 µg L-1 (R2 = 0.9874), the COFs(azides)@MIPs demonstrated a good linear relationship with urea in the linear range of 0-5 µg L-1. Using real Huangjiu samples, the spiking recovery trials showed the viability of this sensing platform with recoveries ranging from 88.44 % to 109.26 % and an RSD of less than 3.40 %. The Huangjiu processing model system achieved 38.93 % EC reduction by COFs(azides)@MIPs. This research will open up new avenues for the treatment of health problems associated with fermented alcoholic beverages, particularly Huangjiu, while also capturing and removing hazards coming from food.


Molecularly Imprinted Polymers , Urea , Urethane , Wine , Urethane/analysis , Urethane/chemistry , Molecularly Imprinted Polymers/chemistry , Urea/analysis , Urea/chemistry , Wine/analysis , Spectrometry, Fluorescence/methods , Azides/chemistry , Limit of Detection , Adsorption , Metal-Organic Frameworks/chemistry , Molecular Imprinting/methods
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731823

This study presents the initial attempt at introducing a magnetic molecularly imprinted polymer (MIP) designed specifically for lamotrigine with the purpose of functioning as a drug carrier. First, the composition of the magnetic polymer underwent optimization based on bulk polymer adsorption studies and theoretical analyses. The magnetic MIP was synthesized from itaconic acid and ethylene glycol dimethacrylate exhibiting a drug loading capacity of 3.4 ± 0.9 µg g-1. Structural characterization was performed using powder X-ray diffraction analysis, vibrating sample magnetometry, and Fourier transform infrared spectroscopy. The resulting MIP demonstrated controlled drug released characteristics without a burst effect in the phospahe buffer saline at pH 5 and 8. These findings hold promise for the potential nasal administration of lamotrigine in future applications.


Drug Carriers , Lamotrigine , Molecularly Imprinted Polymers , Lamotrigine/chemistry , Drug Carriers/chemistry , Molecularly Imprinted Polymers/chemistry , Molecularly Imprinted Polymers/chemical synthesis , Molecular Imprinting/methods , Spectroscopy, Fourier Transform Infrared , Drug Liberation , X-Ray Diffraction , Adsorption , Hydrogen-Ion Concentration
3.
J Chromatogr A ; 1726: 464977, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38735117

A magnetic molecularly imprinted polymer (MMIP) adsorbent incorporating amino-functionalized magnetite nanoparticles, nitrogen-doped graphene quantum dots and mesoporous carbon (MIP@MPC@N-GQDs@Fe3O4NH2) was fabricated to extract triazine herbicides from fruit juice. The embedded magnetite nanoparticles simplified the isolation of the adsorbent from the sample solution. The N-GQDs and MPC enhanced adsorption by affinity binding with triazines. The MIP layer provided highly specific recognition sites for the selective adsorption of three target triazines. The extracted triazines were determined by high-performance liquid chromatography (HPLC) coupled with diode-array detection (DAD). The developed method exhibited linearity from 1.5 to 100.0 µg L-1 with a detection limit of 0.5 µg L-1. Recoveries from spiked fruit juice samples were in the range of 80.1- 108.4 %, with a relative standard deviation of less than 6.0 %. The developed MMIP adsorbent demonstrated good selectivity, high extraction efficiency, ease of fabrication and use, and good stability.


Carbon , Fruit and Vegetable Juices , Herbicides , Limit of Detection , Molecularly Imprinted Polymers , Quantum Dots , Triazines , Quantum Dots/chemistry , Triazines/chemistry , Triazines/analysis , Triazines/isolation & purification , Herbicides/analysis , Herbicides/isolation & purification , Herbicides/chemistry , Fruit and Vegetable Juices/analysis , Adsorption , Molecularly Imprinted Polymers/chemistry , Carbon/chemistry , Chromatography, High Pressure Liquid/methods , Magnetite Nanoparticles/chemistry , Solid Phase Microextraction/methods , Molecular Imprinting/methods , Porosity , Graphite/chemistry
4.
Nat Commun ; 15(1): 3731, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702306

Molecular recognition of proteins is key to their biological functions and processes such as protein-protein interactions (PPIs). The large binding interface involved and an often relatively flat binding surface make the development of selective protein-binding materials extremely challenging. A general method is reported in this work to construct protein-binding polymeric nanoparticles from cross-linked surfactant micelles. Preparation involves first dynamic covalent chemistry that encodes signature surface lysines on a protein template. A double molecular imprinting procedure fixes the binding groups on the nanoparticle for these lysine groups, meanwhile creating a binding interface complementary to the protein in size, shape, and distribution of acidic groups on the surface. These water-soluble nanoparticles possess excellent specificities for target proteins and sufficient affinities to inhibit natural PPIs such as those between cytochrome c (Cytc) and cytochrome c oxidase (CcO). With the ability to enter cells through a combination of energy-dependent and -independent pathways, they intervene apoptosis by inhibiting the PPI between Cytc and the apoptotic protease activating factor-1 (APAF1). Generality of the preparation and the excellent molecular recognition of the materials have the potential to make them powerful tools to probe protein functions in vitro and in cellulo.


Cytochromes c , Electron Transport Complex IV , Nanoparticles , Polymers , Nanoparticles/chemistry , Cytochromes c/metabolism , Cytochromes c/chemistry , Humans , Polymers/chemistry , Polymers/metabolism , Electron Transport Complex IV/metabolism , Electron Transport Complex IV/chemistry , Molecular Imprinting/methods , Protein Binding , Apoptosis , Micelles , HeLa Cells , Animals
5.
Sci Rep ; 14(1): 10293, 2024 05 04.
Article En | MEDLINE | ID: mdl-38704412

In this study, a sensitive and selective fluorescent chemosensor was developed for the determination of pirimicarb pesticide by adopting the surface molecular imprinting approach. The magnetic molecularly imprinted polymer (MIP) nanocomposite was prepared using pirimicarb as the template molecule, CuFe2O4 nanoparticles, and graphene quantum dots as a fluorophore (MIP-CuFe2O4/GQDs). It was then characterized using X-ray diffraction (XRD) technique, Fourier transforms infrared (FT-IR) spectroscopy, scanning electron microscope (SEM), and transmission electron microscopy (TEM). The response surface methodology (RSM) was also employed to optimize and estimate the effective parameters of pirimicarb adsorption by this polymer. According to the experimental results, the average particle size and imprinting factor (IF) of this polymer are 53.61 nm and 2.48, respectively. Moreover, this polymer has an excellent ability to adsorb pirimicarb with a removal percentage of 99.92 at pH = 7.54, initial pirimicarb concentration = 10.17 mg/L, polymer dosage = 840 mg/L, and contact time = 6.15 min. The detection of pirimicarb was performed by fluorescence spectroscopy at a concentration range of 0-50 mg/L, and a sensitivity of 15.808 a.u/mg and a limit of detection of 1.79 mg/L were obtained. Real samples with RSD less than 2 were measured using this chemosensor. Besides, the proposed chemosensor demonstrated remarkable selectivity by checking some other insecticides with similar and different molecular structures to pirimicarb, such as diazinon, deltamethrin, and chlorpyrifos.


Pesticides , Pyrimidines , Pesticides/analysis , Carbamates/analysis , Carbamates/chemistry , Quantum Dots/chemistry , Molecularly Imprinted Polymers/chemistry , Polymers/chemistry , Spectrometry, Fluorescence/methods , Graphite/chemistry , Molecular Imprinting/methods , Adsorption , Limit of Detection , Spectroscopy, Fourier Transform Infrared , Nanocomposites/chemistry , Nanocomposites/ultrastructure
6.
Anal Methods ; 16(18): 2878-2887, 2024 May 09.
Article En | MEDLINE | ID: mdl-38639924

Shikimic acid (SA) is one of the most effective drugs against the A (H1N1) virus and has high medicinal value. Additionally, it has the ability to generate non-toxic herbicides and antimicrobial medications. The extraction from plants has proven to be the main route of production of SA with economic benefits and environmental efficiency. Therefore, it is necessary to perform purification of SA from these herbal medicines before quantifying it. In this study, researchers employed a boronate affinity-based controlled oriented surface imprinting technique to produce molecularly imprinted polymers (MIPs) as highly effective solid phase extraction (SPE) adsorbents for the isolation and purification of SA. 3-Fluoro-4-formylphenylboronic acid functionalized silica nanoparticles were used as supporting materials for immobilizing SA. Poly(2-anilinoethanol) with a higher hydrophilic domain can be used as an effective imprinting coating. The prepared SA-imprinted silica nanoparticles exhibited several significant results, such as good specificity, high binding capacity (39.06 ± 2.24 mg g-1), moderate binding constant (6.61 × 10-4 M-1), fast kinetics (8 min) and low binding pH (pH 5.0) toward SA. The replication of SA-imprinted silica nanoparticles was deemed satisfactory. The SA-imprinted silica nanoparticles could be still reused after seven adsorption-desorption cycles, which indicated high chemical stability. In addition, the recoveries of the proposed method for SA at three spiked level analysis in star aniseed and meadow cranesbill were 96.2% to 109.0% and 91.6% to 103.5%, respectively. The SA-imprinted silica nanoparticles that have been prepared are capable of identifying the target SA in real herbal medicines. Our approach makes sample pre-preparation simple, fast, selective and efficient.


Boronic Acids , Molecular Imprinting , Nanoparticles , Shikimic Acid , Silicon Dioxide , Solid Phase Extraction , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Molecular Imprinting/methods , Shikimic Acid/chemistry , Shikimic Acid/isolation & purification , Boronic Acids/chemistry , Solid Phase Extraction/methods , Molecularly Imprinted Polymers/chemistry , Adsorption , Herbal Medicine/methods
7.
Mikrochim Acta ; 191(5): 238, 2024 04 04.
Article En | MEDLINE | ID: mdl-38570401

Surface-enhanced Raman scattering (SERS) is a powerful method for detecting breast cancer-specific biomarkers due to its extraordinary enhancement effects obtained by localized surface plasmon resonance (LSPR) in metallic nanostructures at hotspots. In this research, gold nanostars (AuNSs) were used as SERS probes to detect a cancer biomarker at very low concentrations. To this end, we combined molecularly imprinted polymers (MIPs) as a detection layer with SERS for the detection of the biomarker CA 15-3 in point-of-care (PoC) analysis. This required two main steps: (i) the deposition of MIPs on a gold electrode, followed by a second step (ii) antibody binding with AuNSs containing a suitable Raman reporter to enhance Raman signaling (SERS). The MPan sensor was prepared by electropolymerization of the monomer aniline in the presence of CA 15-3. The template molecule was then extracted from the polymer using sodium dodecyl sulfate (SDS). In parallel, a control material was prepared in the absence of the protein (NPan). Surface modification for the control was performed using electrochemical techniques such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The performance of the sensor was evaluated using the SERS technique, in which the MPan sensor is first incubated with the protein and then exposed to the SERS probe. Under optimized conditions, the device showed a linear response to CA 15-3 concentrations from 0.016 to 248.51 U mL-1 in a PBS buffer at pH 7.4 in 1000-fold diluted serum. Overall, this approach demonstrates the potential of SERS as an optical reader and opens a new avenue for biosensing applications.


Biosensing Techniques , Molecular Imprinting , Neoplasms , Biomarkers, Tumor , Molecular Imprinting/methods , Biosensing Techniques/methods , Antibodies , Gold/chemistry
8.
Anal Bioanal Chem ; 416(14): 3335-3347, 2024 Jun.
Article En | MEDLINE | ID: mdl-38661944

Stanozolol, a synthetic derivative of testosterone, is one of the common doping drugs among athletes and bodybuilders. It is metabolized to a large extent and metabolites are detected in urine for a longer duration than the parent compound. In this study, a novel dummy molecularly imprinted polymer (DMIP) is developed as a sorbent for solid-phase extraction of stanozolol metabolites from spiked human urine samples. The optimized DMIP is composed of stanozolol as the dummy template, methacrylic acid as the functional monomer, and ethylene glycol dimethacrylate as the cross-linker in a ratio of 1:10:80. The extracted analytes were quantitively determined using a newly developed and validated ultrahigh-performance liquid chromatography tandem mass spectrometry method, where the limits of detection and quantitation were 0.91 and 1.81 ng mL-1, respectively, fulfilling the minimum required performance limit decided on by the World Anti-Doping Agency. The mean percentage extraction recoveries for 3'-hydroxystanozolol, 4ß-hydroxystanozolol, and 16ß-hydroxystanozolol are 97.80% ± 13.80, 83.16% ± 7.50, and 69.98% ± 2.02, respectively. As such, the developed DMISPE can serve as an efficient cost-effective tool for doping and regulatory agencies for simultaneous clean-up of the stanozolol metabolites prior to their quantification.


Doping in Sports , Limit of Detection , Molecularly Imprinted Polymers , Solid Phase Extraction , Stanozolol , Stanozolol/urine , Solid Phase Extraction/methods , Humans , Molecularly Imprinted Polymers/chemistry , Doping in Sports/prevention & control , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Substance Abuse Detection/methods , Anabolic Agents/urine , Anabolic Agents/metabolism , Molecular Imprinting/methods
9.
J Chromatogr A ; 1722: 464859, 2024 May 10.
Article En | MEDLINE | ID: mdl-38604056

In this study, molecularly imprinted polymers (MIPs) were prepared for the specific recognition of organophosphorus pesticides and a rapid, efficient and simple method was established for the detection of dimethoate (DIT) in food samples. Fe3O4 magnetic nanoparticles were synthesized by co-precipitation, and Fe3O4/ZIF-8 complexes were prepared by a modified in-situ polymerization method, and then magnetic molecularly imprinted polymers (MMIPs) were prepared and synthetic route was optimized by applying density functional theory (DFT). The morphological characterization showed that the MMIPs were coarse porous spheres with an average particle size of 50 nm. The synthesized materials are highly selective for the organophosphorus pesticide dimethoate with an adsorption capacity of 461.50 mg·g-1 and are effective resistance to matrix effects. A novel method for the determination of DIT in cabbage was developed using the prepared MMIPs in combination with HPLC. The practical results showed that the method can meet the requirements for the determination of DIT in cabbage with recoveries of 85.6-121.1 % and detection limits of 0.033 µg·kg-1.


Brassica , Dimethoate , Limit of Detection , Molecularly Imprinted Polymers , Dimethoate/analysis , Brassica/chemistry , Molecularly Imprinted Polymers/chemistry , Adsorption , Chromatography, High Pressure Liquid/methods , Molecular Imprinting/methods , Magnetite Nanoparticles/chemistry , Solid Phase Extraction/methods , Food Contamination/analysis
10.
J Chromatogr A ; 1724: 464910, 2024 Jun 07.
Article En | MEDLINE | ID: mdl-38657316

A simplified approach for preparation of sandwich type molecularly imprinted polymers (PPDA-MIPs) is proposed for simultaneously identify Low-density lipoprotein (LDL) and dispose "bad cholesterol". Porous polydopamine nanosphere (PPDA) is applied as a matrix for immobilization of LDL, and the imprinted layer is formed by dopamine acting as a functional monomer. Since imprinted cavities exhibit shape memory effects in terms of recognizing selectivity, the PPDA-MIPs exhibit excellent selectivity toward LDL and a substantial binding capacity of 550.3 µg mg-1. Meanwhile, six adsorption/desorption cycles later, the adsorption efficiency of 83.09 % is still achieved, indicating the adequate stability and reusability of PPDA-MIPs. Additionally, over 80 % of cholesterol is recovered, indicating the completeness of "bad cholesterol" removal in LDL. Lastly, as demonstrated by gel electrophoresis, PPDA-MIPs performed satisfactory behavior for the removal of LDL from the goat serum sample.


Cholesterol , Indoles , Lipoproteins, LDL , Molecularly Imprinted Polymers , Polymers , Lipoproteins, LDL/blood , Lipoproteins, LDL/chemistry , Lipoproteins, LDL/isolation & purification , Adsorption , Polymers/chemistry , Cholesterol/blood , Cholesterol/chemistry , Indoles/chemistry , Animals , Molecularly Imprinted Polymers/chemistry , Dopamine/blood , Dopamine/chemistry , Dopamine/isolation & purification , Dopamine/analysis , Molecular Imprinting/methods , Goats , Nanospheres/chemistry
11.
Spectrochim Acta A Mol Biomol Spectrosc ; 315: 124262, 2024 Jul 05.
Article En | MEDLINE | ID: mdl-38613900

Myeloid leukemia is a chronic cancer, which associated with abnormal BCR-ABL tyrosine kinase activity. Imatinib (IMB) acts as a tyrosine kinase inhibitor and averts tumor growth in cancer cells by controlling cell division, so it is urgent to develop an effective assay to detect and monitor its IMB concentration. Therefore, an innovative fluorescent biomimetic sensor is a promising sensing material that constructed for the efficient recognition of IMB and displays excellent selectivity and sensitivity stemming from molecularly imprinted polymer@Fe3O4 (MIP@Fe3O4). The detection strategy depends on the recognition of IMB molecules at the imprinted sites in the presence of coexisting molecules, which are then transferred to the fluorescence signal. The synthesized MIP@Fe3O4 was characterized using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). Furthermore, computational studies of the band gap (EHOMO-ELUMO) of the monomers, IMB, and their complexes were performed. These results confirmed that the copolymer is the most appropriate and has high stability (Binding energy; 0.004 x 10-19 KJ) and low reactivity. A comprehensive linear response over IMB concentrations from 5 × 10-6 mol/L to 8 × 10-4 mol/L with a low detection limit of 9.3 × 10-7 mol/L was achieved. Furthermore, the proposed technique displayed long-term stability (over 2 months), high intermediate precision (RSD<2.1 %), good reproducibility (RSD <1.9 %), and outstanding selectivity toward IMB over analogous molecules with similar chemical and spatial structure (no interference by 100 to 150-fold of the competitors). Owing to these merits, the proposed fluorescence sensor was utilized to detect IMB in drug tablets and human plasma, and satisfactory results (99.3-100.4 %) were obtained. Thus, the synthesized fluorescence sensor is a promising platform for IMB sensing in various applications.


Antineoplastic Agents , Fluorescent Dyes , Imatinib Mesylate , Molecularly Imprinted Polymers , Spectrometry, Fluorescence , Imatinib Mesylate/blood , Humans , Fluorescent Dyes/chemistry , Molecularly Imprinted Polymers/chemistry , Antineoplastic Agents/blood , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Spectrometry, Fluorescence/methods , Limit of Detection , Ferrosoferric Oxide/chemistry , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/blood , Polymers/chemistry , Spectroscopy, Fourier Transform Infrared , Molecular Imprinting/methods
12.
Biosens Bioelectron ; 257: 116332, 2024 Aug 01.
Article En | MEDLINE | ID: mdl-38677016

In situ detection of dopamine (DA) at single-cell level is critical for exploring neurotransmitter-related biological processes and diseases. However, the low content of DA and a variety of distractors with similar oxidation potentials as DA in cells brought great challenges. Here, a sensitive and specific electrochemical nanosensor was proposed for in situ detection of DA in single living cells based on nanodiamond (ND) and molecularly imprinted polymer (MIP)-functionalized carbon fiber nanoelectrode (ND/MIP/CFNE). Due to its excellent electrocatalytic property, ND was modified to the surface of CFNE based on amide bonding. Compared with bare CFNE, ND-modified CFNE can enhance oxidation currents of DA by about 4-fold, improving signal-to-noise ratio and detection sensitivity. MIP was further electropolymerized on the surface of nanoelectrodes to achieve specific capture and recognition of DA, which could avoid the interference of complex matrix and analogs in cells. Taking advantage of the precise positioning capability of a single-cell analyzer and micromanipulator, ND/MIP/CFNE could be precisely inserted into different locations of single cells and monitor oxidation signal of DA. The concentration of DA in the cytoplasm of single pheochromocytoma (PC12) cell was measured to be about 0.4 µM, providing a sensitive and powerful method for single-cell detection. Furthermore, the nanoelectrodes can monitor the fluctuation of intracellular DA under drug stimulation, providing new ideas and methods for new drug development and efficacy evaluation.


Biosensing Techniques , Dopamine , Electrochemical Techniques , Molecularly Imprinted Polymers , Single-Cell Analysis , Dopamine/analysis , Dopamine/chemistry , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , PC12 Cells , Electrochemical Techniques/methods , Molecularly Imprinted Polymers/chemistry , Animals , Rats , Nanodiamonds/chemistry , Electrodes , Carbon Fiber/chemistry , Molecular Imprinting/methods , Limit of Detection , Polymers/chemistry
13.
Int J Biol Macromol ; 267(Pt 1): 131321, 2024 May.
Article En | MEDLINE | ID: mdl-38570001

The improper usage of levofloxacin (LEV) endangers both environmental safety and human public health. Therefore, trace analysis and detection of LEV have extraordinary significance. In this paper, a novel molecularly imprinted polymer (MIP) electrochemical sensor was developed for the specific determination of LEV by electrochemical polymerization of o-phenylenediamine (o-PD) using poly(3,4-ethylenedioxythiophene)/chitosan (PEDOT/CS) with a porous structure and rich functional groups as a carrier and LEV as a template molecule. The morphology, structure and properties of the modified materials were analyzed and studied. The result showed that the electron transfer rate and the electroactive strength of the electrode surface are greatly improved by the interconnection of PEDOT and CS. Meanwhile, PEDOT/CS was assembled by imprinting with o-PD through non-covalent bonding, which offered more specific recognition sites and a larger surface area for the detection of LEV and effectively attracted LEV through intermolecular association. Under the optimized conditions, MIP/PEDOT/CS/GCE showed good detection performance for LEV in a wide linear range of 0.0019- 1000 µM, with a limit of detection (LOD, S/N = 3) of 0.4 nM. Furthermore, the sensor has good stability and selectivity, and exhibits excellent capabilities in the microanalysis of various real samples.


Bridged Bicyclo Compounds, Heterocyclic , Chitosan , Electrochemical Techniques , Levofloxacin , Molecular Imprinting , Molecularly Imprinted Polymers , Polymers , Chitosan/chemistry , Levofloxacin/analysis , Levofloxacin/chemistry , Polymers/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Molecular Imprinting/methods , Electrochemical Techniques/methods , Molecularly Imprinted Polymers/chemistry , Electrodes , Limit of Detection , Humans
14.
Anal Chim Acta ; 1301: 342450, 2024 May 01.
Article En | MEDLINE | ID: mdl-38553121

Molecular imprinting polymers (MIPs) are synthetic receptors as biomimetic materials for various applications ranging from sensing to separation and catalysis. However, currently existing MIPs are stuck to some of the issues including the longer preparation steps and poor performance. In this report, a facile and one-pot strategy by integrating the in-situ growth of magnetic nanoparticles and reversed phase microemulsion oriented molecularly imprinting strategy to develop magnetic molecular imprinted nanocomposites was proposed. Through self-assembling of the template, it brought up highly ordered and uniform arrangement of the imprinting structure, which offered faster adsorption kinetic as adsorption equilibrium was achived within 15 min, higher adsorption capacity (Qmax = 48.78 ± 1.54 µmol/g) and high affinity (Kd = 127.63 ± 9.66 µM) toward paradigm molecule-adenosine monophosphate (AMP) compared to the conventional bulk imprinting. The developed MIPs offered better affinity and superior specificity which allowed the specific enrichment toward targeted phosphorylated peptides from complex samples containing 100-fold more abundant interfering peptides. Interestingly, different types of MIPs can be developed which could targetly enrich the specific phosphorylated peptides for mass spectrometry analysis by simply switching the templates, and this strategy also successfully achieved imprinting of macromolecular peptides. Collectively, the approach showed broad applicability to target specific enrichment from metabolites to phosphorylated peptides and providing an alternative choice for selective recognition and analysis from complex biological systems.


Molecular Imprinting , Polymers , Polymers/chemistry , Peptides , Macromolecular Substances , Adsorption , Molecular Imprinting/methods
15.
Chemosphere ; 355: 141680, 2024 May.
Article En | MEDLINE | ID: mdl-38479683

In this study, a novel Fe3O4-based biochar coupled surface-imprinted polymer was constructed via simple hydrothermal route for salicylic acid recognition and degradation in advanced oxidation processes. The material exhibited excellent adsorption capability, up to 118.23 mg g-1, and efficient degradation performance, 87.44% removal rate within 240 min, based on integrating the advantages of both huge specific surface area as well as abundant functional groups from biochars and specific recognition sites from imprinted cavities. Moreover, high selectivity coefficient (11.67) showed stable recognition in single and binary systems. SO4•- and •OH were confirmed as reactive oxygen species in catalytic reaction according to quenching experiments and EPR analysis. The degradation mechanism and pathway were unraveled by DFT calculations and LC-MS. Furthermore, the results of toxicity evaluation, stability and reusability demonstrated application potential in the field of water environment restoration. This study confirmed that molecular imprinting provided a promising solution to targeted removal of emerging environmental pollutants by degrading after the enrichment of pollutants to the composites surface.


Charcoal , Molecular Imprinting , Wastewater , Molecularly Imprinted Polymers , Salicylic Acid , Polymers , Molecular Imprinting/methods , Adsorption
16.
Biosens Bioelectron ; 255: 116246, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38537430

3-nitrotyrosine (3-NT) is a biomarker closely associated with the early diagnosis of oxidative stress-related disorders. The development of an accurate, cost-effective, point-of-care 3-NT sensor holds significant importance for self-monitoring and clinical treatment. In this study, a selective, sensitive, and portable molecularly imprinted electrochemical sensor was developed. ZIF-67 with strong adsorption capacity was facilely modified on an electrochemically active laser-induced graphene (LIG) substrate (formed ZIF-67/LIG). Subsequently, biocompatible dopamine was chosen as the functional monomer, and interference-free ʟ-tyrosine was used as the dummy template to create molecularly imprinted polydopamine (MIPDA) on the ZIF-67/LIG, endowing the sensor with selectivity. The morphologies, electrochemical properties, and detection performance of the sensor were comprehensively investigated using scanning electron microscopy, cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulse voltammetry. To achieve the best performance, several parameters were optimized, including the number of polymerization cycles (15), elution time (60 min), incubation time (7 min), and pH of the buffer solution (6). The turnaround time for this sensor is 10 min. Benefiting from the alliance of MIPDA, ZIF-67, and LIG, the sensor exhibited excellent sensitivity with a detection limit of 6.71 nM, and distinguished selectivity against 11 interfering substances. To enable convenient clinical diagnosis, a customized electrochemical microsensor with MIPDA/ZIF-67/LIG was designed, showcasing excellent reliability and convenience in detecting biological samples without pretreatment. The proposed microsensor will not only facilitate clinical diagnosis and improve patient care, but also provide inspiration for the development of other portable and accurate electrochemical biosensors.


Biosensing Techniques , Graphite , Indoles , Molecular Imprinting , Polymers , Tyrosine/analogs & derivatives , Humans , Graphite/chemistry , Point-of-Care Systems , Reproducibility of Results , Limit of Detection , Biosensing Techniques/methods , Electrochemical Techniques/methods , Molecular Imprinting/methods , Electrodes
17.
Lab Chip ; 24(8): 2262-2271, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38501606

This article introduces distance-based paper analytical devices (dPADs) integrated with molecularly imprinted polymers (MIPs) and carbon dots (CDs) for simultaneous quantification of cytokine biomarkers, namely C-reactive protein (CRP), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) in human biological samples for diagnosis of cytokine syndrome. Using fluorescent CDs and MIP technology, the dPAD exhibits high selectivity and sensitivity. Detection is based on fluorescence quenching of CDs achieved through the interaction of the target analytes with the MIP layer on the paper substrate. Quantitative analysis is easily accomplished by measuring the distance length of quenched fluorescence with a traditional ruler and naked eye readout enabling rapid diagnosis of cytokine syndrome and the underlying infection. Our sensor demonstrated linear ranges of 2.50-24.0 pg mL-1 (R2 = 0.9974), 0.25-3.20 pg mL-1 (R2 = 0.9985), and 1.50-16.0 pg mL-1 (R2 = 0.9966) with detection limits (LODs) of 2.50, 0.25, and 1.50 pg mL-1 for CRP, TNF-α, and IL-6, respectively. This sensor also demonstrated remarkable selectivity compared to a sensor employing a non-imprinted polymer (NIP), and precision with the highest relative standard deviation (RSD) of 5.14%. The sensor is more accessible compared to prior methods relying on expensive reagents and instruments and complex fabrication methods. Furthermore, the assay provided notable accuracy for monitoring these biomarkers in various human samples with recovery percentages ranging between 99.22% and 103.58%. By integrating microfluidic systems, nanosensing, and MIPs technology, our developed dPADs hold significant potential as a cost-effective and user-friendly analytical method for point-of-care diagnostics (POC) of cytokine-related disorders. This concept can be further extended to developing diagnostic devices for other biomarkers.


Molecular Imprinting , Quantum Dots , Humans , Molecularly Imprinted Polymers , Carbon , Cytokines , Interleukin-6 , Tumor Necrosis Factor-alpha , Limit of Detection , Molecular Imprinting/methods , Biomarkers , Fluorescent Dyes
18.
J Hazard Mater ; 469: 133969, 2024 May 05.
Article En | MEDLINE | ID: mdl-38460257

Marine algal toxin contamination is a major threat to human health. Thus, it is crucial to develop rapid and on-site techniques for detecting algal toxins. In this work, we developed colorimetric cloth and paper hybrid microfluidic devices (µCPADs) for rapid detection of gonyautoxin (GTX1/4) combined with molecularly imprinted polymers. In addition, the metal-organic frameworks (MOFs) composites were applied for this approach by their unique features. Guanosine serves as a dummy template for surface imprinting and has certain structural advantages in recognizing gonyautoxin. MOF@MIPs composites were able to perform a catalytic color reaction using hydrogen peroxide-tetramethylbenzidine for the detection of GTX1/4. The cloth-based sensing substrates were assembled on origami µPADs to form user-friendly, miniaturized colorimetric µCPADs. Combined with a smartphone, the proposed colorimetric µCPADs successfully achieved a low limit of detection of 0.65 µg/L within the range of 1-200 µg/L for rapid visual detection of GTX1/4. Moreover, the GTX1/4 of real shellfish and seawater samples were satisfactorily detected to indicate the application prospect of the µCPADs. The proposed method shows good potential in the low-cost, stable establishment of assays for the rapid detection of environmental biotoxins.


Metal-Organic Frameworks , Molecular Imprinting , Saxitoxin/analogs & derivatives , Humans , Metal-Organic Frameworks/chemistry , Molecular Imprinting/methods , Limit of Detection
19.
Talanta ; 273: 125874, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38458084

2-Methyl-4-chlorophenoxyacetic acid (MCPA) is one of the most widely used herbicides, so adsorption and detection of MCPA in the environment is critical. Blue fluorescent carbon dot (CD) was synthesized from citric acid and urea, which could be quenched by MCPA. Herein, bifunctional molecularly imprinted polymer (CD@MIP) was prepared on monodisperse poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) microspheres, with 4-vinylpyridine as the functional monomer, ethylene glycol dimethacrylate as the cross-linking agent, and doped with CD. The enrichment ability of CD@MIP for MCPA and fluorescence detection performance were determined. The maximum adsorption amount of MCPA was 93.9 mg g-1 as determined by isothermal adsorption experiments and was in accordance with the Langmuir adsorption model. The results of the kinetic experiments showed that the adsorption equilibrium reached within 30 min, which possessed a relatively fast adsorption rate and was in accordance with the pseudo-second-order adsorption model. Both MIP without CD and non-imprinted polymers were also fabricated and tested as references. Fluorescence experiments showed good linearity of CD@MIP in the range of 0-80 µmol. The cabbage samples were analyzed by high performance liquid chromatography with a linear range of 0.02-15 µg mL-1, recoveries of 90.5%-98% and low relative standard deviations (RSD, n = 3) of 1.5%-5.9%. CD@MIP with excellent performance provides a feasible practical application in the detection and enrichment of MCPA.


2-Methyl-4-chlorophenoxyacetic Acid , Methacrylates , Molecular Imprinting , Molecularly Imprinted Polymers , Carbon , Molecular Imprinting/methods , Vegetables , Adsorption , Chromatography, High Pressure Liquid
20.
J Chromatogr A ; 1720: 464809, 2024 Apr 12.
Article En | MEDLINE | ID: mdl-38490141

An ultrafast, efficient, and eco-friendly method combining magnetic solid phase extraction and capillary electrophoresis with diode array detection have been developed to determine ractopamine residues in food samples. A restricted access material based on magnetic and mesoporous molecularly imprinted polymer has been properly synthesized and characterized, demonstrating excellent selectivity and high adsorbent capacity. Short-end injection capillary electrophoresis method was optimized: 75 mM triethylamine pH 7 as BGE, -20 kV, 50 mbar by hydrodynamic injection during 8 s, and capillary temperature at 25 °C; reaching ultrafast ractopamine analysis (∼0.6 min) with good peak asymmetry, and free from interfering and/or baseline noise. After sample preparation optimization, the conditions were: 1000 µL of sample at pH 6, 20 mg of adsorbent, stirring time of 120 s, 250 µL of ultrapure water as washing solvent, 1000 µL of methanol: acetic acid (7: 3, v/v) as eluent, and the adsorbent can be reused four times. In these conditions, the analytical method showed recoveries around to 100 %, linearity ranged from 9.74 to 974.0 µg kg-1, correlation coefficient (r) ≥ 0,99 in addition to adequate precision, accuracy, and robustness. After proper validation, the method was successfully applied in the analysis ractopamine residues in bovine milk and bovine and porcine muscle.


Molecular Imprinting , Molecularly Imprinted Polymers , Phenethylamines , Animals , Swine , Solid Phase Extraction/methods , Electrophoresis, Capillary/methods , Magnetic Phenomena , Molecular Imprinting/methods , Chromatography, High Pressure Liquid/methods
...